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Execut ive Summary  
 

Objectives 

Deliverable D4.3 aims to evaluate multi-modal data fusion and interpretation. The main 
objectives of this report are: 

• Describe the specification, design, implementation, and validation of a suite of 

multi-modal data fusion and interpretation modules for the child behavior 

specifications set out in deliverable D1.3. It builds on the results of task T4.2, as 

documented in deliverable D4.2. 

• Deliver the results from tasks T4.3 and T4.4 and provide inputs for tasks T3.3, T5.1, 
T6.1, and T6.2. 

 

Implementation 
We have proposed algorithms for multi-modal data fusion and interpretation. They are 

summarized as follows: 

 

• We have proposed a multiple sensory data fusion framework to effectively handle 

computation complexity and data synchronization. The foundation of this 

framework is a coordinate transformation module, which transfers the image 

coordinate of each sensor into the same world coordinate system. To avoid 

unnecessary data transfer and fuse the data more efficiently, we manage to realize 

the framework in a single component named sensory analyses inside the Yarp 

architecture. This component can perform all the required functionalities while 
recording the heterogeneous large data in real time. 

 

• We have completed all the tasks defined in deliverable D1.3 and D3.1. Those tasks 

include eye-gaze tracking, face detection, child skeleton tracking, child movement 

recognition, face recognition, expression recognition, objects tracking, object 

recognition, sound direction detection, speech recognition, etc. The captured video 

data with Kinect depth data is fused to obtain accurate gaze and face information 

under large head poses. The optimized 3D face information obtained by the 

coordinate transfer module provides inputs to deliverable T6.1 and T6.2. The 

information of gaze, expression, motion, object and audio provides inputs to task 

T3.3 and T5.1. 
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1.  In t roduct ion  
This deliverable, D4.3, describes evaluation of the multi-modal data fusion and 

interpretation. As documented in deliverable D4.2, individual data stream can be captured 

from individual sensor sources in a unique modality. However, fusion of information in 

different modalities remains a significant challenge for interacting with ASD children. In 

general, the most popular fusion strategies include fusing methods at data, feature, and 

decision levels [1] from early, intermediate to late levels. In data level fusion, methods for 

synchronization and adaptation are needed before the fusion process. Statistical estimation 

methods include non-recursive methods, such as weighted average methods and the least 

square methods, and recursive methods, such as Kalman filter (KF) and extended KFs (EKFs) 

[2] [3] [4] [5]. In the feature level, the fusion is achieved by extracting and concatenating 

features from different sources to get a more discriminating feature with a higher dimension 

[6], which will be further input to the classifier level. Classifiers, such as hidden Markov 

models (HMMs) and their hierarchical counterparts, Support Vector Machines (SVMs) and 

dynamic Bayesian networks (DBNs) [7] [8] [9] are used to model individual streams. 

Intermediate level fusion methods are more popular than the early and late levels because of 

their capability of weighted combination of the different modalities and access of the low-

level features [10] [11] [12]. Decision level fusion strategies generate a decision by 

considering and combining probability scores or likelihood values obtained from separate 

unimodal classifiers. This involves work in combination theory to estimate the best weighting 

factors based on the training data [13] [14] [15].  

The deliverable describes the specification, design, implementation, and validation of 

multi-sensory data fusion process and interpretation modules derived from the child behavior 

specifications set out in deliverable D1.3. The task T4.2, as documented in the deliverable, 

show the results of individual sensory data on detected face, estimated gaze, obtained body 

joints, tracked human hands and objects, and recognized facial expression and speech. 

However, these sensory data are independently captured from a single sensor (a camera or a 

Kinect). To further employ them for human behavior analysis and to provide input for tasks 

T3.3, T5.1, T6.1 and T6.2, such individual data should be fused. The first and foremost 

important step is to transform sensory data in local coordinate systems to a global coordinate 

system. The fused data is then employed for the action and event recognition in the behavior 

interpretation of Children with ASD.  

This preliminary deliverable is focused on the multiple sensory data fusion and 

interpretation and their evaluation. Firstly, the coordinate transform module which transfer the 

image coordinates of each sensor into a world coordinate system is presented, and then the 

data fusion and interpretation framework is described. Evaluations and discussions based on 

the experimental results are presented. 
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2.  Coord inate Transformat ion Module  

This project employs five individual sensors: middle Camera 0, left Camera 1, right 

Camera 2, middle Kinect 0 and top Kinect 1. An example configuration of the sensing system 
is shown in Figure 1. More detailed information about the hardware was documented in D4.1. 

 

 

Figure 1 Example configuration of the sensing system 

 

To effectively fuse multi-model data, a coordinate transformation module, which can 

transfer data from different sensor coordinate systems to a global world coordinate system, is 

proposed. By doing so, users can also directly collect and use the sensory data captured in the 

global world coordinate system. The center of the world coordinate system is located at the 

base of middle Kinect 0. The vertical axis is defined as y direction and the desk plane is 

defined as the plane of axis x and axis z. In the following part of this session, we will 

introduce the methods to capture the calibration data and how to calibrate the system. 

 

2.2. Kinect-Camera Coordinate Transform  

The data captured by three cameras are in three different local coordinate systems. This 

section describes the transformation of Kinect-Camera coordinates. The first step is to 

determine the position and orientation of each camera, given its intrinsic parameters and a set 

of n correspondences between 3D points and their 2D projections. Then, any 3D point’s 
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coordinate in the camera coordinate system can be transformed to a 3D coordinate in the 

global coordinate system with the rotation and translation matrix of the camera. The workflow 
of the proposed camera poses estimation method is shown in Figure 2.  
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Figure 2. Workflow of the proposed camera poses estimation method. 

 

 In practice, a chessboard is used to capture the cooreponding points. An example of 

the calibration data is shown in Figure 3. 

 

 

Figure 3. An example of the Kinect-Camera calibration data 

 

As shown in Figure 3, a chessboard plane is positioned in the view of three cameras and the 

middle Kinect. The corners in the chessboard are detected by classic Harris corner detector. 

There are 54 corners in total and the distance between each corner is 25mm. To accurately 
estimate the camera pose, we need to capture around 20 sets of images with different angles. 
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2.2.1. 2D-3D Correspondence  

Our implementation is based on an Efficient Perspective-n-Points (EPnP) algorithm 
proposed by Vincent et al. [16] . Our camera pose estimation method has a robust result when 
different camera poses are encountered. It only requires the user to mark the corresponding 
points between the Kinect image and the Camera image manually for about 20 pairs. We prefer 
to this due to the fact that it’s far more reliable than any other feature-matching algorithms. 
With the intrinsic parameters of the cameras, the poses of those cameras related to the Kinect 
can be determined robustly, as shown in the following equation, 

                                                                 m
i
≈K(R,t)M

!
i      

 

where mi is the projection of the 3D point Mi onto the camera image with K being intrinsic 
parameters of the camera. R is the rotation matrix and t is the translation matrix. mi, K and Mi 
are known in the equation. With more than 3 pairs of mi-Mi correspondences, the R and t can 
be estimated using optimization algorithms. In our implementation, the mi-Mi correspondences 
are more than 20 pairs to improve the robustness of the process. 

Therefore, the first step for camera pose estimation is to find the 2D-3D correspondence 
between the 2D points in the camera image and the 3D points in the space. Because the Kinect 
can generate both RGB image and depth image, the 2D-3D correspondence can be done 
through an intermediate step of 2D-2D correspondence between the camera RGB image and 
the Kinect RGB image. Then the relationship between points in the Kinect RGB image and the 
Kinect Depth image will provide the 2D-3D correspondence as mentioned above. 

To ensure the accuracy of the estimation, the 2D-2D correspondence is achieved by 
manually marking corresponding 2D points in camera’s RGB image and Kinect’s RGB image. 
A calibration object is used to assist this marking process. This object is shown in the field of 
view (FOV) of both camera and Kinect. The same point in the object is marked in RGB images 
from both camera and Kinect. With this process, the accurate 2D-2D correspondence can be 
obtained.  

In the meanwhile, the process of alignment between the RGB image and the depth image 
both generated from Kinect is carried out. However, movements among different sensors 
causes a correspondence shift between RGB image and Depth image. This puts an obstacle for 
searching from 3D points in space to 2D points in the camera image, which has 2D-2D 
correspondence to Kinect RGB image. This could be solved by taking into account of the 
constant distance between the RGB sensor and the infrared sensor in the Kinect device. With 
the knowledge of FOV of the Kinect, we can modify every pixel in the depth image 
accordingly to make them align with the pixels in RGB image. After alignment, for every 
coordinate of 2D point in the RGB image, we can retrieve the corresponding 2D coordinate in 
the Depth image.  Then the coordinate of a 3D point in the space can be obtained using the 
following equation: 

0 0

p p px y z

u u v v f
= =

− −  

where (u0, v0) is the depth image center of the Kinect, and f is the focal length of the infrared 
camera. (xp, yp, zp) is the 3D coordinate of a point in the space corresponding to the 2D point of 
(u, v) in the depth image. The alignment result of RGB image and Depth image is illustrated in 
Figure 4. 
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Figure 4. The point cloud collection by a Kinect after the RGB image and the Depth image has been 

aligned. The Kinect is in front of the child. 

 

2.2.2. Camera Poses Estimation 

When the 2D-3D correspondence is obtained, the next step is to estimate the camera pose. 
Our method, this process is mainly based on an iterative process. In each iteration, a 
Perspective-n-Points (PnP) algorithm is applied along with the 2D-3D correspondence 
calculated by the previous process. There is a wide range of PnP algorithm implementations in 
the community. The selection of EPnP algorithm because of its high efficiency in calculation. 
The EPnP algorithm is an O(n) non-iterative process in the first place. We put it into a 
sequence of loops because the main process of the PnP algorithm is about parameterization and 
quadratic equations solving, which will also bring in errors when outliers are input. To 
minimize this, in each loop of the iteration, we firstly apply the EPnP algorithm with the 2D-
3D correspondences. Then a projection process from every 3D point in space to 2D points is 
conducted with the estimated camera rotation and translation in the current loop. By comparing 
the projected 2D points and the true 2D points in the camera image, the outliers of the 2D-3D 
pairs can be identified. If the number of outliers is larger than a predefined threshold, such as 
the 40% of the total number of the point-pairs in our implementation, then we randomly 
sample the 2D-3D point pairs down to a predefined number of count, such as the 60% of the 
total number of the point-pairs in our implementation. After re-sampling, next loop starts. If 
the number of outliers is less than the threshold, or the total count of the loop is larger than a 
predefined number, the iteration will stop, and the final results of the camera pose can be 
achieved. 

 

2.2.3. Local to Global 3D Coordinate Transformation 

Furthermore, we also provide an implementation for transforming the local 3D coordinates 
to global 3D coordinates. The transformation process is based on the rotation and translation of 
the Camera relative to the global coordinate system.  

With the previously obtained results of the camera poses, the coordinates of the 3D points 
can be easily transformed from the camera coordinate system (local 3D coordinate) to the 
Kinect coordinate system (global 3D coordinate). To achieve unified 3D coordinates in the 
same coordinate system when the points come from different cameras, the following equation 
can be used. 
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 P *P'R t= +    (3) 

where P’ is a 3D point in the camera coordinate system and P is the corresponding 3D point in 
the unified coordinate system. R and t are the rotation and translation matrix of the camera, 
which is also known as the pose of the camera. Similarly, the same process can be applied for 
other cameras.  

 For those facial points which the camera and middle Kinect can both capture, it is easy to 
find their global 3D coordinates. However, it is sometimes hard for both devices to capture the 
same facial points in many situations because of the large head movements. Thus a 2D to 3D 
coordinate transform for these located 2D facial points is necessary. The transformation can be 
performed using following equation: 

                                                             

1 1

' ' '

0 0

' '

* *C W

C C PC

C PC

P R P R T

X Y Z

u u v v f

Z Z

− −⎧ = −
⎪
⎪

= =⎨
− −⎪

⎪ =⎩

 

Where 
W
P  refers to the head center position in the world coordinate system, 

C
P  is the head 

center position in the local coordinate system. (u0, v0) is the image center of the camera, and f 

is the focal length of the camera. ( )' ' '
, ,

C C C
X Y Z

 
is the 3D coordinate of a point in the local 

coordinate system of the camera, which corresponds to the 2D point of (u, v) in the image. '

PC
Z  

is the depth value of the head center point in the local coordinate system. The depth value of 
any facial point is replaced by the depth value of head center in the local coordinate system for 
the calculation of its 3D points in the local coordinate system.  

 

2.3. Kinect-Kinect Coordinate Transform  

 The Kinect-Kinect coordinate transform is relatively easy since 3D coordinates can be 
obtained in two sensors. To estimate the pose of the top Kinect, the classic Iterative Closest 
Point (ICP) algorithm was employed. The pose can be acquired by minimizing the difference 
between two sets of point clouds. We use a chessboard to capture the corresponding points. An 
example of the calibration data is shown in Figure 5. 
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a                                                                       b   

Figure 5. An intance of the chessboard location for Kinect-Kinect calibration. a. An image from middle 

Kinect. b. An image from top Kinect 

 

2.4. Experimental Results 

The experimental results of camera pose estimation are shown in Figure 6. The origin of the 

3D coordinate system is seated in the middle Kinect. Figure 6 (a) shows the ground truth of the 

sensors position.  The estimated poses of the cameras in the middle, left and right are shown in 

Figure 6 (b) (c) (d) with different view angles.  

 

   

           

 (a)                                    (b)                                           (c)                                            (d) 

Figure 6. The experimental results by the proposed method. (a) Relative Positions between Kinect and 

Three Cameras.  (b), (c), (d)  Estimated sensor position in different view points.  

    

 To validate the correctness of calibration results, we conduct a coordinate transformation 

experiment, which maps the color image to 3D point clouds obtained by Kinect depth sensor. 

Figure 7 shows the captured color images by the middle Kinect sensor and middle camera 

sensor. The 3D mapping result of Kinect color and depth is shown in Figure 8. The coordinate 

transformation results are shown Figure 9 where the data captured by middle camera is 

mapped to the data captured by the middle Kinect.   
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                                    (a)                                                                                   (d) 

Figure 7. Captured color images. (a) color image of middle kinect. (b) color image of middle camera 

 

 

Figure 8. The aligned result of color and depth image captured by middle Kinect 

 

 

Figure 9. The coordinate transformation result 
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3 .  Evaluat ion of  Mul t ip le  Sensory Data  

Fusion  and In terpretat ion  

As shown in Figure 10, a framework for coordinating multiple sensors is presented to 
synchronize and fuse the multiple sensory data.  

 

3.1. Framework Description 

 

Face	analysis

Face	&	Emotion	

Recognition
Gaze Motion	Recognition Audio	Processing	

Object	Tracking	&	

Recognition

Coordination	Transformation	Module

GUI	&	Yarp	Interface	(25	Functions)

Camera0 Camera1 Camera2 Kinect0 Kinect1

 

Figure 10. A framework for coordinating multiple sensors 

 

Three cameras serve to obtain face-related information, including face location, eye 

location, gaze direction, head direction and so on, which is known as face analysis. Kinect0 is 

also used to obtain sound-related information, including sound direction and speed text, and it 

also provides body joints and children’s motion IDs. Kinect1 works to track objects on the 

table and to recognize objects’ IDs. A coordination transformation module is built to transfer 

all the local coordinates into global ones in a smart 3D space. To demonstrate the sensory 

information as well as to simplify system manipulation, a GUI is constructed. Moreover, a 

sensoryAnalysis component is built to acquire and delivery sensory data from/to other related 
components in YARP. 

The designed GUI Interface is shown as follows: 
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Figure 11 GUI interface 

 

Most of the information and interpretation results are displayed directly inside the images. 

For example the color and depth information of the two Kinects are displayed on the first row. 

The front Kinect image also displays the detected skeleton information and motion 

recognition results. The top Kinect image shows the object tracking and recognition results. 

The bottom row of the GUI shows three images of the cameras along with the other 

interpretation results and controlling buttons. The functions of the buttons are documented as 
follows: 

Button “Preview”:  Reading the camera signals and displaying the real-time images on the 

screens.  

Button “Stop”:  Ceasing the image previewing or data recording. 

Button “Record”:  Recording the preview images and saving the images as video files. 
When the button “Preview” or “Show3D” is pressed, button “Record” will be disabled. 

Button “Show3D”:  Displaying the 3-D information of the captured data. All the captured 
information is shown in a global 3D world coordinate system.  

Button “Exit”:  Exiting from the GUI of the Sensory Analysis Component. 

 

3.2. Yarp Implementation 

The sensoryInterpretation subsystem was implemented by the component named as 

sensoryAnalysis in YARP. The definition of the input and output ports for the component can 
be found as below.  

 

1) Input Port 
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1. /sensoryAnalysis/getEyeGaze:i  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 

Note: an eye’s position 

 

2. /sensoryAnalysis/getGripLocation:i 

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 
Note: The object’s location for grip location detection. 

 

3. /sensoryAnalysis/getHeadGaze:i 

BufferedPort<VectorOf<double>> 

Size: 9 

Format: [point1.x, point1.y, point1.z, point2.x, point2.y, point2.z, point3.x, point3.y, 

point3.z,] 

Note: three points describe a plain, on which a point that the gaze directed to would be 

detected.   

 

4. /sensoryAnalysis/getObjects:i 

BufferedPort<VectorOf<double>> 

Size: 4 

Format: [center.x, center.y, center.z, radius] 

Note: describe the space for object detection. The space is described by a centre point and its 

radius. 

 

5. /sensoryAnalysis/getObjectTableDistance:i 

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [object.x, object.y, object.z] 
Note: the location of an object. 

 

6. /sensoryAnalysis/getSoundDirection:i 

BufferedPort<VectorOf<double>> 

Size: 1 

Format: [threshold] 
Note: only the sound level above the threshold will be detected for sound direction detection. 

 

7. /sensoryAnalysis/identifyFace:i  

BufferedPort<VectorOf<double>> 

Size: 3 
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Format: [x, y, z] 

Note: the location of the face for face ID recognition. 

 

8. /sensoryAnalysis/identifyFaceExpression:i  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 
Note: the location of the face for face expression recognition. 

 

9. /sensoryAnalysis/identifyObject:i 

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 

Note: the location of an object for its ID recognition. 

 

10. /sensoryAnalysis/trackFace:i 

BufferedPort<VectorOf<double>> 

Size: 4 

Format: [x, y, z, t] 
Note: the location (x, y, z) of a face and a time span (t) for location detection next time. 

 

11. /sensoryAnalysis/trackHand:i  

BufferedPort<VectorOf<double>> 

Size: 4 

Format: [x, y, z, t] 

Note: the location (x, y, z) of a hand and a time span (t) for location detection next time. 

 

12. /sensoryAnalysis/trackObject:i  

BufferedPort<VectorOf<double>> 

Size: 5 

Format: [ID, x, y, z, t] 

Note: the ID and location (x, y, z) of a hand and a time span (t) for location detection next 

time. 

 

13. /sensoryAnalysis/identifyTrajectory:i  

BufferedPort<VectorOf<int>> 

Size: 1 

Format: [ID] 

Note: the ID of the expected motion. 

 
3) Output Port 

1. /sensoryAnalysis/checkMutualGaze:o  

BufferedPort<VectorOf<int>>  

Size: 1 
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Format: [a] 

Note: a = -1, 0 and 1 indicates no face being detected, no mutual gaze and mutual gaze, 
respectively.  

 

2. /sensoryAnalysis/getArmAngle:o  

BufferedPort<VectorOf<double>> 

Size: 4 

Format: [left_elevation, left_azimuth, right_elevation, right_azimuth] 

Note: referring to the azimuth and elevation angles of the child’s upper left and right arms of 
the child. 

 

3. /sensoryAnalysis/getBody:o  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 

Note: the 3D coordinates of child’s body centre.  

 

4. /sensoryAnalysis/getBodyPose:o  

BufferedPort<VectorOf<double>> 

Size: 30 

Format: [joint1.x, joint1.y, joint1.z, …, joint10.x, joint10.y, joint10.z] 

Note: the joint positions of the upper body, as listed in the order of shoulder centre, head, left 

shoulder, left elbow, left wrist, left hand, right shoulder, right elbow, right wrist and right 
hand.  

 

5. /sensoryAnalysis/getEyeGaze:o  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 

Note:  With the input of one eye’s location, this port outputs the gaze direction by a line 
connecting child’s eye and that location (x, y, z).   

 

6. /sensoryAnalysis/getEyes:o  

BufferedPort<VectorOf<double>> 

Size: 6 

Format: [leftEye.x, leftEye.y, leftEye.z, rightEye.x, rightEye.y, rightEye.z] 
Note: Indicate the location of the left and right eye. 

 

7. /sensoryAnalysis/getFaces:o  

BufferedPort<VectorOf<double>> 

Size: 16 

Format: [N, face1.x, face1.y, face1.z,…,  face5.x, face5.y, face5.z].  

Note: N refers to the number of faces being detected, followed by the location of each face.  
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8. /sensoryAnalysis/getGripLocation:o  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 

Note: The grip location on the object.  

  

9. /sensoryAnalysis/getHands:o  

BufferedPort<VectorOf<double>> 

Size: 6 

Format: [leftHand.x, leftHand.y, leftHand.z, rightHand.x, rightHand.y, rightHand.z] 
Note: Indicate the location of the left and right hand.  

 

10. /sensoryAnalysis/getHead:o  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [head.x, head.y, head.z] 

Note: Indicate the location of child’s head. 

  

11. /sensoryAnalysis/getHeadGaze:o  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [a, b, c] 

Note: Without input, a, b and c indicates the head gaze by [a = pitch, b = raw, c = yaw]. With 

the input from /sensoryAnalysis/getHeadGaze:i, this port outputs a point [a = x, b = y, c=z] on 
the surface described from the input of  /sensoryAnalysis/getHeadGaze:i. 

 

12. As described in item 11. 

 

13. /sensoryAnalysis/getObjects:o  

/ sensoryAnalysis/BufferedPort<VectorOf<double>> 

Size: 1+n*4 

Format: [the number of object, object1.x, object1.y, object1.z, object1.ID, object2.x, 

object2.y, object2.z, object2.ID, …,  objectn.x, objectn.y, objectn.z, objectn.ID ] 

Note: indicate n objects’ location as well as the ID in the sensory environment. If no data is 

received from /sensoryAnalysis/getObjects:i, the algorithm will search the whole 

environment, otherwise it searches within a given space. The ID of 0, 1, …, 3 corresponds 

‘car’, ‘cup, ‘flower’ and ‘plane’. 

 

14. As described in item 13. 

 

15. /sensoryAnalysis/getObjectTableDistance:o  

BufferedPort<VectorOf<double>> 

Size: 1 
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Format: [d] 

Note: With the input of an object’ location from /sensoryAnalysis/getObjectTableDistance:i, 

this port outputs the vertical distance between table and the object. If no data is received from 

the input port, no data will be output.   

 

16. /sensoryAnalysis/getSoundDirection:o  

BufferedPort<VectorOf<double>> 

Size: 2 

Format: [sound_direction, probability] 

Note: Sound_direction indicates an angle that directs to the loudest sound in the environment 

in the view from the front Kinect, followed by a probability.  

 

17. /sensoryAnalysis/identifyFace:o  

BufferedPort<VectorOf<double>> 

Size: 1  

Format: [faceID] 

Note: Indicates the ID of the largest face among all faces, if there no input from 

/sensoryAnalysis/identifyFace:i. If no face is detected, no data will be output. faceID 

=1,2,…,7 refers to  Africa, Dragos, Leo, Otilia, Sebi, Vladi, SV and unknown, respectively. 

 

18. /sensoryAnalysis/identifyFaceExpression:o  

BufferedPort<VectorOf<int>> 

Size: 1  

Format: [ExpressionID] 

Note: Indicates the expression ID of the largest face among all faces, if there no input from 

/sensoryAnalysis/ identifyFaceExpression:i. If no face is detected, no data will be output. 

faceExpressionID =1,2,…,5 refers to happy, sad, angry, fear and neutral, respectively. 

 

19. /sensoryAnalysis/identifyObject:o  

BufferedPort<VectorOf<double>> 

Size: 1  

Format: [object_ID] 

Note: Indicates the ID of an object with the given location from 

/sensoryAnalysis/identifyObject:i. The ID of 0, 1, …, 3 corresponds to car, cup, flower and 

plane, respectively. 

 

20. /sensoryAnalysis/identifyTrajectory:o  

BufferedPort<VectorOf<double>> 

Size: 12 

Format: [P1, P2,…, P12] 

Note: The probability of 12 trajectory motions. P1, P2, … and P12 corresponds to ‘no 

motion’, ‘wave hands’, ‘hands on eyes’, ‘hand over head’, ‘open arm’, ‘hand car’, ‘Drink’, 

‘Complex 1’, ‘Complex 2’, ‘Complex 3’ , ‘Complex 4’ and ‘knock door’, respectively. 

 

21. /sensoryAnalysis/identifyVoice:o  

BufferedPort<VectorOf<int>> 
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Size: 1  

Format: [voice_ID] 

Note: Indicates the ID who arises the sound. 0 corresponds to a therapist, and 1 corresponds to 

a child.  

 

22. /sensoryAnalysis/recognizeSpeech:o  

 BufferedPort<Bottle>  

Size: 1  

Format: [speech_text] 

Note: Indicates the text  of a specific sound from the child, including ‘broom’, ‘veshi‘, ‘gala‘, 

‘smelling sound of flower‘, ‘wiwi‘, ‘coocoo‘, ‘bye bye‘, ‘youhuu‘, ‘cry‘, ‘ho‘, ‘hmm‘. 

 

23. /sensoryAnalysis/trackFace:o 

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 

Note: The location of a specific face indicated by the input port /sensoryAnalysis/trackFace:i 

 

24. /sensoryAnalysis/trackHand:o  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 

Note: The location of a specific hand indicated by the input port /sensoryAnalysis/trackHand:i  

 

25. /sensoryAnalysis/trackObject:o  

BufferedPort<VectorOf<double>> 

Size: 3 

Format: [x, y, z] 

Note: The location of a specific object indicated by the input port 

/sensoryAnalysis/trackObject:i  

 

3.3. Gaze Estimation 

Gaze is an essential part of the human’s attention system. The task of gaze estimation is to 

estimate where children are looking at. It can be used in many applications such as human 

computer interaction, driver attention detection, marketing research, etc. In this project, we 

aim to estimate the 3D gaze direction of ASD children who can freely move their heads while 

doing motions. These requirements bring extra challenges such as large head movements, 

occlusions and different eye appearances caused by expressions. To handle these challenges, 

we firstly propose a gaze estimation method with a single camera and then extended this 

method to multi-sensor configuration to cover wider head movements.  
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3.3.1. Single Camera Based Gaze Estimation Method 

The face location is the first step for the gaze estimation. In this project, we use the boosted 

cascade face detector [17] to find the rough location of the face. After the face is detected, we 

employ the supervised descent method proposed by Xiong et al. [18] to locate the feature 

points in the human face. For the detection of eye centre locations, we propose an accurate 

convolution based integro-differential method [19] to localize the eye center even in low 

resolution images. Based on the localized facial points, the gaze can be estimated. The detail 

of the algorithms is explained in the following sections. 

 

3.2.1.1	Eye	Localization	

In our project, we present a convolution based integro-differential eye center localization 

method to localize the eye centers. The proposed method is computationally much cheaper 

than the original integro-differential method [20] and also achieves a higher accuracy in a 

public available low-resolution image database. 

The original integro-differential method is a very popular eye localization method in the 

literature and it is defined as follows: 

max(!,!!,!!)
𝐺! 𝑟 ∗

!

!"

! !,!

!!"
𝑑𝑠

!,!!,!!
                       (1) 

where G! r  is a Gaussian smoothing function with a scale of 𝜎.  I x, y  represents for the eye 

image. ds is the contour of a circle with the centre point of (x!, y!) and radius r. The 

convolution operation is denoted as ∗. The operator locates the eye centre by making use of 

the drastic intensity along the boundary of iris and cornea. 

The following equation is the discrete implementation of the integro-differential operator: 

max !∆!,!!,!!
=

!

∆!
𝐺! 𝑛 − 𝑘 ∆𝑟 − 𝐺! 𝑛 − k− 1 ∆𝑟 ∗!

𝐼[(𝑘∆𝑟 cos 𝑚∆𝜃 + 𝑥!), (𝑘∆𝑟 sin 𝑚∆𝜃 + 𝑦!)]!       (2) 

where ∆𝑟 and ∆𝜃 represent small increments in radius and angular. 

Instead of considering the small increments along the angular, we design two kinds of 

masks to convolute the eye image. The proposed method calculates a ratio derivative 

between a neighbour curve of iris and cornea which is formulated as follows: 

                     

 

𝐼! = 𝐾! ∗ 𝐼 𝑥,𝑦

𝐼!!!
!

= 𝐾!!!
!

∗ 𝐼 𝑥,𝑦

𝐷! =
!!!!
!

!!

𝑎𝑟𝑔𝑚𝑎𝑥(!,!,!)(𝐷!) 

𝑟𝜖 𝑟!"#, 𝑟!"#

                 (2) 

where 𝐾!   and 𝐾!!!
!  are two kind of designed masks.  𝐼!  and  𝐼!!!

!  are the convolution 

results of the different eye image 𝐼(𝑥,𝑦). And 𝐷!  is the ratio derivative. 𝑟!"# and 𝑟!"# 
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represent the minimum and maximum of the radius 𝑟. The computational complexity of 

the proposed eye localization method is greatly reduced by employing FFT in the 

realization of convolution 

 

3.2.1.2	Gaze	Estimation	Method	

To estimation the gaze direction, firstly the facial features should be located. We employ 

the method proposed by Xiong et al. [18] to locate the feature points in the human face. In 

order to deal with head movements, the head poses need to be determined. We employ the 

object pose estimation method (POSIT) proposed by Dementhon et al. [21] to calculate the 

direction of the head gaze function. Then the eye centre is located by applying the proposed 

convolution based intergo-differential eye centre localization method. It should be noted that 

the gaze direction differs from the head gaze by two angles, the horizontal direction θ and the 

vertical direction φ. The final gaze direction is finally determined by adding the angles to the 

head gaze. The following is the equation to calculate the gaze direction. 

θ = tan
!!(𝛾 ∗ 𝑥! − 𝑥!

!

+ 𝑦!!𝑦!
!

∗
!"#!

!
)

φ = tan
!!(𝜀 ∗ 𝑥! − 𝑥!

!

+ 𝑦!!𝑦!
!

∗
!"#!

!
)

         (4) 

where x!, y! means the the center of two eye corners, x!, y! means the center eye pupils, α 

is the angle between the line of two eye corners and the line of two centres. β is the 

complementary angle of  α. L is the distance of the two eye corners, γ and ε are determined 

through experiments.  

 

3.3.2. Multi-sensor Based Gaze Estimation Method 

We propose a real-time gaze estimation method by constructing a multi-sensor fusion 

system to handle the large head movement. Three cameras and two Kinects are used in this 

system. In the gaze estimation task, the cameras are used to capture the face of the child. The 

frontal Kinect is used to capture the head position in a world coordinate system. All the image 

data are captured simultaneously by creating 8 handles in programming. Each handle deals 

with difference data. The data captured in each handle includes two Kinect RGB image data, 

two Kinect depth data, three camera data and one Kinect audio data. The resolutions of the 

camera, Kinect RGB image, Kinect depth image are 1280*960, 640*480 and 640*480 

separately.     

In practice, a multi-sensor selection strategy [22] is used to keep the synchronization of 

each sensor while at the same time keep the system runnings in real time. To deal with the 

synchronization problem, a multi-thread programing is constructed, in which each sensor 

owns a separate thread and a new thread is used to control the start and end of the other 

threads. To acquire real time performance, the multi-sensor selection strategy is divided into 

two stages, namely the detection stage and tracking stage. In the detection stage, the face, face 

features, head pose, and object detection are performed. Then the camera that captures the 

most frontal face is selected for the gaze estimation, face recognition and facial expression 
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analysis. In the tracking stage, the tracking algorithm is less time consuming than the 

detection algorithm since it uses the data of the selected camera and two Kinects. The 
procedures of the two stages are shown in Figure 12 and Figure 13, respectively. 
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Figure 12. The detection stage. 
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Figure 13. The tracking stage. 

 

    In the detection stage, the first step is to calibrate the different sensors. Then the data is 

synchronously captured by the multi-thread programing strategy. In the strategy, each sensor 

belongs to one separate thread and another thread is used to control the start of the five 

sensors. The face detection algorithm is then applied on the image data captured by the three 

cameras. Only the camera that captures nearly frontal face is chosen for further processing. 

The face features extraction and head pose detection algorithms are then applied on the 

chosen images. Then the camera that captures the best frontal face is selected according to the 

output of the detection algorithm. The data captured by the frontal Kinect is for child head 

detection. The data captured by the top Kinect is for the desk objects and robot head 

detection. Once the camera has been selected, further tasks such as gaze estimation, visual 
focus of attention estimation can be performed.  

 

3.3.3. Experimental Results 

The experiment results of eye center localization and gaze estimation are described in the 

following section. 

 

3.3.3.1	Eye	Center	Localization	Results	

The proposed CIDO eye center localization method is evaluated on the public available 

BioID database [23]. Firstly the face is detected using the boosted face detector. Then we 

conduct the eye center localization within the eye’s anthropometric area of the faces. The 

error measure equation is as follows: 



 
D4.3 Evaluation of multi-modal data fusion and interpretation 

 

 

Date:  31/03/2017 

Version: No. 2.0 
 Page 26 of 47 

 

e =  
max (𝑑! ,𝑑!)

𝑑
 

where 𝑑 means the distance between two eyes and e represents the error. The smaller error 

means higher accuracy. Figure 14 shows some example images of the eye center localization 

results. The detail accuracy of the proposed method is shown in Figure 15. We also compare 

our method with state of the art methods in Table 1. 

 

 

Figure 14. Example of eye center localization result in BioID database 

 

 

Figure 15. The accuracy of the proposed method on the BioID database. The 

three lines correspond to the minimum, average and maximum normalized 

error from the top to the bottom respectively. 
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Table 1. Comparison of the state-of-the-art approaches 

 e < 0.05 e < 0.10 e < 0.25 

Jesorsky et al. [23] 40.0% 79.0% 91.8% 

Timm et al. [24] 82.5% 93.4% 98.0% 

Valenti et al. [25] 86.1% 91.7% 97.9% 

Markuˇs et al. [26] 89.9% 97.1% 99.7% 

IDO [20] 80.3% 88.5% 99.1% 

Our 86.8% 96.6% 99.9% 

 

3.3.3.2	Gaze	Estimation	Results	

The results of the camera selection module are shown as in Fig. 4. It shows that the camera 

can be correctly selected based on the detected face probability score. The camera that 

captures the highest face probability score is selected as the final camera. The first row of the 

Fig. 4 shows the selected result when facing forward. The results of camera selection when 
facing left and right are show in the second row and third row of the Fig4. 

 

  

Figure 16.  Results of optimal camera multi-camera selection strategy with small head movements 
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Figure 17. Results of optimal camera multi-camera selection strategy with large head movements 

 

3.4. Face Identification and Facial Expression Recognition 

Face identification and facial expression recognition are the relevant components as 

mentioned in task 4.4. We first propose a face frontalization method to register frontal facial 

appearances. Then we use Local Binary Patterns (LBP) to represent facial appearance cues 
and apply SVM for identity & facial expression classification. 

 

3.4.1 Face Frontalization 

Face frontalization is a newly rising technique for view-invariant face analysis. It aims to 

recover frontal facial appearances from unconstraint non-frontal facial images. A few 
pioneering works have been proposed very recently [27] [28] [29].  

 

Figure 18. Five templates of face shape 
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Face frontalization must rely on a common template of a facial shape, which often fails to 

recover detailed facial expressions. So we propose a facial expression-aware face 
frontalization [30]. 

In this approach, five different templates are manually designed to fit in with more facial 

expressions. As shown in Figure 18(a) means eyes wide open which is often related to 

surprise and fear. Figure 18(b) indicates lowering the eyebrow, which often appears in sad, 

angry and disgust. Figure 18(c) suggests lips apart that is relevant to smile and fear. Figure 

18(d) means mouth wide open that often exists in surprise. Figure 18(e) is neutral face shape. 

As is shown in the figure, these five templates are very different from each other and can be 

immediately distinguished only by shapes. Given a query image, we shall reconstruct frontal 

facial appearances whose shape will be one of the five templates. 

For each query image and the detected facial landmarks (using supervised decent method), 

the most approximate template will be assigned to it according to the similarity calculated by 

geometric distance. In order to reconstruct frontal facial appearances, Active Appearance 
Model instantiation [31] can be used by minimizing: 

𝐹 − 𝐼 𝑊 x;𝑝 + ∆𝑝
!

x

,    𝑠. 𝑡.  𝐹 = 𝜆!𝐴! x

!

!!!

 

with respect to ∆𝑝, where 𝐹 is the required frontal face which is obtained by a linearly 

combine of a set of pre-defined eigen faces 𝐴! x , parameterized by 𝜆. The input image will 

be warped to the selected template through piece-wise affine warp 𝐼 𝑊 x;𝑝 + ∆𝑝 =

𝐼 𝑊 x;𝑝 + ∇𝐼
!"

!"
∆𝑝 where 𝐼 𝑊 x;𝑝  is the warped image, ∇𝐼

!"

!"
 is the Jacobian matrix 

evaluated by 𝑝. The algorithm work iteratively with update rule 𝑝 ← 𝑝 + ∆𝑝. 

The visual results of face frontalization is shown in figure 2. 

  

Figure 19 Frontalization result 

 

3.4.2 Local Binary Pattern 

Local Binary Pattern (LBP) is a nonparametric method and has been proved to be powerful 

descriptor in representing local textural structure [32]. The main advantages of LBP are its 

strong tolerance against illumination variations and computational simplicity. This method 

has been successfully used in both spatial and spatio-temporal domains in face recognition 

and facial expression recognition. 

The original LBP operator labels the pixels of an image with decimal numbers. Each pixel 

is compared with its eight neighbors in a 3×3 neighborhood, considering the center pixel 
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value as threshold; bigger values are encoded with 1 and the others with 0. A binary number 

is obtained by concatenating all these values. Its corresponding decimal number is used to 
compute LBP histogram. Figure 20 shows an example of LBP operator. 

5 1

4 4

9

6

7 32

1 0

1

1

1

1 00

ThresholdThreshold Binary:	11010011

Decimal:	211

Binary:	11010011

Decimal:	211

 

Figure 20. Example of LBP operator 

 

In order to emphasize spatial relations of a face image, the holistic LBP histogram is 

extended to a spatially enhanced histogram by using block-based LBP strategy. The detected 

face image is divided into 7-by-9 blocks and the LBP feature is extracted in each block. All 

the LBP histograms are concatenated into a single histogram. The resulting spatially enhanced 
LBP descriptor will be the input of SVM. 

 

3.4.3 Support Vector Machine 

SVM is considered as one of the most powerful machine learning techniques for data 

classification. It achieves a good balance between structural complexity and generalization 

error. It offers great performance under the circumstance of very few training samples, high 

dimensionality and nonlinear classification. 

In a two-class learning task, SVM find a maximal margin hyperplane as its decision 

boundary. For a linear separable dataset, SVM assumes that the best classification results are 

obtained by maximizing the margin of hyperplane between two classes. It does not only allow 

the best partition on the training data, but also leave much room for the correct classification 

of the future data. In order to guarantee the maximum margin hyperplanes to be actually 

found, an SVM classifier attempts to maximize the following function with respect to 𝑤 and b 

𝐿! =
1

2
𝑤 − 𝛼!𝑦! 𝑤 ∙ 𝑥! + 𝑏

!

!!!

+ 𝛼!

!

!!!

 

where 𝑡 is the number of training examples, 𝛼! are the Lagrange multipliers. The vector 𝑤 and 

constant 𝑏 define the hyperplane. 

 

3.4.4 Experiment 

3.4.4.1	Data	Collection	

The face database is created by manually extracting a number of frames from videos, which 

includes 204 images of 6 children (31 Africa, 37 Dragos, 39 Leo, 22 Otilia, 37 Sebi and 38 

Vladi). Basically, the face images are laid in frontal or near-frontal view. There is no large-
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scale occlusion or head pose in all the images, whilst illuminations vary. Considered face 

recognition is an easy task, face frontalization will not be performed for this task.  

For the facial expression database, two databases are used. The first one is Children 

Emotional database which combines the raw data manually extracted from videos and the 

public database NIMH Child Emotional Faces Picture Set (NIMH-ChEFS). The resulted 

database includes 437 images of 5 emotional categories (35 Angry, 51 Fear, 436 Happy, 1020 

Neutral and 55 Sad). The second one is another public database Static Facial Expression in 

the Wild (SFEW) [33] which includes 7 emotional categories: Angry (An), Disgust (Di), Fear 

(Fe), Happy (Ha), Neutral (Ne), Sad (Sa) and Surprise (Su). It will be used to compare our 
method with the state-of-the-art approaches. 

 

3.4.4.2	Experimental	Results	

Figure 21 illuminates the results of our system. The red box is face region detected by 

OpenCV face detector. All six children and 5 emotional states are displayed by the yellow 

text. It can be intuitively seen that this method has tolerance to small head poses and 
occlusions (such as wearing glasses). 

 

 

Figure 21. Face and expression recognition results 

 

We evaluate our system using 10-fold cross-validation. For face recognition, the 

preliminary research is based on the identity classification of six children and experimental 

results show that this method successfully identifies them and the recognition rate is 97%. 

Considering that the face database is in a small scale, the accuracy may reduce when applying 

this system to a real-world face recognition application. 

For facial expression recognition on children database, the performance is shown in Table 

2. The overall recognition rate is 0.6371. It is very difficult to achieve a clear partition of 

emotions. The child tends to perform a combination of emotions (most frequently a 
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combination of fear and angry). It therefore is difficult to distinguish the negative face 

expressions of children.  

We also evaluate our method on SFEW and make a comparison with the state-of-the-art 

approaches, as shown in Table 3. The results show that our method achieves considerable 

improvements. 

Table 2. Recognition results on the Children Emotional database 

 

 

 

 

 

 

 

 

Table 3. Comparison of the state-of-the-art approaches 

 An Di Fe Ha Ne Sad Su Total 

[33] 23.00 13.00 13.90 29.00 23.00 17.00 13.50 18.90 

[34] 25.89 28.24 17.17 42.98 14.00 33.33 10.99 24.70 

[35] 24.11 14.12 20.20 50.00 23.00 23.23 21.98 26.16 

Our 23.21 18.82 23.23 50.88 40.00 26.26 29.67 30.86 

 

3.5. Motion Recognition 

To recognise actions of the human body, both the skeleton information and colour 

information acquired by Kinect are used to perform a good recognition result. The main idea 

is to represent the movement of human body using the pairwise relative positions of the joint 

feature and features based on colour information. A colour image is employed to accurately 

and quickly infer 3D positions of the body joints. When the skeleton information is missing, 

colour features are used to assist the motion recognition.  

 

3.5.1 Motion Feature extraction 

We firstly detect the key interest points from images using Fast feature detection method 

and describe the information with the BRIEF [36] method, and then an algorithm is used to 

match features. 

The fast feature [37] detection method is used to detect the key interest feature from 

images, as it is very suitable for real-time video processing applications because of its high-

speed performance. The process operates in two stages: First, with a segment test of a given n 

and a convenient threshold, corner detection is performed on a set of images. Then it is 

 Ne An Fe Ha Sa 

Neutral 0.5778 0.1765 0.0415 0.1107 0.0934 

Angry 0.2035 0.5196 0.0536 0.1161 0.1071 

Fear 0.1509 0.0943 0.4906 0.1509 0.1132 

Happy 0.0491 0.0552 0.0773 0.7796 0.0387 

Sad 0.0636 0.0909 0.1515 0.1060 0.5879 
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classified as darker, similar, or brighter for 16 locations in each pixel on the circle. Second, on 

the 16 locations, the maximum information gain is selected using the Iterative Dichotomiser 

(ID3) algorithm [38] which is shown in Figure 22. Then we apply the non-maximum 

suppression on the sum of the absolute difference between the pixels in the contiguous arc 
and the centre pixel.  

 

Figure 22. ID3 algorithm framework 

 

Then the Binary robust independent elementary features (BRIEF) are used to describe the 

motions detected with Fast method. For building a binary descriptor, the key step is to 

compare the intensity between two pixel positions, which are located on the detected interest 
points. This allows us to represent the features with a very low computational cost.  

The task of establishing correspondences between two images of the same object is the 

feature matching technique. As most algorithms are not suitable for binary features, the 

Hamming distance is adopted when comparing the binary features. So we replace the linear 

search with an approximate matching method, which returns the approximate neighbours for 
some of the nearest neighbours.  

When the skeleton information is captured, this project extracts 3D Moving Trend and 

Geometry property from skeleton joints (totally 10 joints from the up-body) to recognize the 

ASD children's behaviour. Skeleton information is appealing for human action recognition in 

that it is invariant to illumination conditions and body appearances.  The moving trend is 

firstly computed by accumulating over time all the moving directions in 3D space. Then the 

geometry property of joints in each frame is modelled by the relative motion information. 

Finally, the feature descriptor is constructed by integrating the two features for action 
recognition.  

  

3.5.1.1	3D	Moving	Trend	Feature	

Figure 23 shows an illustration of 3D moving trend feature modelling. 3D moving 

directions are partitioned into 𝑚 main bins as shown in Figure 23(b) (we take 𝑚 = 26 in this 

project), and then a histogram including 𝑚 bins is built to describe the moving trend feature of 

joints in spatial domain (as shown in Figure 23(c)). 

Let 𝑽 = 𝐯𝟏, 𝐯𝟐, . . . , 𝐯𝐦  be the matrix of 𝑚 main directions in 3D space. They are given by: 
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𝐯𝟏 = (0,0,1)! , 𝐯𝟐 = (0,0,−1)! , 𝐯𝟑 = (0,1,0)! , 𝐯𝟒 = (0,−1,0)! , 𝐯𝟓 = (1,0,0)! , 

𝐯𝟏𝟎 = (−1,−1,1)! , 𝐯𝟏𝟏 = (1,−1,1)! , 𝐯𝟏𝟐 = (−1,1,−1)! , 𝐯𝟏𝟑 = (1,−1,−1)! ,                 

𝐯𝟏𝟒 = (−1,1,1)! , 𝐯𝟏𝟓 = (1,1,0)! , 𝐯𝟏𝟔 = (−1,−1,0)! , 𝐯𝟏𝟕 = (1,−1,0)! , 

𝐯𝟏𝟖 = (−1,1,0)! , 𝐯𝟏𝟗 = (−1,0,−1)! , 𝐯𝟐𝟎 = (1,0,1)! , 𝐯𝟐𝟏 = (1,0,−1)! , 

𝐯𝟐𝟐 = (−1,0,1)! , 𝐯𝟐𝟑 = (0,1,1)! , 𝐯𝟐𝟒 = (0,−1,−1)! , 𝐯𝟐𝟓 = (0,1,−1)! , 𝐯𝟐𝟔 = (0,−1,1)!   

 

 

 

Figure 23. An illustration of 3D moving trend feature modelling. (a) 3D moving directions (red lines 

are moving trend of example joints and red vectors are moving directions between consecutive frames).  

(b) 26 directions in 3D space. (c) Histograms of mov 

For 𝑖 − 𝑡ℎ joint, given a point set: 

𝑷
𝒊
= {𝒑

𝟏

𝒊 , . . . ,𝒑𝒕
𝒊 , . . . ,𝒑

𝑭

𝒊 }     

where F is the length of the action sequence, and t represents the time. We get the 3D 

direction vector 𝐯𝐭
𝐢
 of 𝑖 − 𝑡ℎ  joint between 𝑝!

!
 and  𝑝!!!

!  ： 

𝐯𝐭
𝐢
= 𝑥

!!
! − 𝑥

!!!!
! ,𝑦

!!
! − 𝑦

!!!!
! , 𝑧

!!
! − 𝑧

!!!!
!   

and then calculate the  𝑐𝑜𝑠⟨𝐯𝐭
𝐢, 𝐯𝐣⟩  of angle 𝜃! 𝑡  between 𝐯𝐭

𝐢
 and m vectors: 

𝑐𝑜𝑠𝜃!
!
𝑡 =

𝐯𝐣 ⋅ 𝐯𝐭
𝐢

∥ 𝐯
𝐭

𝐢 ∥∥ 𝐯𝐣 ∥
, 𝑗 ∈ 1,𝑚  

where 𝐯𝐣 ∈ 𝐕. We use the cosine similarity 𝑐𝑜𝑠𝜃!
!
𝑡  to describe the similarity between 𝐯𝐭

𝐢
 and 

𝐯𝐣.  Soft voting strategy is used during moving direction quantization. Specifically, we choose 

two bins that have the most similar moving directions with the current motion of 𝑖 − 𝑡ℎ joint. 
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𝑐𝑜𝑠 𝜃!"#$%
! (𝑡) = max {𝑐𝑜𝑠𝜃!

!(𝑡)}, 𝑗 ∈ (1,𝑚)

𝑐𝑜𝑠 𝜃
!"#$%&

! (𝑡) = max {𝑐𝑜𝑠𝜃!
!(𝑡)}, 𝑗 ≠ 𝑓𝑖𝑟𝑠𝑡

   

The product of displacement 𝑐𝑜𝑠𝜃!"#$%
!

𝑡  and the product of displacement and 

𝑐𝑜𝑠𝜃
!"#$%&

!
𝑡  are finally added to the corresponding bins: 

𝑏𝑖𝑛!"#$% = 𝑏𝑖𝑛!"#$% + 𝐷𝑖𝑠
!(𝑡)×𝑐𝑜𝑠𝜃!"#$%

! (𝑡)

𝑏𝑖𝑛!"#$%& = 𝑏𝑖𝑛!"#$%& + 𝐷𝑖𝑠
!(𝑡)×𝑐𝑜𝑠𝜃!"#$%&

! (𝑡)
  

 

where 𝑏𝑖𝑛!"#$% and 𝑏𝑖𝑛!"#$%& are the corresponding bins in the histogram of 3D moving 

directions, 𝐷𝑖𝑠!(𝑡) =∥ 𝐯𝐭
𝐢 ∥, is the displacement. 

 

3.5.1.2	Geometry	Property	

To remove the coordinate difference caused by various distances between children and the 

depth sensor, we translate the world coordinate from the depth sensor to the local coordinate 

centred at the spine point of the body in each frame. The transformed coordinates of skeleton 
joints are calculated as follows. 

𝑝!
!"
= 𝑝!

!
− 𝑝

!

!"#$%
, 𝑖 = 1,2, . . . ,𝑁 

Although the world coordinate of each frame may differ under current strategy, the 

advantage is obvious as spine point is relatively stable in majority of actions. In order to 

eliminate the influence of different initial poses for the rest joints, the displacement between 

the relative joints in current frame and the joints in the initial frame is utilized to reflect the 

geometry property in current frame. 

△ 𝑥!
!
= 𝑥!

!"
− 𝑥!

!" ,

△ 𝑦!
!
= 𝑦!

!"
− 𝑦!

!" ,

△ 𝑧!
!
= 𝑧!

!"
− 𝑧!

!" ,

   

where (𝑥!
!" ,𝑦!

!" , 𝑧!
!") and 𝑥!

!" ,𝑦!
!" , 𝑧!

!"
 are three transformed coordinates of the initial status 

and current status, respectively. The relative displacement of the 𝑖 − 𝑡ℎ joint in frame t is 

△ 𝑑!
!
: (△ 𝑥!

! ,△ 𝑦!
! ,△ 𝑧!

!), and the geometry property of current frame is: 

𝑔 𝑡 = △ 𝑑!
!, . . . ,△ 𝑑!

!  

We use 𝐺(𝑘) = {𝑔(1), . . . ,𝑔(𝐹)} to denote the feature of action k. 

To address the variable-length problem, we use the cubic spline interpolation [39] to resize 
the feature before integrating them into the feature descriptor.  

Furthermore, a feature normalization method is performed on the extracted geometry 

property feature to achieve geometry feature scale-invariant to the different body sizes. 

𝐺! 𝑘 =
𝐺 𝑘

∥ 𝐺 𝑘 ∥
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3.5.1.2	3DMTG	Feature	Descriptor	

The combination of the 3D moving trend feature and geometry property feature, which we 

refer to as 3DMTG feature descriptor, is used to represent the motion information in action 

sequences. The general framework of the proposed 3DMTG feature descriptor is shown in 
Figure 24. 

 

Figure 24. An overview of the proposed 3DMTG feature descriptor. 

 

The upper part of Figure 24 is the 3D moving trend feature where a histogram of 26 bins 

corresponding to 3D moving directions is adopted to store the moving trend of each joint 

through the whole action video. The lower part of Figure 24 is the geometry property feature 

which is acquired from the N frames of the action sequence. In the geometry property feature, 

the world coordinate is firstly translated into spine and then the relative displacement of each 

joint is computed. Both 3D moving trend and geometry property features are normalized.  

The final 3DMTG feature descriptor for the motion is a concatenation of 3D moving trend 

and the geometry property. The 3D moving trend feature reflects spatial motion direction of 

each joint in an action sequence, while the geometry property feature indicates the temporal 

movement of each joint. The proposed method builds feature for joints of different body parts, 

so it can differentiate partial similar actions. Then these features are packaged as the input 
which can be classified with a linear SVM [32] classification algorithm. 

 

3.5.2 Experimental Results 

The recognition performance of the proposed 3DMTG feature descriptor has been 

evaluated on the publically available dataset: MSR-Action3D [40]. It has 20 action types by 

10 subjects, and each subject performs each action for two or three times. The actions are high 

arm wave, horizontal arm wave, hammer, hand catch, forward punch, high throw, draw x, 

draw tick, draw circle, hand clap, two hand wave, side boxing, bend, forward kick, side kick, 

jogging, tennis swing, tennis serve, golf swing, and pickup throw. The data is divided into 
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three action sets AS1, AS2 and AS3. We compare the recognition performance of our 

3DMTG feature descriptor to the state-of-the-art feature descriptors in Table 1. Our method 
achieved 94.4%, which is higher than other listed methods. 

 

Table 4. Comparison of action recognition accuracy with state-of-the-art. 

Method AS1 AS2 AS3 Average(%) 

Bag of 3D Points [40] 72.9 71.9 79.2 74.7 

DMM-HOG [41] 96.2 84.1 94.6 91.6 

SNV [42] - - - 93.1 

STOP [43] 91.7 72.2 98.6 87.5 

ROP [44] - - - 86.5 

DSTIP [45] - - - 89.3 

HOJ3D [46] 72.9 85.5 63.5 79.0 

EigenJoints [47] 74.5 76.1 96.4 82.3 

Actionlets Ensemble [48] - - - 88.2 

HOD[ [49] 92.4 90.2 91.4 91.3 

Vemulapalli et al. [50] 95.3 83.8 98.2 92.5 

HON4D [51] - - - 88.9 

pose set [52] - - - 90.2 

Moving Pose [53] - - - 91.3 

3DMTG 92.4 93.8 97.1 94.4 

 

In addition, some motion recognition results are shown in Figure 25, there are 11 motions 
such as “waving hand” and “open arm” are recognised in this project,  
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Figure 25. Motion recognition result 

 

Figure 26 shows the motion recognition result with normal adults, we use different numbers 

to indicate different motions. For example the number 1 means the “waving hand”, the 
number 7 and 9 represent the complex motions.  

 

 

Figure 26. Motion recognition results using adults 

 

3.6. Objects Tracking and Recognition 

3.6.1 Object Tracking  

Although numerous researchers focus on tracking technology and lots tracking methods 

have been proposed, there still remain a series of challenges such as appearance change 

because of poses, illumination and occlusion. To address these problems, a novel method 

based on modelling appearance of object will be used. It adopts a compressive tracking 

algorithm. Recently, the object-tracking problem has been treated as a predictive problem, 

which can be solved by the particle filter framework based on the Bayes function. The main 

difference compared with previous traditional particle filter framework is that the number of 
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particles is not needed for solving the model while using a kernel function to obtain the 

probability needed. When estimating the object location, the object location likelihood is used 
which is shown as follows: 

 

where x is the output vector which includes the predicting object information and represents 

the current object feature in an image sequence p(x) can be computed according to the Bayes 

theory: 

 

Then, the problem can be transferred to compute the joint probability. p(x) represents the 

context feature, f(z) denotes image information including the location and the feature of a 
target, it can be represented as: 

 

M(z) denotes the colour information which adopts the HSV (Hue, Saturation, Value) colour 

space at location z(m, n), especially the value of V channel ( the use of V channel makes the 

algorithm work well for both colour images and gray-scale images),} z belongs to the 

neighbourhood of location X that includes target object. The target model is defined as z 

which includes the vectorized image patches centred at pixel position c, the distance between 

the surrounding pixel and the centre is assigned by applying an isotropic kernel k(c), and then 

the target model is obtained by computing the value of the colour model histogram, in which 
the j-th value is:  

 

where 
!
N
c
is the normalisation constant to make sure the summation is 1, and 

!
α

f
 is the 

coefficient of the image patch. 
!
α

f
 is the learning rate, 

!
C
f
 is the covariance matrix of the 

current frame appearance, and 
!
Λ

f
 is the a 

!!
D
1
×D

2
 diagonal matrix. Then we select a mapping 

matrix 
!!
B
1
 according to normalised eigenvectors of 

!
R
f
, which denotes the largest eigenvalue. 

The mapping matrix is found by the dimensionality reduction technique to get a projection 

!!
D
1
×D

2
 with orthogonal column vectors. 

As the colour attributes normally have high-dimensional colour features, a dimensionality 

reduction method is used to make the algorithm preserve useful information after the colour 

dimensions are reduced dramatically, then the computational time will be decreased.  The 

problem of dimension reduction is formulated to find a mapping for the current frame f, by 
performing an eigenvalue decomposition of the matrix as: 

 

where h can be seen as a kernel function with respect to the relationship between the centre 

location of object and its surrounding region.  

!!
p x( )= p x |o( )

!!!

p(x)= p(x |o)= p
f (z)∈X f

∑ (x , f (z,o))! = p
f (z)∈X f

∑ (x | f (z)|o)p( f (z)|o)

!!!M(z)= (V(z),z)

q
j
=N

c
k

i=1

N

∑ (||c ||2)|α
f
|

!!!p(x | f (z),o)= h(x −z)
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In addition, it is well known that the visual tracking could fail when the target appearance 

changes. So it is necessary to update the target model over time. For our tracker, the 

appearance model considers the learned target x and the transformed classifier coefficient A 

computed using the current appearance, and then we use a simple linear interpolation method 
to update the classifier coefficients: 

 

where t indicates the current frame and ρ  means the learning rate parameter, thus a sub-

optimal problem is introduced. A scheme, allowing the model to be updated without storing 

the previous target appearances, is introduced to ensure a fast computing speed. Then not all 

previous frames are considered when computing the current model. 

The object tracking result is shown in Figure 27. 

 

Figure 27. Tracking result using recorded video 

 

3.6.2 Object Recognition 

In this section, we mainly focus on the technical details on how to recognize the tracked 

object. To overcome the challenges of object shape variation、illumination changes, and 

occlusion. We propose a robust object classification framework based on Histogram of 

Oriented Gradient (HoG) and multiple class Support Vector Machine (SVM). The pipeline is 

summary as follows. 

 

Tracking 
Module

Tracked 
Object

Feature 
Extract

Feature 
Extract

SVM

Label

Training 
datasets

 

Figure 28. Object recognition pipeline 

 

!!A
t
= (1− ρ)At−1 + ρA
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HoG image descriptor treats the gradient direction information as a representation of the 

local image area. The extraction process can be divided into four steps: 

Step1: In order to reduce the influence of light factors, we first need to normalize 

(normalize) the whole image, which can effectively reduces the local shadow and illumination 

changes. 

  

where gamma is the correction coefficient and is set to 0.5. 

Step2: Compute the gradient of the image  in 
 
and  directions. 

  

  

Step3: calculate the gradient amplitude  and angle . 

  

  

 
                         (a)                                                             (b) 

Figure 29 The raw image and corresponding Hog descriptor visualization. (a) Raw image data. (b) Hog 

feature 

 

After  the feature of the tracked image is achieved, the next step is to train a multiple class 

SVM to recognize its image category. The training dataset is formulated as 

, where is the HoG descriptor of the n-th sample, and 

is the corresponding label. The goal of training is to maximum the margin of different 

classes by solving the following formulation: 
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The recognition results are demonstrated in the Figure 30. 

 

 

Figure 30 Object recognition results 

 

3.7. Audio Processing 

In DREAM project, the effective child-robot social interactions in the supervised autonomy 

RET requires the robot to be able to infer the psychological disposition of the child. The 

speech recognition and sound direction localization can help the system to understand the 

psychological disposition of the child better. Therefore, the implementation of the speech 

recognition, sound direction localization and voice identification is given in the system. With 

the speech recognition functions, the specified words and sentences spoken by children can be 

transformed into plain texts for easier understanding of what the children  say. The sound 

direction localization is to detect the loudest sound in in the environment. The task of voice 

identification is to distinguish whether the sound comes from a child or theripesit. Our 
implementation is based on Microsoft Kinect SDK. 

 

The isolated words or continuous sentences can be recognized with our implementation of 

speech recognition built on top of word recognition technology. The output of audio direction 

is shown in degrees. The results of speech recognition, audio direction and voice 

identification was shown inside the red ellipsoid of Figure 31.  
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Figure 31. Audio processing information 
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