
Development of Robot-enhanced Therapy for
Children with Autism Spectrum Disorders

Project No. 611391

DREAM
Development of Robot-enhanced Therapy for

Children with Autism Spectrum Disorders

Grant Agreement Type: Collaborative Project
Grant Agreement Number: 611391

D3.4.3 System Integration Progress Report

Due date: 1/4/2017
Submission Date: 7/4/2017

Start date of project: 01/04/2014 Duration: 54 months

Organisation name of lead contractor for this deliverable: University of Skövde

Responsible Person: E. Billing Revision: 1

Project co-funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public PU

PP Restricted to other programme participants (including the Commission Service)

RE Restricted to a group specified by the consortium (including the Commission Service)

CO Confidential, only for members of the consortium (including the Commission Service)

D3.4.3 System Integration Progress
Report

Contents

Executive Summary 3

Principal Contributors 4

Revision History 4

1 Introduction 5

2 Integration meetings 5

2.1 Developers meeting at HIS . 5

2.2 Integration week at PORT . 5

2.3 Integration follow-up at UBB . 6

3 Integrated Software 6

4 DREAM system architecture 7

4.1 Reorganisation of the DREAM folder hierarchy . 7

4.2 Changes in the DREAM component architecture 9

5 Utilities 9

5.1 DREAM Boxology . 9

5.2 Script Generator . 11

5.3 User Data Export . 11

5.4 User Model Creator . 11

Appendices 13

A Notes from the DREAM Developers Meeting 13

B Notes from the UBB integration week 13

C Integration Reports 13

Date: 7/4/2017
Version: No 1

Page 2

D3.4.3 System Integration Progress
Report

Executive Summary

Deliverable D3.4 is an annual progress report on the integration of the software developed in work

packages WP4, WP5, and WP6. This is the Month 36 progress report. The third year of the project has

been a critical period in terms of software integration. From leaving year two with a skeleton for the

complete system and a smaller proportion of all required software components integrated, we reached

a complete system working in a clinical setting with ASD children by the end of February 2017. As

such, this past year has been the time where many pieces came together, including the organization of

three larger developer meetings.

The QA procedure and software standards developed during the first two years have to a large de-

gree remained unchanged during this period. Two significant architectural changes have however been

issued. The system folder hierarchy has been updated to clearly separate system components, being

part of the final DREAM system, from test and utility software. Furthermore, the component organi-

zation within WP4 (sensory analysis subsystem) has been updated. Four additional utility applications

has been developed, supporting both developers and therapists in working with the DREAM system.

DREAM Boxology is an application for creating, modifying, and visualizing system configurations.

Script Generator and User Model Creator are tools for generating and modifying intervention scripts

and the participant database, respectively. Finally, User Data Export allows exporting of participant

information into Excel format, as used by therapists.

Date: 7/4/2017
Version: No 1

Page 3

D3.4.3 System Integration Progress
Report

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Erik Billing, University of Skövde

Robert Homewood, University of Skövde

James Kennedy, Plymouth University

Emmanuel Senft, Plymouth University

David Vernon, University of Skövde

Revision History

Version 1.0 (P.G. 28-03-2017)

First draft.

Version 1.1 (P.G. 06-04-2017)

Second draft including all sections.

Version 1.2 (P.G. 06-04-2017)

Fixed page reference issues in Appendix C.

Version 1.3 (P.G. 06-04-2017)

Updated with clarification in relation to UBB meeting.

Version 2.0 (P.G. 07-04-2017)

Proofed version for submission.

Date: 7/4/2017
Version: No 1

Page 4

D3.4.3 System Integration Progress
Report

1 Introduction

The third year of the project has been the time when the work conducted within WP3 has been put

into practice. During this period, fifteen new system components have been integrated, undergoing

the QA and integration procedure developed within the project [6]. This led up to a complete running

DREAM system used for conducting therapy interventions during February and March, 2017.

Sec. 2 summarizes three developer meetings held during the past year, facilitating integration

of system components, as discussed in Sec. 3. During the first meeting, two significant changes to

the DREAM architecture were discussed and later implemented. These changes are presented in

Sec. 4. Sec. 5 presents four new utility applications developed in order to facilitate maintenance and

therapist’s work with the DREAM system.

The past year also meant changes in the staff working within WP3. As David Vernon, previously

responsible for WP3, left his position with the University of Skövde, he unfortunately also had to

leave the work in DREAM. Erik Billing, previously active both within WP3 and WP5, has taken over

David’s role as research director and responsible for WP3, from January 1st 2017.

2 Integration meetings

During the past year, three physical meetings with all developers have played a key role for integrating

and aligning software development within the project. In addition, weekly interactions over Skype

and email, as well as a couple of 1-1 partner meetings, have continued to strengthen interaction in the

interim of the three larger meetings listed below.

2.1 Developers meeting at HIS

June 7-8, 2016, a developers planning meeting was held at the University of Skövde. The meeting

was initiated to strengthen interaction between the software developing parties in WP3, WP4, and

WP5 (Recommendation 5) but, with the presence of UBB, also served to clarify details of system

functionality in relation to WP2. Following our efforts to facilitate the integration process from a

developers’ point of view, discussed in D3.4.2, the meeting comprised a walk-through of quality

assurance (D.3.3) and corresponding integration procedure updates Spring 2016, c.f. the Dream Wiki

[5]. The tools yarpGenerator and componentChecker (c.f., D3.4.2), were also presented and discussed.

The meeting resulted in a number of concretizations of details in the component specifications and

an agreed deadline (November 18) for submitting sixteen out of eighteen components necessary for

running the complete DREAM system in a clinical setting, as specified by the roll-out plan [4]. The

most significant impact was within WP5, where the exact roles of these components were clarified.

Please refer to Appendix A for details.

2.2 Integration week at PORT

January, 11-13, 2017, a second developers meeting was held at the University of Portsmouth. The

meeting comprised a similar set of people as the former HIS meeting, but with a more direct focus

on software integration and testing, with the specific target of getting the complete DREAM system

running.

During the meeting, several integration issues were identified and some of them were also resolved.

Thanks to the modular architecture and the extensive set of unit tests provided with each individual

system component, different subsections of the DREAM architecture could be executed and tested

Date: 7/4/2017
Version: No 1

Page 5

D3.4.3 System Integration Progress
Report

individually. Large parts of the complete architecture were successfully integrated during this meeting,

but due to new, previously unseen problems, the complete system did not run. The progress during

and after the meeting is documented using the Redmine Issue tracker [3] and the specific problems

preventing execution of the complete system are documented as Bug #46. These problems were later

resolved and allowed testing of the DREAM system during the follow-up week in Romania.

2.3 Integration follow-up at UBB

In order to prepare for interventions conducted as part of WP2 (reported in D2.2 and D2.3), a follow-

up meeting for developers was arranged at UBB February 13-17, 2017. Intense work by the different

developing partners and continuous tests of the complete system at HIS before this meeting meant that

the team achieved a running system, and four trials with typically developing children were conducted

during this week. The meeting also comprised a demo for the press1, February 16th. Technical notes

from the meeting are included as Appendix B.

While the system did run successfully at the end of the meeting, a number of bugs and issues

remained, listed in Sec. 3 of Appendix B. The work has continued after the meeting and at the time

of writing, most of these issues have been resolved. A number of less critical issues and occasional

crashes remain at the present time. Updates to resolve these problems will continue along with devel-

opment of new functionality.

3 Integrated Software

By the end of year two (D3.4.2), eight software components, actuationSimulator, eyeBlinking, fallingRe-

action, socialReaction, naoInterface, reactiveSystemGui, sensoryInterpretationLogger, and compo-

nentChecker, were integrated into the release version of the DREAM system, following the guide

for submitting software for integration available at the DREAM Wiki [5]. actuationSimulator, re-

activeSystemGui, sensoryInterpretationLogger and componentChecker, were created for testing and

support purposes, and are therefore not part of the roll-out plan [4]. Furthermore, following the roll-

out plan, eyeBlinking, socialReaction, and fallingReaction, were merged into the new component

attentionReactionSubsystem.

During year three, the following fifteen new system components have been integrated into the

DREAM architecture, following the roll-out plan and QA procedure:

• actuationSubsystem (WP6)

• assessChildEngagement (WP5)

• assessChildPerformance (WP5)

• attentionReactionSubsystem (WP6)

• cameraSelection (WP4)

• deliberativeSubsystem (WP6)

• kinectSource (WP4)

1The press demo held February 16th resulted in a newspaper article: https://evonews.com/tech-

science/2017/feb/18/exclusive-how-robots-are-changing-therapy-scientists-closing-in-on-a-breakthrough-ethical-

questions-arise.

Date: 7/4/2017
Version: No 1

Page 6

https://evonews.com/tech-science/2017/feb/18/exclusive-how-robots-are-changing-therapy-scientists-closing-in-on-a-breakthrough-ethical-questions-arise/
https://evonews.com/tech-science/2017/feb/18/exclusive-how-robots-are-changing-therapy-scientists-closing-in-on-a-breakthrough-ethical-questions-arise/
https://evonews.com/tech-science/2017/feb/18/exclusive-how-robots-are-changing-therapy-scientists-closing-in-on-a-breakthrough-ethical-questions-arise/

D3.4.3 System Integration Progress
Report

• sandtrayEvent (WP6)

• sandtrayServer (WP6)

• scriptManager (WP6)

• selfMonitoringSubsystem (WP6)

• sensoryAnalysis (WP4)

• systemGUI (WP6)

• usbCameraSource (WP4)

• userModel (WP6)

Documentation for all integrated components can be found in the Component Reference Manual [1].

To keep track of component integration in relation to the roll-out plan, a page for the integration

status was created in the DREAM Wiki [2]. This page was continuously updated as new components

were integrated into the release version of the system.

As examples of the QA procedure, the integration process for two components, systemGUI and

assessChildPerformance, are documented in Appendix C. In addition to the fifteen components listed

here, approximately twenty components were created as part of the unit tests, constituting drivers and

stubs for execution of the individual system components.

Two components from the roll-out plan have not been submitted for integration: mapFromPer-

ceptsToBehaviour (WP5) and proboInterface (WP6). During the HIS developers meeting (Sec. 2.1),

the exact role for the child behavior classifications (WP5) in relation to cognitive control (WP6) was

discussed and clarified. We realized that the basic functionality provided by mapFromPerceptsTo-

Behaviour, as required by WP6 components, was allready implemented in the sensory interpretation

subsystem (WP4). Development of mapFromPerceptsToBehaviour was therefore postponed in order

to prioritize implementation of assessChildEngagement and assessChildPerformance, both critical for

WP6 and complete system functionality. See Sec. 7 in Appendix A for details. The proboInterface

was also postponed as it remains unused in the system evaluation conducted within WP2, using the

Nao-robot. Both components are scheduled for integration during the final year of the project.

4 DREAM system architecture

Over the past year, two significant architectural changes have been made, affecting the structure of the

DREAM system and the roll-out plan.

4.1 Reorganisation of the DREAM folder hierarchy

Following the integration meeting in Skövde, June 2016 (Sec. 2.1), we decided separate system com-

ponents, listed in the roll-out plan, from test components that were not in the roll-out plan and merely

created as part of the QA procedure. This change was implemented in the DREAM folder hierar-

chy on the SVN by adding a new folder release/test containing test components, while keeping only

system components in the original release/components folder. An illustration of the updated folder

hierarchy is visible in Fig. 1. Please refer to Appendix A for further details.

Additionally, as listed in D3.4.2, two utility programs had been developed and to avoid convolution

with other parts of the DREAM software, these utilities were placed in a new folder release/tools.

During the past year, an additional four utilities have been developed, presented shortly in Sec. 5.

Date: 7/4/2017
Version: No 1

Page 7

D3.4.3 System Integration Progress
Report

F
ig

u
re

1
:

T
h
e

u
p
d
at

ed
d
ir

ec
to

ry
st

ru
ct

u
re

se
p
ar

at
in

g
te

st
an

d
u
ti

li
ty

co
m

p
o
n
en

ts
fr

o
m

p
u
re

sy
st

em
co

m
p
o
n
en

ts
.

Date: 7/4/2017
Version: No 1

Page 8

D3.4.3 System Integration Progress
Report

4.2 Changes in the DREAM component architecture

As presented in Sec. 3, all sixteen components specified for integration up until year three have

been integrated according to the roll-out plan [4], leaving only two components yet to be integrated.

However, for technical reasons, one architectural change within WP4 was issued during this period.

The roll-out plan specifies four components within WP4: cameraSelection, kinectSource, usbCamera-

Source, and sensoryAnalysis. These four components communicate over data-intensive connections

transmitting several parallel video streams, depth data, and motion information. While YARP does a

good job handling port communication efficiently, these data-intensive connections did add a signifi-

cant overhead to the already CPU intensive algorithms for sensory analysis created within WP4. Port

communication also requires synchronization of parallel data streams, adding an extra challenge to

the time sensitive fusion of RGB and RGBD data from usb cameras and Kinects. For these reasons,

the four components were merged into a single sensoryAnalysis component. cameraSelection, kinect-

Source, and usbCameraSource are however still kept and maintained as parts of the system although

they are currently not used in the main system configuration. Please refer to D4.3.2 for further details.

While this reorganization of software within the Sensory Interpretation subsystem has been large,

the interface to the other two subsystems, Child Behaviour Classification and Cognitive Control, has

remained unchanged. As a result, this reorganization has been kept within WP3 and WP4, not affect-

ing other work packages.

5 Utilities

D3.4.2 presents two utility applications, componentChecker and yarpGenerator. During the last year,

four additional utilities have been developed supporting both developers and therapists in working

with and maintaining the DREAM system.

5.1 DREAM Boxology

The complete DREAM system comprises a large set of interconnected components, following Component-

Based Software Engineering (CBSE) and the YARP component-port-connector model, c.f., D3.1.

Each specific configuration of connected components is referred to as an application and is defined

as an XML-file specifying all components and connections constituting the specific system configu-

ration.

As the number of components and connections grew, maintaining different application files by

manually editing XML became increasingly difficult. In order to handle this problem and to better

visualize the system architecture, DREAM Boxology was created. This utility allows instantiation

and re-wiring of YARP components using a box-and-arrow interface. When a specific system con-

figuration has been created using DREAM Boxology, the corresponding XML application file can

automatically be generated for execution using YARP.

A visualization generated using DREAM Boxology is presented in Fig. 2. While the labels for

components and connections are too small to be readable in this figure, the GUI provides an effective

visualization to zoom in and out in order to switch between overview and system details. The GUI also

provides direct editing by dragging and dropping new components and connections. This visualization

can be seen as a successor to Fig. 1 from D3.1.

Date: 7/4/2017
Version: No 1

Page 9

D3.4.3 System Integration Progress
Report

F
ig

u
re

2
:

T
h
e

cu
rr

en
t

st
at

e
o
f

th
e

D
R

E
A

M
ar

ch
it

ec
tu

re
v
is

u
al

iz
ed

u
si

n
g

th
e

D
R

E
A

M
B

o
xo

lo
g
y

u
ti

li
ty

.
E

ac
h

b
o
x

re
p
re

se
n
ts

a
co

m
p
o
n
en

t
w

h
er

e

b
lu

e,
g
re

en
,

an
d

y
el

lo
w

b
o
x
es

co
rr

es
p
o
n
d

to
se

n
so

ry
In

te
rp

re
ta

ti
o
n
,

ch
il

d
B

eh
av

io
u
rC

la
ss

ifi
ca

ti
o
n
,

an
d

co
g
n
it

iv
eC

o
n
tr

o
l,

re
sp

ec
ti

v
el

y.
L

in
es

re
p
re

-

se
n
t

Y
A

R
P

p
o
rt

co
n
n
ec

ti
o
n
s.

Date: 7/4/2017
Version: No 1

Page 10

D3.4.3 System Integration Progress
Report

5.2 Script Generator

Each intervention is defined as a script specifying the robot’s actions and expected child behavior.

These scripts can be seen as formalizations of the intervention definitions originally presented in

D1.1. Script Generator is a tool for the developers and therapists to create and modify intervention

scripts. It provides a graphical user interface for modifying and creating scripts and has been used to

create all scripts active in interventions conducted with ASD children in spring 2017. Please refer to

D6.3.3 for further details.

5.3 User Data Export

During the integration meeting at UBB (Sec. 2.3), the need to export information logged during inter-

ventions was identified. This included information about the child, their performance and engagement

during the intervention, and other script-specific aspects of the intervention. This information is stored

by the DREAM system in an XML-based user model and text-based log files, not directly readable by

the therapists. The userDataExport tool extracts relevant information from the system storage formats

to a single Excel sheet, in a format requested by the therapists.

5.4 User Model Creator

The userModelCreator is used by the therapists to create and modify user model XML files for each

child involved in the study. The utility automatically updates the list of participants that will be

displayed when running the DREAM system, and also allows the therapist to specify diagnosis infor-

mation for each child, visualized during interactions.

Date: 7/4/2017
Version: No 1

Page 11

D3.4.3 System Integration Progress
Report

References

[1] DREAM. Component reference manual. https://dreamproject.aldebaran.com/

projects/dream/wiki/Component_Reference_Manual, 2017.

[2] DREAM. Integration status. https://dreamproject.aldebaran.com/projects/

dream/wiki/Integration_Status, 2017.

[3] DREAM. Redmine issue tracker. https://dreamproject.aldebaran.com/

projects/dream/issues, 2017.

[4] DREAM. Roll-out plan. https://dreamproject.aldebaran.com/projects/

dream/wiki/Software_Rollout_Plan, 2017.

[5] DREAM. Wiki. https://dreamproject.aldebaran.com/projects/dream/

wiki, 2017.

[6] D. Vernon, E. Billing, P. Hemeren, S. Thill, and T. Ziemke. An Architecture-oriented Approach to

System Integration in Collaborative Robotics Research Projects - An Experience Report. Journal

of Software Engineering for Robotics, 6(1):15–32, 2015.

Date: 7/4/2017
Version: No 1

Page 12

https://dreamproject.aldebaran.com/projects/dream/wiki/Component_Reference_Manual
https://dreamproject.aldebaran.com/projects/dream/wiki/Component_Reference_Manual
https://dreamproject.aldebaran.com/projects/dream/wiki/Integration_Status
https://dreamproject.aldebaran.com/projects/dream/wiki/Integration_Status
https://dreamproject.aldebaran.com/projects/dream/issues
https://dreamproject.aldebaran.com/projects/dream/issues
https://dreamproject.aldebaran.com/projects/dream/wiki/Software_Rollout_Plan
https://dreamproject.aldebaran.com/projects/dream/wiki/Software_Rollout_Plan
https://dreamproject.aldebaran.com/projects/dream/wiki
https://dreamproject.aldebaran.com/projects/dream/wiki

Appendix A

Appendix A Notes from the DREAM Developers Meeting

Appendix B Notes from the UBB integration week

Appendix C Integration Reports

Date: 7/4/2017
Version: No 1

Page 13

	 1	

Notes from the DREAM Developers Meeting
Version 3.0

7-8 June

University of Skövde

Participants
Erik Billing, Haibin Cai, Hoang-Long Cao, Cristina Costescu, Karl Drejing, Pablo Gómez,

Paul Hemeren, Rob Homewood, Bangli Liu, Honghai Liu, James Kennedy, Alexandre Maxel,

Emmanuel Senft, David Vernon.

1. Matters arising from the ad hoc developers meeting 13 May
For the benefit of those not present at the ad hoc developers meeting, we summarized and

discussed the main issues.

1.1 Structure of release directory

The release directory will be reorganized, as follows.

• Two additional subdirectories will be introduced: tools and test

• The complete DREAM system comprises 171 components as specified in the rollout

plan. These 17 components will be placed in the existing components subdirectory.

This subdirectory will have a flat structure, i.e. components will not be organized into

sub-subdirectories according to system architecture subsystem (sensoryInterpretation,

childBehaviourClassification, and cognitiveControl).

• The components subdirectory will also be used for library sources, e.g. guiUtilities,

that need to be compiled and linked when creating component executables.

• Utilities such as yarpGenerator will be placed in the tools subdirectory.

• The componentChecker component will also be placed in the tools directory and

compiled along with the other test components.

• Additional components that are needed for running unit tests and systems tests will be

placed in the test subdirectory.

• The four placeholder components sensoryInterpretation,

childBehaviourClassification, cognitiveControl, and systemArchitectureGUI will be

moved from the components subdirectory to the test subdirectory. The

sensoryInterpretationLogger component will be placed here too.

• The cmake for release should compile all components in components, test, and tools

subdirectories. Some utilities in tools may be precompiled or compiled separately.

These changes will be implemented over the coming weeks.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

1	 The number of components was revised upwards to 19 later in the meeting to reflect the need for a

new sandtrayServer component, to be developed by Plymouth University, and a new identifyVoice

component, to be developed by Aldebaran. However, the number of components in the run-time

system remains at 17 in the initial version: the improveAssessment component will probably be

removed from the childBehaviourClassification subsystem and mapFromPerceptsToBehaviour will be

used in a later version of the run-time system. Both of these are still relevant for D2.2.

Appendix A

Date: 7/4/2017
Version: No 1

Page 14

	 2	

1.2 Guidelines for naming ports

We will adopt a new convention for naming ports to avoid name pollution but still provide

unique port names that as short as possible.

• The new standard format will be /<component_name>/<port_name>:<i|o>

• This means all the system architecture port names have to be renamed since they have

adopted the format /<subsystem_name>/<port_name>

• The subsystem names will only be used for logical grouping of components, not for

physical naming and organization in directories.

• The <component_name> part of the port names will be derived from the 17

components in the new system architecture that was developed during the meeting

(see below).

• The <port_name> part of the port names often reflects the software primitives defined

in the system architecture.

• Since ports are used to connect two components, there will always be at least two

ports with the same <port_name>, one for the producer and one for the consumer of

data on the connector.

o The producer writes to the port and so its port has an <:o> appended.

o The consumer reads from the port and so has an <:i> appended.

For example, the getEyes(eyeL_x, y, z, eyeR_x, y, z) primitive is implemented in the

sensoryAnalysis component and the information it produces is read, for instance, by

the mapFromPerceptsToBehaviour component. Consequently, the sensoryAnalysis

component implements this port

/sensoryAnalysis/getEyes:o

and the mapFromPerceptsToBehaviour component implements this port

/mapFromPerceptsToBehaviour/getEyes:i

• However, some primitives read parameter values before producing data. In this case,

the component implementing the primitive has both an <:i> port and a <:o> port: the

<:i> port is used to read the parameter values and the <:o> is used to write out the

data produced by the primitive. Similarly, the component that consumes the data also

has an <:i> port and a <:o> port: the <:o> port is used to write out the parameter

values and the <:i> is used to read the data produced by the primitive.

For example, the getEyeGaze(eye, x, y, z) primitive is implemented in the sensoryAnalysis

component and the information it produces is read, for instance, by the

mapFromPerceptsToBehaviour component. It reads the <eye> parameter and writes the <x, y, z>

data. Consequently, the sensoryAnalysis component implements these two ports

/sensoryAnalysis/getEyeGaze:i // read the <eye> parameter

/sensoryAnalysis/getEyeGaze:o // write the <x, y, z> data

and the mapFromPerceptsToBehaviour component implements these two ports

Appendix A

Date: 7/4/2017
Version: No 1

Page 15

	 3	

/mapFromPerceptsToBehaviour/getEyeGaze:o // write the <eye> parameter

/mapFromPerceptsToBehaviour/getEyeGaze:i // read the <x, y, z> data

While this naming convention should now be clear, some work may remain to ensure that

parameter setting messages and subsequently produced data are in synch.

1.3 System Architecture Diagram

A complete system architecture diagram with all 17 components was created, showing

consolidated connections between components rather than individual ports-to-port

connections.

This architecture has to be updated to include a new sandtrayServer component, to be

developed by Plymouth University, and a new identifyVoice component, to be developed by

Aldebaran.

The connection to and from the three components associated with the

childBehaviourClassfication subsystem – mapFromPerceptsToBehaviour,

getChildPerformance, getChildEngagement – need to be rationalized to reflect the

amendments of their specifications agreed later in the meeting (see below) and the removal of

mapFromPerceptsToBehaviour in the current version of the run-time system.

A second version showing stubs and drivers used for unit tests and system tests should be

produced in due course.

2. Walkthrough of the installation of the yarpGenerator
The resources for the yarpGenerator utility is currently located in

C:\DREAM\working\PLYM\yarpGenerator\

These resources, i.e. all subdirectories and contents, should be

relocated to

C:\DREAM\release\tools\yarpGenerator

The executable is located in

C:\DREAM\working\PLYM\yarpGenerator\release

Support documentation is located in

C:\DREAM Documents\techreports\WP6\2015-05 yarpGenerator documentation

Appendix A

Date: 7/4/2017
Version: No 1

Page 16

	 4	

3. Walkthrough of the development of a simple component with yarpGenerator
Components that are generated by yarpGenerator are placed in ~\yarpGenerator\components

For example:

4. Submission of a real component for integration, ideally from the rollout plan
Leading up to and during the meeting, the University of Portsmouth submitted four

components for integration.

5. Walkthrough of the integration procedure, including use of componentChecker
The componentChecker utility provides a first level check on compliance with the revised

standards set out on the wiki. The wiki checklist remains the definitive validation test.

We agreed that if a component fails any of the checks it will be referred back to the developer

for action and removed from the submitted subdirectory. In general, the person responsible

for integration tests (Rob Homewood) will not attempt to fix any errors that are spotted

during the integration procedure.

Erik Billing agreed to amend the component checker so that it emits error messages that refer

to the checklist numbering on the wiki.

6. Review of “integration readiness” of components from the rollout plan
This item led to a discussion of the timeline for development. While most developers had

nominated submission dates in the rollout plan that are related to the Description of Work and

the schedule for deliverables, it quickly became clear that these dates won’t work if we are to

have a system ready in time for the next WP2 test interventions and for a demonstration for

the next review.

We agreed the following milestones.

• 18 November 2016: all 17 components will have been submitted for integration.

• Early December: integration meeting in Plymouth.

• 1 January: 1st version of complete system operational.

• 1 February: UBB tests begin.

• 1 April: review demo ready.

This is a necessarily ambitious schedule but it is one we have to meet if the project is to

succeed.

Appendix A

Date: 7/4/2017
Version: No 1

Page 17

	 5	

7. Modifications to the intervention tasks and implications for WPs 4, 5, and 6
The aim of this agenda item was to determine whether intervention tasks needed to be

modified to ensure that the DREAM system can be completed in time for the D2.2 tests

scheduled for February 2017.

This was one of the most important discussions because it brought together several other

items on the agenda.

Beginning at the start of the second day, we walked through the interventions as defined in

Deliverable D1.1, beginning with joint attention, to check that all the necessary sensory and

motor primitives would be available. This was done using Table 3 (D1.2) Correspondence

between baseline robot actions and action primitives and Table 3 (D1.3): Correspondence

between robot perceptions and perception primitives, linking these correspondences back to

the intervention definitions in Section 3 of D1.1.

After walking through several interventions it became clear that all of the necessary primitives

from WP4 and WP6 have either been implemented or are at an advanced stage of development

and that these will be ready for the complete system integration on November 18. At the same

time, some changes to the intervention specification (as originally documented in D1.1) are

need to ensure that they reflect what is actually required of the cognitiveControl subsystem. For

example, some steps in some interventions are no longer needed and the joint attention

intervention will use the sandtray exclusively and there is no need to use physical objects.

However, it was unclear how the WP5 primitives in the rollout plan would be used and

whether they provided any useful information for the run-time system. This is primarily due

to the fact that the WP5 primitives were not referred to when writing Deliverables D1.1,

D1.2, and D1.3. They were defined in Deliverable D3.1 on the system architecture but the

links to the WP6 cognitiveControl subsystem were never defined. The links to WP4

sensoryInterpretation subsystem were defined in a rather shallow manner, essentially saying

little more than all WP4 data was potentially of use. Furthermore, there is also a lack of

clarity regarding the link between the work in T4.4 and the work in WP5.

7.1 getChildBehaviour primitive vs. identifyTrajectory primitive

It emerged that there is a significant difference between what functionality was actually

needed for the execution of the interventions from work in WP5 and what had been planned.

It also emerged that there is an overlap between the functionality being provided by WP4

through the identifyTrajectory primitive and the behaviour classification functionality to be

provided by WP5 through the getChildBehaviour primitive.

The situation regarding WP5 prior to the meeting was that WP5 would implement three

primitives:

getChildBehaviour()

getChildMotivation()

getChildPerformance()

These are to be implemented in three components, respectively:

mapFromPerceptsToBehaviour

assessChildEngagement

assessChildPerformance

Appendix A

Date: 7/4/2017
Version: No 1

Page 18

	 6	

However, there seems to have been some confusion regarding a difference between the

“behaviours” that are identified in the WP5 getChildBehaviour() primitive and the “actions”

(or gestures) that actually need to be recognized in the execution of the intervention scripts.

The behaviours seem to be more aligned with the work in WP2 (Deliverable D2.2) than what

is required for WP6 cognitiveControl. It became evident that the functionality provided by

the WP4 primitive identifyTrajectory() is much closer to what is needed in WP6 and the

University of Portsmouth kindly agreed to expand the functionality of this primitive to cater

for the ten actions that need to be recognized during the interventions, as follows.

1. Hand wave

2. Hands covering eyes

3. Hands on head

4. Fly (arms extended horizontally)

5. Drive car (straight horizontal hand gesture)

6. Drink / Smell (straight vertical hand gesture, bringing hand to the mouth)

7. New complex trajectory number 1

8. New complex trajectory number 2

9. New complex trajectory number 3

10. New complex trajectory number 4

UBB will provide video examples each trajectory, i.e. gesture, so that PORT can generate

prototypical classes.

As a consequence, identifyTrajectory() effectively replaces getChildBehaviour() in the run-

time system. The latter, and its corresponding component mapFromPerceptsToBehaviour,

will still be needed for work related to WP2 and it will probably be part of the runtime system

at a later stage. The information derived from identifyTrajectory and other WP4 primitives

will now be captured in a revised version of the getChildPerformance primitive implemented

in the assessChildPerformance component. This information will be used in the WP6

cognitiveControl subsystem.

7.2 identifyTrajectory primitive

The specification of identifyTrajectory() has to change slightly to accommodate its new more

general use. Specifically, the format for the inputs and outputs need to be adapted. The

current specification involves a vector of doubles comprising a sequence of 4-tuples

(x, y, z, t) and writing a vector with one double indicating the identity of the trajectory:

identifyTrajectory(<x, y, z, t>, trajectory_descriptor)

/sensoryAnalysis/identifyTrajectory:i BufferedPort<VectorOf<double>>

/sensoryAnalysis/identifyTrajectory:o BufferedPort<VectorOf<double>>

The new specification must allow for the input to be a sequence of skeleton configurations

and the output should be a vector of 10 doubles.

Element x of the output vector identifies the probability that the input is trajectory (i.e. action

/ gesture) number x. If it proves difficult to compute a probability value, element i of the

output vector is will be set to 1 if the input is trajectory (i.e. action / gesture) number i,

otherwise it will be set to 0.

At the meeting, we did not decide on a specific format for the input sequence of skeleton

configurations that are used to identify the trajectory. None of the sensoryAnalysis primitives

currently expose the skeleton data and it seems wasteful to collect this data in the

childBehaviourClassification subsystem (specifically in the assessChildPerformance

component; see below) only to send it back to sensoryAnalysis.

Appendix A

Date: 7/4/2017
Version: No 1

Page 19

	 7	

Instead, it is proposed here that the input to identifyTrajectory is simply a trigger to start

the recognition process. All the skeleton data can then be processed locally in the

sensoryAnalysis component. This proposal has yet to be agreed.

 identifyTrajectory(startTrigger, vectorOfActions)

/sensoryAnalysis/identifyTrajectory:i BufferedPort<int>

/sensoryAnalysis/identifyTrajectory:o BufferedPort<VectorOf<double>>

7.3 Interface between childBehaviourClassification and cognitiveControl subsystems

The manner in which the childBehaviourClassification subsystem interfaces with the

cognitiveControl subsystem was also discussed and amended. This resulted in changes to the

getChildMotivation and getChildBehaviour primitives and the assessChildEngagement and

assessChildBehaviour components, respectively.

7.4 getChildPerformance primitive and assessChildPerformance component

The getChildPerformance primitive, implemented in the assessChildPerformance component,

is currently defined as follows (see Deliverable D3.1).

getChildPerformance(degree_of_performance, confidence)

/childBehaviourClassification/getChildPerformance:o BufferedPort<VectorOf<double>>

The getChildPerformance() primitive determines the degree of performance of the

child on the basis of a temporal sequence of child behaviour states, quantifying the

performance of the children in the therapeutic sessions. It produces two numbers, the

first representing an estimate of the degree of performance and the second

representing an indication of confidence in that estimate.

It was agreed to simplify this functionality significantly in order to provide the information

required by the cognitiveControl subsystem, as follows.

getChildPerformance(degree_of_performance)

/childBehaviourClassification/getChildPerformance:o BufferedPort<double>

The getChildPerformance() primitive determines whether or not the child

successfully performs a required action at a given point in the intervention.

These actions comprise the ten already mentioned above:

1. Hand wave

2. Hand covering eyes

3. Hands on head

4. Fly (arms extended horizontally gesture?)

5. Drive car (straight horizontal hand gesture)

6. Drink / Smell (straight vertical hand gesture, bringing hand to the mouth)

7. New complex trajectory number 1

8. New complex trajectory number 2

9. New complex trajectory number 3

10. New complex trajectory number 4

In addition, it includes the following actions (to be confirmed):

11. Look left (in joint attention intervention)

12. Look right (in joint attention intervention)

Appendix A

Date: 7/4/2017
Version: No 1

Page 20

	 8	

13. Point left (in joint attention and turn-taking interventions)

14. Point right (in joint attention and turn-taking interventions)

15. No movement (i.e. waiting in turn-taking intervention)

16. Child speaks

Whether or not the child speaks will be determined using the identifyVoice primitive to be

developed by Aldebaran (see below).

The expected action to be performed is determined from the information provided by the

getInterventionStatus primitive (see below).

Ideally, the degree_of_performance output identifies an estimate of the degree to which the

action has been performed by the child, bounded by 0 and 1. If this is not possible, then the

output will be either 0 or 1 to indicate non-performance and perfect performance,

respectively.

7.5 getChildMotivation / getChildEngagement primitive

The getChildMotivation primitive, implemented in the assessChildEngagement component, is

currently defined as follows (see Deliverable D3.1).

The getChildMotivation() primitive determines the degree of motivation and

engagement on the basis of the temporal sequence of child behaviour states,

quantifying the extent the children are motivated to participate in the tasks with the

robot and detect in particular when their attention is lost. It produces two numbers,

the first representing an estimate of the degree of engagement and the second

representing an indication of confidence in that estimate.

getChildMotivation(degree_of_engagement, confidence)

/childBehaviourClassification/getChildMotivation:o

BufferedPort<VectorOf<double>>

It was agreed to simplify very significantly the functionality of this primitive (now to be

renamed getChildEngagement). It will be replaced by a primitive defined as follows.

getChildEngagement(engagement_flag)

/getChildEngagement/engagementFlag:o BufferedPort<VectorOf<double>>

It will be computed on the basis of three binary variables indicating whether or not:

The child is smiling (derived from identifyFaceExpression)

The child is making eye contact with robot (derived from checkMutualGaze)

The child is positioned in front of the robot (derived from getBody)

The output is a simple binary flag derived from a truth table that has yet to be determined

with Cristina’s help.

Smiling Eye Contact In Front Engaged

F F F ?

F F T ?

F T F ?

F T T ?

T F F ?

T F T ?

T T F ?

T T T ?

Appendix A

Date: 7/4/2017
Version: No 1

Page 21

	 9	

7.6 improveAssessment component

A fourth component – improveAssessment – does not implement any primitive and

apparently has no direct role to play in the system architecture. This was noticed after the

meeting. We need to check to see if this component should be removed from the rollout

plan.

7.7 getInterventionStatus primitive

The getInterventionStatus primitive is currently defined as follows.

getInterventionStatus(interventionDescriptor, stateDescriptor,

cognitiveModeDescriptor) /cognitiveControl/getInterventionStatus:o

BufferedPort<VectorOf<int>>

The exact format of the information to be exposed by the deliberativeSubsystem component

in the cognitiveControl subsystem has yet to be defined. This information is used in the

assessChildPerformance component to determine what action the child should be attempting

to perform, based on the intervention definition.

Furthermore, the exact form of the intervention definition has yet to be defined so that the

intervention status data is sufficient to extract the required information.

7.8 Joint Attention Intervention

It was decided that the joint attention intervention would not use objects and would instead

use the sandtray.

8. Walkthrough of cognitiveControl subsystem
Having already walked through the operation of the full system architecture, it was agreed

that it was no further discussion of this item was necessary.

9. Walkthrough of operation of a system primitive
Having already walked through the guidelines for naming ports (see above) and manner in

which these ports would expose the data produced by the perception and action primitives in

D1.2 and D1.3, it was agreed that further discussion of this item was unnecessary.

10. Implementation of interventions under supervised autonomy
Having already walked through the interventions, it was agreed that it was no further

discussion of this item was necessary at this time.

11. Walkthrough of video annotation and implications for performance measurement
This item was dealt with off-line in a separate meeting.

12. Discussion of the rollout schedule

Developers agreed to update the submission dates in the wiki software rollout plan to

reflect the new agreed timeline (see above).

13. Discussion of new WP8 development plans
Several issues were discussed. For the purposes of immediate development, the main decision

was that Aldebaran will implement the identifyVoice primitive as a standalone component

identifyVoice.

Appendix A

Date: 7/4/2017
Version: No 1

Page 22

	 10	

14. Actions To Be Taken (responsible person in bold)

1. Implement the new directory structure in release, relocate the components as necessary,

and update the Cmake files [Erik].

2. Copy yarpGenerator resources to C:\DREAM\release\tools\yarpGenerator [Erik].

3. Add information on yarpGenerator to the wiki [David].

4. Add componentChecker to integration procedure and amend componentChecker to emit

error messages that refer to the checklist numbering on the wiki [Erik].

5. Implement the new port naming convention for all 17 components in the wiki software

rollout plan (see WP6 components for examples) [All developers].

6. Amend the component delivery dates for all 17 components in the wiki software rollout

plan to align them with the November 18 deadline (see WP6 components for examples)

[All developers].

7. Update the port name convention in the integration procedure [Erik].

8. Add a definition of the sandtrayServer component to the wiki software rollout plan

[James].

9. Add a definition of the identifyVoice component to the wiki rollout plan [Alexandre].

10. Draw the system architecture with all 17 components [James].

a. Update the connections to reflect the changed specifications for the child behaviour

classification subsystem, reflecting the removal of the mapFromPerceptsToBehaviour

component and the operation of the revised assessChildPerformance and

assessChildEngagement components.

b. Update for the new sandtray component. Update for the new identifyVoice

component.

11. Define port protocols by assigning parameter values for all ports in the wiki software

rollout plan [All developers].

12. Agree the new specification of the identifyTrajectory primitive: input is simply a trigger

to start the recognition process; output is a vector of 10 action/gesture probabilities: either

0 or 1, or ideally a number in the range 0-1 [Haibin, Honghai, Serge, Yinfeng].

13. Provide video examples each of the 10 actions, including the four new complex actions

for the identifyTrajectory primitive [Cristina].

14. Update specification of getChildPerformance primitive and assessChildPerformance

component on the wiki software rollout plan [Serge].

15. Update specification of getChildMotivation primitive (renaming to getChildEngagement)

and assessChildEngagement component on the wiki software rollout plan [Serge]

16. Removed improveAssessment component from the wiki software rollout plan [Serge].

Appendix A

Date: 7/4/2017
Version: No 1

Page 23

	 11	

17. Define the exact format of the information to be exposed by the deliberativeSubsystem

component in the cognitiveControl subsystem, i.e. the form and content of the

information produced by the getInterventionStatus primitive [James, Emmanuel].

18. Define the exact form of the intervention definition so that the intervention status data is

sufficient to extract any required information, e.g. by the assessChildPerformance

component [James, Emmanuel, Serge]

19. Agree dates for the integration developers meeting in the University of Plymouth in

December [All developers].

20. Update specifications of all interventions to ensure that they reflect what is actually

required [Cristina].

Appendix A

Date: 7/4/2017
Version: No 1

Page 24

Notes from the UBB integration week

James Kennedy

Feburary 13-17, 2017

1 System state

• The system is integrated with components from WP4, WP5 and WP6
(PORT, HIS, PLYM, VUB), and it runs.

• Cristina confirmed that it is smooth enough for the needs of the therapists
to start the study. However, it is not perfect and has some bugs that we
should aim to fix (see further below in this message).

• Unfortunately, no one from the integration team could attend, so I acted
as the integrator for the week. During this week, the full QA procedure
was temporarily set aside with the aim of getting the system running.
This means that some unit tests are outdated as system components were
updated, and these unit tests may not yet work. The software rollout plan
on the wiki is also outdated as some components and ports have changed.
There will not be SVN history of submission for many changes as I either
integrated directly from working, or modified code directly in release, but
the log messages should be clear enough.

• Some code may be newer in release than in working; before doing fur-
ther development in working, it is your responsibility to ensure that any
changes in release are ported to working (otherwise we may be undoing
bug fixes on re-submission).

2 Changed software versions

• We are now using Windows 10 as the PCs in Romania had automatically
updated, and given that most of us have been using Windows 10 without
problems, it was quicker to stick with it than roll back to Windows 7.

• The Romanian TTS was not developed for the project agreed NAO version
(v2.1.2.17) by ALD/SBRE. This made the robot take a long time to boot
(50+ mins) and have connection issues. No fix was forthcoming, so we
therefore had to change the NAO robot version and corresponding C++
SDK to v2.1.4.13 (if you upgrade, remember that zlib1.dll still needs to

1

Appendix B

Date: 7/4/2017
Version: No 1

Page 25

be replaced). The wiki page1 also needs updating as v2.1.2.17 is regularly
stated as the required version.

• CMake has been changed to version 3.3.2 as the old version caused prob-
lems with WP4 stability. Wiki instructions have already been updated for
this.

• YARP, FLTK, and VC compiler versions remain as originally specified.

3 Known bugs/work to do:

• The system will occasionally freeze in the GUI. The buttons still call code,
but nothing updates visually. This is infrequent (about once a day) and
we cannot find a cause. We may have to live with this one.

• The system can get stuck within the WP6 action suggestion loop (again,
this is infrequent). This is an issue with WP6 having many ports that
need to do something and also forward information. If the read does not
complete, then the callback port can get blocked. We have an idea for
a solution, but Erik has also asked on robotology for further inspiration
(c.f., https://github.com/robotology/QA/issues/188).

• WP6: Logging needs to be refined to ensure we are capturing the perfor-
mance data needed (and to make the writing of the logs thread safe - this
is likely what currently causes the issue above). I’ve discussed a possible
solution with Erik.

• WP6: The logs need to be exported into Excel for use by the therapists
(I’m currently writing a program to handle this).

• System start/exit instructions for the therapists (I have made a start on
this already).

1Wiki page for robot setup: https://dreamproject.aldebaran.com/projects/dream/wiki/Nao_software

2

Appendix B

Date: 7/4/2017
Version: No 1

Page 26

D3.4.3 DREAM Integration Report

University of Skövde

April 6, 2017

1 Introduction

The following is a selection of emails chronicling the integration process for two components, sys-
temGUI (WP6) and assessChildPerformance (WP5) integrated during 2016.

2 Component Integration Cases

2.1 systemGUI

Figure 1: The developer submits the component to the repository under the ’submitted’ folder and
emails the integration with a brief report about the submitted component

1

Appendix C

Date: 7/4/2017
Version: No 1

Page 27

Figure 2: The developer submits a second email highlighting a change to one of the dependencies
necessary to test the component

Figure 3: The Integrator responds with an integration report (Sec. 3.1) and a list of issues required
be fixed before the component can be integrated

2

Appendix C

Date: 7/4/2017
Version: No 1

Page 28

Figure 4: The developer responds with confirmation that the necessary changes have been made to
the component and reports back on an issue related to the component generator tool

Figure 5: The Integrator responds letting the developer know that the systemGUI component now
meets all the integration criteria and has been successfully integrated. The integrator attaches an
integration report (Sec. 3.2)

3

Appendix C

Date: 7/4/2017
Version: No 1

Page 29

2.2 assessChildPerformance

Figure 6: The developer submits the component to the repository under the ’submitted’ folder and
emails the integration with a brief report about the submitted component

Figure 7: The Integrator responds with an integration report (Sec. 3.3) and a list of issues required
be fixed before the component can be integrated

4

Appendix C

Date: 7/4/2017
Version: No 1

Page 30

Figure 8: The developer responds with confirmation that the necessary changes have been made to
the component and asks for clarity on point 9

Figure 9: The Integrator responds letting the developer know that they have fixed the minor issue
with point 9 and the assessChildPerformance component now meets all the integration criteria and
has been successfully integrated. The integrator attaches an integration report (Sec. 3.4)

5

Appendix C

Date: 7/4/2017
Version: No 1

Page 31

INTEGRATION	CHECKLIST	

FILES	AND	DIRECTORIES	

1. [] Are files for a single component stored in a directory with the same name as the component? For the purposes of

this checklist, we will use <componentName> to stand for the component name. For example, if we were integrating a

component named myComponent, then we would use myComponent everywhere we find <componentName> in the

following. Note that the leading letter is in lowercase.

2. [] Does this directory has three sub-directories: src, app, and config?

Does the src directory contain one header file and three source files, named as follows.

3.1 [] <componentName>.h

3.2 [] <componentName>Main.cpp

3.3 [] <componentName>Configuration.cpp

3.4 [] <componentName>Computation.cpp

4. [] Does the app directory contain an XML application file named after the component but with the suffix TEST: <componentName>TEST.xml?

5. [] Does the app directory contain a README.txt

6. [] Does the config directory contains a <componentName>.ini configuration file?

7. [] Does the configuration file contain the key-value pairs that set the component parameters?

8. [] Is each key-value pair written on a separate line?

Note that the instructions in the README.txt file should identify all system architecture ports used by the component (i.e. any port that is defined in one of the three system

architecture placeholder components sensoryInterpretation, childBehaviourClassification, or cognitiveControl).

INTERNAL	SOURCE	CODE	DOCUMENTATION	
Does the <componentName>.h file contain a documentation comment with the following sections and accompanying text:

9. [] /** @file <componentName>.h <one line to identify the nature of the file>

10. [] * <version information>

11. [] * <date>

12. [] * \section component_description Component Description

13. [] * <some meaningful descriptive text>

14. [] * \section lib_sec Libraries

15. [] * \section parameters_sec Parameters

16. [] * Command-line Parameters

17. [] * Configuration File Parameters

18. [] * \section portsa_sec Ports Accessed

19. [] * \section portsc_sec Ports Created

20. [] * Input ports

21. [] * Output ports

	

		Component:		

		Integrator:		

		Date:		

Rob Homewood

SystemGUI

01/12/16

3 Integration reports

3.1 systemGUI Report - Incomplete

6

Appendix C

Date: 7/4/2017
Version: No 1

Page 32

22. [] * Port types

23. [] * \section in_files_sec Input Data Files

24. [] * \section out_data_sec Output Data Files

25. [] * \section conf_file_sec Configuration Files

26. [] * \section example_sec Example Instantiation of the Component

27. [] * \author

 * <forename> <surname>

Do all source files contain a block comment that gives the copyright notice, as follows.

28.1 [] <componentName>.h

28.2 [] <componentName>Main.cpp

28.3 [] <componentName>Configuration.cpp

28.4 [] <componentName>Computation.cpp

COMPONENT	FUNCTIONALITY	

29. [] Does <componentName>.h contain a declaration of a class derived from yarp::os::RFModule?

30. [] Is a ResourceFinder class,e.g.ResourceFinder rf, instantiated in <componentName>Main.cpp?

31. [] Does the component set the default configuration filename, named after the component with a .ini extension, in <componentName>Main.cpp?

32. [] Does the component set the default path (context) in <componentName>Main.cpp?

33. [] Does the component read all its key-value parameters from either a <componentName>.ini configuration file or from the list of command line arguments using the

ResourceFinder check() method, called from within the configure() method in <componentName>Configuration.cpp:

34. [] Does the component allow the port names to be set and overridden using the port name key-value parameters in the <componentName>.ini configuration file?

35. [] Do all port names have a leading /?

36. [] Do all input and output port names have a trailing :i or :o, respectively?

Appendix C

Date: 7/4/2017
Version: No 1

Page 33

37. [] Does the component allow the default name of the component to be set and overridden with the --name parameter?

38. [] Optional: Does the component allow commands to be issued on a special port with the same name as the component by overloading the respond() method in the

resource finder RFModule class in <componentName>Configuration.cpp?

COMPONENT	COMMUNICATION	

39. [] Are all input ports named according to the port naming convention: /<component_name>/<port_name>:i

40. [] Are all output ports named according to the port naming convention: /<component_name>/<port_name>:o

COMPONENT	UNIT	TESTING	

41. [] Is a unit test application named <componentName>TEST.xml provided in the app directory?

42. [] Are unit test instructions provided in a file named README.txt in the app directory?

 42.1 [] Do the instructions identify the system architecture ports used by the component (i.e. any port that is defined in one of the three system architecture placeholder

components sensoryInterpretation, childBehaviourClassification, or cognitiveControl)?

 42.2 [] Do the instructions identify the resources required to run the test, including source (input) and sink (output) data files, driver and stub components, and libraries?

 42.3 [] Do the instructions explain how the communication and computation functionality are validated by describing the (sink) output data that will be produced from the

(source) input data?

 42.4 [] Do the instructions explain how the configuration functionality is validated by describing what changes in behaviour will occur if the values for the component

parameters in the component configuration (.ini) file are altered?

 42.5 [] Do the instructions explain how the coordination functionality is validated by describing what changes in behaviour will occur when commands are issued interactively

by the user to the component using the port named after the component itself (optional)?

43. [] Does the test application launch the component being tested on a YARP run servers called dream1 using the <node> </node> construct?

44. [] Does the test application connect the component through its ports to a data source and a data sink (linked either to files or driver/stub components)?

45. [] Are the data source and sink file resources provided in the config directory (where necessary and as indicated in the README.txt file)?

46. [] Are the library resources provided in the config directory (where necessary and as indicated in the README.txt file)?

47. [] Are the driver and stub components provided as separate components is a distinct component directory, just like the one being submitted for integration (where necessary

and as indicated in the README.txt file)?	

Appendix C

Date: 7/4/2017
Version: No 1

Page 34

INTEGRATION	CHECKLIST	

FILES	AND	DIRECTORIES	

1. [] Are files for a single component stored in a directory with the same name as the component? For the purposes of

this checklist, we will use <componentName> to stand for the component name. For example, if we were integrating a

component named myComponent, then we would use myComponent everywhere we find <componentName> in the

following. Note that the leading letter is in lowercase.

2. [] Does this directory has three sub-directories: src, app, and config?

Does the src directory contain one header file and three source files, named as follows.

3.1 [] <componentName>.h

3.2 [] <componentName>Main.cpp

3.3 [] <componentName>Configuration.cpp

3.4 [] <componentName>Computation.cpp

4. [] Does the app directory contain an XML application file named after the component but with the suffix TEST: <componentName>TEST.xml?

5. [] Does the app directory contain a README.txt

6. [] Does the config directory contains a <componentName>.ini configuration file?

7. [] Does the configuration file contain the key-value pairs that set the component parameters?

8. [] Is each key-value pair written on a separate line?

Note that the instructions in the README.txt file should identify all system architecture ports used by the component (i.e. any port that is defined in one of the three system

architecture placeholder components sensoryInterpretation, childBehaviourClassification, or cognitiveControl).

INTERNAL	SOURCE	CODE	DOCUMENTATION	
Does the <componentName>.h file contain a documentation comment with the following sections and accompanying text:

9. [] /** @file <componentName>.h <one line to identify the nature of the file>

10. [] * <version information>

11. [] * <date>

12. [] * \section component_description Component Description

13. [] * <some meaningful descriptive text>

14. [] * \section lib_sec Libraries

15. [] * \section parameters_sec Parameters

16. [] * Command-line Parameters

17. [] * Configuration File Parameters

18. [] * \section portsa_sec Ports Accessed

19. [] * \section portsc_sec Ports Created

20. [] * Input ports

21. [] * Output ports

	

		Component:		

		Integrator:		

		Date:		

Rob Homewood

SystemGUI

06/12/16

3.2 systemGUI Report - Complete

9

Appendix C

Date: 7/4/2017
Version: No 1

Page 35

22. [] * Port types

23. [] * \section in_files_sec Input Data Files

24. [] * \section out_data_sec Output Data Files

25. [] * \section conf_file_sec Configuration Files

26. [] * \section example_sec Example Instantiation of the Component

27. [] * \author

 * <forename> <surname>

Do all source files contain a block comment that gives the copyright notice, as follows.

28.1 [] <componentName>.h

28.2 [] <componentName>Main.cpp

28.3 [] <componentName>Configuration.cpp

28.4 [] <componentName>Computation.cpp

COMPONENT	FUNCTIONALITY	

29. [] Does <componentName>.h contain a declaration of a class derived from yarp::os::RFModule?

30. [] Is a ResourceFinder class,e.g.ResourceFinder rf, instantiated in <componentName>Main.cpp?

31. [] Does the component set the default configuration filename, named after the component with a .ini extension, in <componentName>Main.cpp?

32. [] Does the component set the default path (context) in <componentName>Main.cpp?

33. [] Does the component read all its key-value parameters from either a <componentName>.ini configuration file or from the list of command line arguments using the

ResourceFinder check() method, called from within the configure() method in <componentName>Configuration.cpp:

34. [] Does the component allow the port names to be set and overridden using the port name key-value parameters in the <componentName>.ini configuration file?

35. [] Do all port names have a leading /?

36. [] Do all input and output port names have a trailing :i or :o, respectively?

Appendix C

Date: 7/4/2017
Version: No 1

Page 36

37. [] Does the component allow the default name of the component to be set and overridden with the --name parameter?

38. [] Optional: Does the component allow commands to be issued on a special port with the same name as the component by overloading the respond() method in the

resource finder RFModule class in <componentName>Configuration.cpp?

COMPONENT	COMMUNICATION	

39. [] Are all input ports named according to the port naming convention: /<component_name>/<port_name>:i

40. [] Are all output ports named according to the port naming convention: /<component_name>/<port_name>:o

COMPONENT	UNIT	TESTING	

41. [] Is a unit test application named <componentName>TEST.xml provided in the app directory?

42. [] Are unit test instructions provided in a file named README.txt in the app directory?

 42.1 [] Do the instructions identify the system architecture ports used by the component (i.e. any port that is defined in one of the three system architecture placeholder

components sensoryInterpretation, childBehaviourClassification, or cognitiveControl)?

 42.2 [] Do the instructions identify the resources required to run the test, including source (input) and sink (output) data files, driver and stub components, and libraries?

 42.3 [] Do the instructions explain how the communication and computation functionality are validated by describing the (sink) output data that will be produced from the

(source) input data?

 42.4 [] Do the instructions explain how the configuration functionality is validated by describing what changes in behaviour will occur if the values for the component

parameters in the component configuration (.ini) file are altered?

 42.5 [] Do the instructions explain how the coordination functionality is validated by describing what changes in behaviour will occur when commands are issued interactively

by the user to the component using the port named after the component itself (optional)?

43. [] Does the test application launch the component being tested on a YARP run servers called dream1 using the <node> </node> construct?

44. [] Does the test application connect the component through its ports to a data source and a data sink (linked either to files or driver/stub components)?

45. [] Are the data source and sink file resources provided in the config directory (where necessary and as indicated in the README.txt file)?

46. [] Are the library resources provided in the config directory (where necessary and as indicated in the README.txt file)?

47. [] Are the driver and stub components provided as separate components is a distinct component directory, just like the one being submitted for integration (where necessary

and as indicated in the README.txt file)?	

Appendix C

Date: 7/4/2017
Version: No 1

Page 37

INTEGRATION	CHECKLIST	

FILES	AND	DIRECTORIES	

1. [] Are files for a single component stored in a directory with the same name as the component? For the purposes of

this checklist, we will use <componentName> to stand for the component name. For example, if we were integrating a

component named myComponent, then we would use myComponent everywhere we find <componentName> in the

following. Note that the leading letter is in lowercase.

2. [] Does this directory has three sub-directories: src, app, and config?

Does the src directory contain one header file and three source files, named as follows.

3.1 [] <componentName>.h

3.2 [] <componentName>Main.cpp

3.3 [] <componentName>Configuration.cpp

3.4 [] <componentName>Computation.cpp

4. [] Does the app directory contain an XML application file named after the component but with the suffix TEST: <componentName>TEST.xml?

5. [] Does the app directory contain a README.txt

6. [] Does the config directory contains a <componentName>.ini configuration file?

7. [] Does the configuration file contain the key-value pairs that set the component parameters?

8. [] Is each key-value pair written on a separate line?

Note that the instructions in the README.txt file should identify all system architecture ports used by the component (i.e. any port that is defined in one of the three system

architecture placeholder components sensoryInterpretation, childBehaviourClassification, or cognitiveControl).

INTERNAL	SOURCE	CODE	DOCUMENTATION	
Does the <componentName>.h file contain a documentation comment with the following sections and accompanying text:

9. [] /** @file <componentName>.h <one line to identify the nature of the file>

10. [] * <version information>

11. [] * <date>

12. [] * \section component_description Component Description

13. [] * <some meaningful descriptive text>

14. [] * \section lib_sec Libraries

15. [] * \section parameters_sec Parameters

16. [] * Command-line Parameters

17. [] * Configuration File Parameters

18. [] * \section portsa_sec Ports Accessed

19. [] * \section portsc_sec Ports Created

20. [] * Input ports

21. [] * Output ports

	

		Component:		

		Integrator:		

		Date:		

Rob Homewood

13/12/16

assessChildPerformance

3.3 assessChildPerformance Report - Incomplete

12

Appendix C

Date: 7/4/2017
Version: No 1

Page 38

22. [] * Port types

23. [] * \section in_files_sec Input Data Files

24. [] * \section out_data_sec Output Data Files

25. [] * \section conf_file_sec Configuration Files

26. [] * \section example_sec Example Instantiation of the Component

27. [] * \author

 * <forename> <surname>

Do all source files contain a block comment that gives the copyright notice, as follows.

28.1 [] <componentName>.h

28.2 [] <componentName>Main.cpp

28.3 [] <componentName>Configuration.cpp

28.4 [] <componentName>Computation.cpp

COMPONENT	FUNCTIONALITY	

29. [] Does <componentName>.h contain a declaration of a class derived from yarp::os::RFModule?

30. [] Is a ResourceFinder class,e.g.ResourceFinder rf, instantiated in <componentName>Main.cpp?

31. [] Does the component set the default configuration filename, named after the component with a .ini extension, in <componentName>Main.cpp?

32. [] Does the component set the default path (context) in <componentName>Main.cpp?

33. [] Does the component read all its key-value parameters from either a <componentName>.ini configuration file or from the list of command line arguments using the

ResourceFinder check() method, called from within the configure() method in <componentName>Configuration.cpp:

34. [] Does the component allow the port names to be set and overridden using the port name key-value parameters in the <componentName>.ini configuration file?

35. [] Do all port names have a leading /?

36. [] Do all input and output port names have a trailing :i or :o, respectively?

Appendix C

Date: 7/4/2017
Version: No 1

Page 39

37. [] Does the component allow the default name of the component to be set and overridden with the --name parameter?

38. [] Optional: Does the component allow commands to be issued on a special port with the same name as the component by overloading the respond() method in the

resource finder RFModule class in <componentName>Configuration.cpp?

COMPONENT	COMMUNICATION	

39. [] Are all input ports named according to the port naming convention: /<component_name>/<port_name>:i

40. [] Are all output ports named according to the port naming convention: /<component_name>/<port_name>:o

COMPONENT	UNIT	TESTING	

41. [] Is a unit test application named <componentName>TEST.xml provided in the app directory?

42. [] Are unit test instructions provided in a file named README.txt in the app directory?

 42.1 [] Do the instructions identify the system architecture ports used by the component (i.e. any port that is defined in one of the three system architecture placeholder

components sensoryInterpretation, childBehaviourClassification, or cognitiveControl)?

 42.2 [] Do the instructions identify the resources required to run the test, including source (input) and sink (output) data files, driver and stub components, and libraries?

 42.3 [] Do the instructions explain how the communication and computation functionality are validated by describing the (sink) output data that will be produced from the

(source) input data?

 42.4 [] Do the instructions explain how the configuration functionality is validated by describing what changes in behaviour will occur if the values for the component

parameters in the component configuration (.ini) file are altered?

 42.5 [] Do the instructions explain how the coordination functionality is validated by describing what changes in behaviour will occur when commands are issued interactively

by the user to the component using the port named after the component itself (optional)?

43. [] Does the test application launch the component being tested on a YARP run servers called dream1 using the <node> </node> construct?

44. [] Does the test application connect the component through its ports to a data source and a data sink (linked either to files or driver/stub components)?

45. [] Are the data source and sink file resources provided in the config directory (where necessary and as indicated in the README.txt file)?

46. [] Are the library resources provided in the config directory (where necessary and as indicated in the README.txt file)?

47. [] Are the driver and stub components provided as separate components is a distinct component directory, just like the one being submitted for integration (where necessary

and as indicated in the README.txt file)?	

Appendix C

Date: 7/4/2017
Version: No 1

Page 40

INTEGRATION	CHECKLIST	

FILES	AND	DIRECTORIES	

1. [] Are files for a single component stored in a directory with the same name as the component? For the purposes of

this checklist, we will use <componentName> to stand for the component name. For example, if we were integrating a

component named myComponent, then we would use myComponent everywhere we find <componentName> in the

following. Note that the leading letter is in lowercase.

2. [] Does this directory has three sub-directories: src, app, and config?

Does the src directory contain one header file and three source files, named as follows.

3.1 [] <componentName>.h

3.2 [] <componentName>Main.cpp

3.3 [] <componentName>Configuration.cpp

3.4 [] <componentName>Computation.cpp

4. [] Does the app directory contain an XML application file named after the component but with the suffix TEST: <componentName>TEST.xml?

5. [] Does the app directory contain a README.txt

6. [] Does the config directory contains a <componentName>.ini configuration file?

7. [] Does the configuration file contain the key-value pairs that set the component parameters?

8. [] Is each key-value pair written on a separate line?

Note that the instructions in the README.txt file should identify all system architecture ports used by the component (i.e. any port that is defined in one of the three system

architecture placeholder components sensoryInterpretation, childBehaviourClassification, or cognitiveControl).

INTERNAL	SOURCE	CODE	DOCUMENTATION	
Does the <componentName>.h file contain a documentation comment with the following sections and accompanying text:

9. [] /** @file <componentName>.h <one line to identify the nature of the file>

10. [] * <version information>

11. [] * <date>

12. [] * \section component_description Component Description

13. [] * <some meaningful descriptive text>

14. [] * \section lib_sec Libraries

15. [] * \section parameters_sec Parameters

16. [] * Command-line Parameters

17. [] * Configuration File Parameters

18. [] * \section portsa_sec Ports Accessed

19. [] * \section portsc_sec Ports Created

20. [] * Input ports

21. [] * Output ports

	

		Component:		

		Integrator:		

		Date:		

Rob Homewood

assessChildPerformance

21/12/16

3.4 assessChildPerformance Report - Complete

15

Appendix C

Date: 7/4/2017
Version: No 1

Page 41

22. [] * Port types

23. [] * \section in_files_sec Input Data Files

24. [] * \section out_data_sec Output Data Files

25. [] * \section conf_file_sec Configuration Files

26. [] * \section example_sec Example Instantiation of the Component

27. [] * \author

 * <forename> <surname>

Do all source files contain a block comment that gives the copyright notice, as follows.

28.1 [] <componentName>.h

28.2 [] <componentName>Main.cpp

28.3 [] <componentName>Configuration.cpp

28.4 [] <componentName>Computation.cpp

COMPONENT	FUNCTIONALITY	

29. [] Does <componentName>.h contain a declaration of a class derived from yarp::os::RFModule?

30. [] Is a ResourceFinder class,e.g.ResourceFinder rf, instantiated in <componentName>Main.cpp?

31. [] Does the component set the default configuration filename, named after the component with a .ini extension, in <componentName>Main.cpp?

32. [] Does the component set the default path (context) in <componentName>Main.cpp?

33. [] Does the component read all its key-value parameters from either a <componentName>.ini configuration file or from the list of command line arguments using the

ResourceFinder check() method, called from within the configure() method in <componentName>Configuration.cpp:

34. [] Does the component allow the port names to be set and overridden using the port name key-value parameters in the <componentName>.ini configuration file?

35. [] Do all port names have a leading /?

36. [] Do all input and output port names have a trailing :i or :o, respectively?

Appendix C

Date: 7/4/2017
Version: No 1

Page 42

37. [] Does the component allow the default name of the component to be set and overridden with the --name parameter?

38. [] Optional: Does the component allow commands to be issued on a special port with the same name as the component by overloading the respond() method in the

resource finder RFModule class in <componentName>Configuration.cpp?

COMPONENT	COMMUNICATION	

39. [] Are all input ports named according to the port naming convention: /<component_name>/<port_name>:i

40. [] Are all output ports named according to the port naming convention: /<component_name>/<port_name>:o

COMPONENT	UNIT	TESTING	

41. [] Is a unit test application named <componentName>TEST.xml provided in the app directory?

42. [] Are unit test instructions provided in a file named README.txt in the app directory?

 42.1 [] Do the instructions identify the system architecture ports used by the component (i.e. any port that is defined in one of the three system architecture placeholder

components sensoryInterpretation, childBehaviourClassification, or cognitiveControl)?

 42.2 [] Do the instructions identify the resources required to run the test, including source (input) and sink (output) data files, driver and stub components, and libraries?

 42.3 [] Do the instructions explain how the communication and computation functionality are validated by describing the (sink) output data that will be produced from the

(source) input data?

 42.4 [] Do the instructions explain how the configuration functionality is validated by describing what changes in behaviour will occur if the values for the component

parameters in the component configuration (.ini) file are altered?

 42.5 [] Do the instructions explain how the coordination functionality is validated by describing what changes in behaviour will occur when commands are issued interactively

by the user to the component using the port named after the component itself (optional)?

43. [] Does the test application launch the component being tested on a YARP run servers called dream1 using the <node> </node> construct?

44. [] Does the test application connect the component through its ports to a data source and a data sink (linked either to files or driver/stub components)?

45. [] Are the data source and sink file resources provided in the config directory (where necessary and as indicated in the README.txt file)?

46. [] Are the library resources provided in the config directory (where necessary and as indicated in the README.txt file)?

47. [] Are the driver and stub components provided as separate components is a distinct component directory, just like the one being submitted for integration (where necessary

and as indicated in the README.txt file)?	

Appendix C

Date: 7/4/2017
Version: No 1

Page 43

	Executive Summary
	Principal Contributors
	Revision History
	Introduction
	Integration meetings
	Developers meeting at HIS
	Integration week at PORT
	Integration follow-up at UBB

	Integrated Software
	DREAM system architecture
	Reorganisation of the DREAM folder hierarchy
	Changes in the DREAM component architecture

	Utilities
	DREAM Boxology
	Script Generator
	User Data Export
	User Model Creator

	Appendices
	Notes from the DREAM Developers Meeting
	Notes from the UBB integration week
	Integration Reports

