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Execut ive Summary  
 

Objectives 
Deliverable D4.3 aims to evaluate the multi-modal data fusion and interpretation. The main 

objectives of this report are: 
• Describe the specification, design, implementation, and validation of a suite of 

multi-modal data fusion and interpretation modules for the child behavior 
specifications set out in deliverable D1.3. It builds on the results of task T4.2, as 
documented in deliverable D4.2. 

• Deliver the results from tasks T4.3 and T4.4 and provide inputs for tasks T3.3, T5.1, 
T6.1, and T6.2. 

 

Implementation 
We have proposed algorithms for multi-modal data fusion and interpretation. They are 

summarized as follows: 
 

• We have proposed a multiple sensory data fusion framework to effectively handle 
the computation complexity and data synchronization. The foundation of this 
framework is a coordinate transformation module, which transfers the image 
coordinates of different sensors into a same world coordinate system. To avoid 
unnecessary data transfer and fuse the data more efficiently, we manage to realize 
the framework in a single component named sensory analyses inside the Yarp 
architecture. This component can perform all the required functionalities while 
recording the heterogeneous large data in real time. 

 
• We have completed all the tasks defined in deliverable D1.3 and D3.1. Those tasks 

include eye-gaze tracking, face detection, child skeleton tracking, child movement 
recognition, face recognition, expression recognition, objects tracking, object 
recognition, sound direction detection, speech recognition, etc. The captured video 
data with Kinect depth data is fused to obtain accurate gaze and face information 
under large head poses. The optimized 3D face information obtained by the 
coordinate transfer module provides inputs to deliverable T6.1 and T6.2. The 
information of gaze, expression, motion, object and audio provides inputs to task 
T3.3 and T5.1. 
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1.  In t roduct ion  
This deliverable, D4.3, describes evaluation of the multi-modal data fusion and 

interpretation. As documented in deliverable D4.2, individual data stream can be captured 
from individual sensor sources in a unique modality. However, fusion of information in 
different modalities remains a significant challenge for interacting with ASD children. In 
general, the most popular fusion strategies include fusing methods at data, feature, and 
decision levels [1] from early, intermediate to late levels. In data level fusion, methods for 
synchronization and adaptation are needed before the fusion process. Statistical estimation 
methods include non-recursive methods, such as weighted average methods and the least 
square methods, and recursive methods, such as Kalman filter (KF) and extended KFs (EKFs) 
[2] [3] [4] [5]. In the feature level, the fusion is achieved by extracting and concatenating 
features from different sources to get a more discriminating feature with a higher dimension 
[6], which will be further input to the classifier level. Classifiers, such as hidden Markov 
models (HMMs) and their hierarchical counterparts, Support Vector Machines (SVM [7]) and 
dynamic Bayesian networks (DBNs) [8] [9] [10] are used to model individual streams. 
Intermediate level fusion methods are more popular than the early and late levels because of 
their capability of weighted combination of the different modalities and access of the low-
level features [11] [12] [13]. Decision level fusion strategies generate a decision by 
considering and combining probability scores or likelihood values obtained from separate 
unimodal classifiers. This involves work in combination theory to estimate the best weighting 
factors based on the training data [14] [15] [16].  

The deliverable describes the specification, design, implementation, and validation of 
multi-sensory data fusion process and interpretation modules derived from the child behavior 
specifications set out in deliverable D1.3. The task T4.2, as documented in the deliverable, 
show the results of individual sensory data on detected face, estimated gaze, obtained body 
joints, tracked human hands and objects, and recognized facial expression and speech. 
However, these sensory data are independently captured from a single sensor (a camera or a 
Kinect). To further employ them for human behavior analysis and to provide input for tasks 
T3.3, T5.1, T6.1 and T6.2, such individual data should be fused. The first and foremost 
important step is to transform sensory data in local coordinate systems to a global coordinate 
system. The fused data is then employed for the action and event recognition in the behavior 
interpretation of Children with ASD.  

This preliminary deliverable is focused on the multiple sensory data fusion and 
interpretation and their evaluation. Firstly, the coordinate transform module which transfer the 
image coordinates of each sensor into a world coordinate system is presented, and then the 
data fusion and interpretation framework is described. Evaluations and discussions based on 
the experimental results are presented. 
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2.  Coord ina te Transformat ion Module 
This project employs five individual sensors: left Camera 1, middle Camera 2, right 

Camera 3, middle Kinect 1 and top Kinect 2. An example configuration of the sensing system 
is shown in Figure 1. More detailed information about the hardware was documented in D4.1. 

 

 
Figure 1: Example configuration of the sensing system 

 
To effectively fuse multi-model data, a coordinate transformation module, which can 

transfer data from different sensor coordinate systems to a global world coordinate system, is 
proposed. By doing so, users can also directly collect and use the sensory data captured in the 
global world coordinate system. The center of the world coordinate system is located at the 
base of middle Kinect 1. The vertical axis is defined as y-direction and the desk plane is 
defined as the plane of axis x and axis z. In the following part of this session, we will 
introduce the methods to capture the calibration data and how to calibrate the system. 
 

2.1. Kinect-Camera Coordinate Transform  
The data captured by three cameras are in three different local coordinate systems. This 

section describes the transformation of Kinect-Camera coordinates. The first step is to 
determine the position and orientation of each camera, given its intrinsic parameters and a set 
of n correspondences between 3D points and their 2D projections. Then, any 3D point’s 
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coordinate in the camera coordinate system can be transformed to a 3D coordinate in the 
global coordinate system with the rotation and translation matrix of the camera. The workflow 
of the proposed camera poses estimation method is shown in Figure 2.  

 

 
Figure 2: Workflow of the proposed camera poses estimation method. 

 
In practice, a chessboard is used to capture the cooreponding points. An example of the 

calibration data is shown in Figure 3. 
 

 
Figure 3: An example of the Kinect-Camera calibration data 

 
As shown in Figure 3, a chessboard plane is positioned in the view of three cameras and the 

middle Kinect. The corners in the chessboard are detected by classic Harris corner detector. 
There are 54 corners in total and the distance between each corner is 25mm. To accurately 
estimate the camera pose, we need to capture around 20 sets of images with different angles. 
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2.1.1. 2D-3D Correspondence  
Our implementation is based on an Efficient Perspective-n-Points (EPnP) algorithm 

proposed by Vincent et al. [17]. Our camera pose estimation method has a robust result when 
different camera poses are encountered. It only requires the user to mark the corresponding 
points between the Kinect image and the Camera image for about 20 pairs. We prefer to this 
due to the fact that it’s far more reliable than any other feature-matching algorithm. With the 
intrinsic parameters of the cameras, the poses of those cameras related to the Kinect can be 
determined robustly, as shown in the following equation, 

                                                                       
where mi is the projection of the 3D point Mi onto the camera image with K being intrinsic 
parameters of the camera. R is the rotation matrix and t is the translation matrix. mi, K and Mi 
are known in the equation. With more than 3 pairs of mi-Mi correspondences, the R and t can 
be estimated using optimization algorithms. In our implementation, the mi-Mi correspondences 
are more than 20 pairs to improve the robustness of the process. 

Therefore, the first step for camera pose estimation is to find the 2D-3D correspondence 
between the 2D points in the camera image and the 3D points in the space. Because the Kinect 
can generate both RGB image and depth image, the 2D-3D correspondence can be done 
through an intermediate step of 2D-2D correspondence between the camera RGB image and 
the Kinect RGB image. Then the relationship between points in the Kinect RGB image and the 
Kinect Depth image will provide the 2D-3D correspondence as mentioned above. 

To ensure the accuracy of the estimation, the 2D-2D correspondence is achieved by 
manually marking corresponding 2D points in camera’s RGB image and Kinect’s RGB image. 
A calibration object is used to assist this marking process. This object is shown in the field of 
view (FOV) of both camera and Kinect. The same point in the object is marked in RGB images 
from both camera and Kinect. With this process, the accurate 2D-2D correspondence can be 
obtained.  

In the meanwhile, the process of alignment between the RGB image and the depth image 
both generated from Kinect is carried out. However, movements among different sensors 
causes a correspondence shift between RGB image and Depth image. This puts an obstacle for 
searching from 3D points in space to 2D points in the camera image, which has 2D-2D 
correspondence to Kinect RGB image. This could be solved by taking into account of the 
constant distance between the RGB sensor and the infrared sensor in the Kinect device. With 
the knowledge of FOV of the Kinect, we can modify every pixel in the depth image 
accordingly to make them align with the pixels in RGB image. After alignment, for every 
coordinate of 2D point in the RGB image, we can retrieve the corresponding 2D coordinate in 
the Depth image.  Then the coordinate of a 3D point in the space can be obtained using the 
following equation: 

 

where (u0, v0) is the depth image center of the Kinect, and f is the focal length of the infrared 
camera. (xp, yp, zp) is the 3D coordinate of a point in the space corresponding to the 2D point of 
(u, v) in the depth image. The alignment result of RGB image and Depth image is illustrated in 
Figure 4. 

mi ≈K(R,t)M
!
i

0 0

p p px y z
u u v v f

= =
- -
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Figure 4: The point cloud collection by a Kinect after the RGB image and the Depth image has been 

aligned. The Kinect is in front of the child. 

 
2.1.2. Camera Poses Estimation 

When the 2D-3D correspondence is obtained, the next step is to estimate the camera pose. 
Our method, this process is mainly based on an iterative process. In each iteration, a 
Perspective-n-Points (PnP) algorithm is applied along with the 2D-3D correspondence 
calculated by the previous process. There is a wide range of PnP algorithm implementations in 
the community. The EPnP algorithm is selected because of its high efficiency in calculation. 
The EPnP algorithm is an O(n) non-iterative process in the first place. We put it into a 
sequence of loops because the main process of the PnP algorithm is about parameterization and 
quadratic equations solving, which will also bring in errors when outliers are input. To 
minimize this, in each loop of the iteration, we firstly apply the EPnP algorithm with the 2D-
3D correspondences. Then a projection process from every 3D point in space to 2D points is 
conducted with the estimated camera rotation and translation in the current loop. By comparing 
the projected 2D points and the true 2D points in the camera image, the outliers of the 2D-3D 
pairs can be identified. If the number of outliers is larger than a predefined threshold, such as 
the 40% of the total number of the point-pairs in our implementation, then we randomly 
sample the 2D-3D point pairs down to a predefined number of count, such as the 60% of the 
total number of the point-pairs in our implementation. After re-sampling, next loop starts. If 
the number of outliers is less than the threshold, or the total count of the loop is larger than a 
predefined number, the iteration will stop, and the final results of the camera pose can be 
achieved. 

 
2.1.3. Local to Global 3D Coordinate Transformation 

Furthermore, we also provide an implementation for transforming the local 3D coordinates 
to global 3D coordinates. The transformation process is based on the rotation and translation of 
the Camera relative to the global coordinate system.  

With the previously obtained results of the camera poses, the coordinates of the 3D points 
can be easily transformed from the camera coordinate system (local 3D coordinate) to the 
Kinect coordinate system (global 3D coordinate). To achieve unified 3D coordinates in the 
same coordinate system when the points come from different cameras, the following equation 
can be used. 
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where P’ is a 3D point in the camera coordinate system and P is the corresponding 3D point in 
the unified coordinate system. R and t are the rotation and translation matrix of the camera, 
which is also known as the pose of the camera. Similarly, the same process can be applied for 
other cameras.  
 For those facial points which the camera and middle Kinect can both capture, it is easy to 
find their global 3D coordinates. However, it is sometimes hard for both devices to capture the 
same facial points in many situations because of the large head movements. Thus a 2D to 3D 
coordinate transform for these located 2D facial points is necessary. The transformation can be 
performed using following equation: 

                                                              

where  refers to the head center position in the world coordinate system,  is the head 
center position in the local coordinate system. (u0, v0) is the image center of the camera, and f 
is the focal length of the camera. 

 
is the 3D coordinate of a point in the local 

coordinate system of the camera, which corresponds to the 2D point of (u, v) in the image.  
is the depth value of the head center point in the local coordinate system. The depth value of 
any facial point is replaced by the depth value of head center in the local coordinate system for 
the calculation of its 3D points in the local coordinate system.  
 

2.2. Kinect-Kinect Coordinate Transform  
 The Kinect-Kinect coordinate transform is relatively easy since 3D coordinates can be 
obtained in two sensors. To estimate the pose of the top Kinect, the classic Iterative Closest 
Point (ICP) algorithm is employed. The pose can be acquired by minimizing the difference 
between two sets of point clouds. We use a chessboard to capture the corresponding points. An 
example of the calibration data is shown in Figure 5. 
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(a)                                                                       (b)   

Figure 5: An intance of the chessboard location for Kinect-Kinect calibration. a. An image from the 
middle Kinect. b. An image from the top Kinect 

 

2.3. Experimental Results 
The experimental results of camera pose estimation are shown in Figure 6. The origin of the 

3D coordinate system is seated in the middle Kinect. Figure 6 (a) shows the ground truth of the 
sensors position.  The estimated poses of the cameras in the middle, left and right are shown in 
Figure 6 (b) (c) (d) with different view angles.  

 
   

                   
 (a)                                            (b)                                           (c)                                            (d) 

Figure 6: The experimental results by the proposed method. (a) Relative positions between Kinect and 
three cameras.  (b), (c), (d)  Estimated sensors’ position in different views.  

    
To validate the correctness of calibration results, we conduct a coordinate transformation 

experiment, which maps the color image to 3D point clouds obtained by Kinect depth sensor. 
Figure 7 shows the captured color images by the middle Kinect sensor and middle camera 
sensor. The 3D mapping result of Kinect color and depth is shown in Figure 8. The coordinate 
transformation results are shown Figure 9 where the data captured by middle camera is 
mapped to the data captured by the middle Kinect.   
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                                    (a)                                                                                   (d) 

Figure 7: Captured color images. (a) color image of middle kinect. (b) color image of middle camera 

 

 
Figure 8: The aligned result of color and depth image captured by middle Kinect 

 

 
Figure 9: The coordinate transformation result
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3.  Evaluat ion  of  Mul t ip le  Sensory  Data  
Fus ion and In terp retat ion  

As shown in Figure 10, a framework for coordinating multiple sensors is presented to 
synchronize and fuse the multiple sensory data.  

 

3.1. Framework Description 
 

 
Figure 10: A framework for coordinating multiple sensors 

 
Three cameras serve to obtain face-related information, including face location, eye 

location, gaze direction, head direction and so on, which is known as face analysis. Kinect0 is 
also used to obtain sound-related information, including sound direction and speed text, and it 
also provides body joints and children’s motion IDs. Kinect1 works to track objects on the 
table and to recognize objects’ IDs. A coordination transformation module is built to transfer 
all the local coordinates into global ones in a smart 3D space. To demonstrate the sensory 
information as well as to simplify system manipulation, a GUI is constructed. Moreover, a 
sensoryAnalysis component is built to acquire and delivery sensory data from/to other related 
components in YARP. 

The designed GUI Interface is shown as follows: 

Face analysis

Face & Emotion 
Recognition Gaze Motion Recognition Audio Processing Object Tracking & 

Recognition

Coordination Transformation Module

GUI & Yarp Interface (25 Functions)

Camera0 Camera1 Camera2 Kinect0 Kinect1
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Figure 11: GUI interface 

 
Most of the information and interpretation results are displayed directly inside the images. 

For example, the color and depth information of the two Kinects are displayed on the first 
row. The front Kinect image also displays the detected skeleton information and motion 
recognition results. The top Kinect image shows the object tracking and recognition results. 
The bottom row of the GUI shows three images of the cameras along with the other 
interpretation results and controlling buttons. The functions of the buttons are documented as 
follows: 

Button “Preview”:  Reading the camera signals and displaying the real-time images on the 
screens.  

Button “Stop”:  Ceasing the image previewing or data recording. 
Button “Record”:  Recording the preview images and saving the images as video files. 

When the button “Preview” or “Show3D” is pressed, button “Record” will be disabled. 
Button “Show3D”:  Displaying the 3-D information of the captured data. All the captured 

information is shown in a global 3D world coordinate system.  
Button “Exit”:  Exiting from the GUI of the Sensory Analysis Component. 
 

3.2. Yarp Implementation 
The sensoryInterpretation subsystem was implemented by the component named as 

sensoryAnalysis in YARP. The definition of the input and output ports for the component can 
be found as below.  

 
1) Input Port 
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1. /sensoryAnalysis/getEyeGaze:i  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: an eye’s position 

 
2. /sensoryAnalysis/getGripLocation:i 
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: The object’s location for grip location detection. 

 
3. /sensoryAnalysis/getHeadGaze:i 
BufferedPort<VectorOf<double>> 
Size: 9 
Format: [point1.x, point1.y, point1.z, point2.x, point2.y, point2.z, point3.x, point3.y, 
point3.z,] 
Note: three points describe a plain, on which a point that the gaze directed to would be 
detected.   

 
4. /sensoryAnalysis/getObjects:i 
BufferedPort<VectorOf<double>> 
Size: 4 
Format: [center.x, center.y, center.z, radius] 
Note: describe the space for object detection. The space is described by a centre point and its 
radius. 

 
5. /sensoryAnalysis/getObjectTableDistance:i 
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [object.x, object.y, object.z] 
Note: the location of an object. 

 
6. /sensoryAnalysis/getSoundDirection:i 
BufferedPort<VectorOf<double>> 
Size: 1 
Format: [threshold] 
Note: only the sound level above the threshold will be detected for sound direction detection. 

 
7. /sensoryAnalysis/identifyFace:i  
BufferedPort<VectorOf<double>> 
Size: 3 
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Format: [x, y, z] 
Note: the location of the face for face ID recognition. 

 
8. /sensoryAnalysis/identifyFaceExpression:i  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: the location of the face for face expression recognition. 

 
9. /sensoryAnalysis/identifyObject:i 
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: the location of an object for its ID recognition. 

 
10. /sensoryAnalysis/trackFace:i 
BufferedPort<VectorOf<double>> 
Size: 4 
Format: [x, y, z, t] 
Note: the location (x, y, z) of a face and a time span (t) for location detection next time. 

 
11. /sensoryAnalysis/trackHand:i  
BufferedPort<VectorOf<double>> 
Size: 4 
Format: [x, y, z, t] 
Note: the location (x, y, z) of a hand and a time span (t) for location detection next time. 

 
12. /sensoryAnalysis/trackObject:i  
BufferedPort<VectorOf<double>> 
Size: 5 
Format: [ID, x, y, z, t] 
Note: the ID and location (x, y, z) of a hand and a time span (t) for location detection next 
time. 
 
13. /sensoryAnalysis/identifyTrajectory:i  
BufferedPort<VectorOf<int>> 
Size: 1 
Format: [ID] 
Note: the ID of the expected motion. 

 
3) Output Port 
1. /sensoryAnalysis/checkMutualGaze:o  
BufferedPort<VectorOf<int>>  
Size: 1 
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Format: [a] 
Note: a = -1, 0 and 1 indicates no face being detected, no mutual gaze and mutual gaze, 
respectively.  

 
2. /sensoryAnalysis/getArmAngle:o  
BufferedPort<VectorOf<double>> 
Size: 4 
Format: [left_elevation, left_azimuth, right_elevation, right_azimuth] 
Note: referring to the azimuth and elevation angles of the child’s upper left and right arms of 
the child. 

 
3. /sensoryAnalysis/getBody:o  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: the 3D coordinates of child’s body centre.  

 
4. /sensoryAnalysis/getBodyPose:o  
BufferedPort<VectorOf<double>> 
Size: 30 
Format: [joint1.x, joint1.y, joint1.z, …, joint10.x, joint10.y, joint10.z] 
Note: the joint positions of the upper body, as listed in the order of shoulder centre, head, left 
shoulder, left elbow, left wrist, left hand, right shoulder, right elbow, right wrist and right 
hand.  

 
5. /sensoryAnalysis/getEyeGaze:o  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note:  With the input of one eye’s location, this port outputs the gaze direction by a line 
connecting child’s eye and that location (x, y, z).   

 
6. /sensoryAnalysis/getEyes:o  
BufferedPort<VectorOf<double>> 
Size: 6 
Format: [leftEye.x, leftEye.y, leftEye.z, rightEye.x, rightEye.y, rightEye.z] 
Note: Indicate the location of the left and right eye. 

 
7. /sensoryAnalysis/getFaces:o  
BufferedPort<VectorOf<double>> 
Size: 16 
Format: [N, face1.x, face1.y, face1.z,…,  face5.x, face5.y, face5.z].  
Note: N refers to the number of faces being detected, followed by the location of each face.  
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8. /sensoryAnalysis/getGripLocation:o  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: The grip location on the object.  

  
9. /sensoryAnalysis/getHands:o  
BufferedPort<VectorOf<double>> 
Size: 6 
Format: [leftHand.x, leftHand.y, leftHand.z, rightHand.x, rightHand.y, rightHand.z] 
Note: Indicate the location of the left and right hand.  

 
10. /sensoryAnalysis/getHead:o  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [head.x, head.y, head.z] 
Note: Indicate the location of child’s head. 

  
11. /sensoryAnalysis/getHeadGaze:o  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [a, b, c] 
Note: Without input, a, b and c indicates the head gaze by [a = pitch, b = raw, c = yaw]. With 
the input from /sensoryAnalysis/getHeadGaze:i, this port outputs a point [a = x, b = y, c=z] on 
the surface described from the input of  /sensoryAnalysis/getHeadGaze:i. 

 
12. As described in item 11. 

 
13. /sensoryAnalysis/getObjects:o  
/ sensoryAnalysis/BufferedPort<VectorOf<double>> 
Size: 1+n*4 
Format: [the number of object, object1.x, object1.y, object1.z, object1.ID, object2.x, 
object2.y, object2.z, object2.ID, …,  objectn.x, objectn.y, objectn.z, objectn.ID ] 
Note: indicate n objects’ location as well as the ID in the sensory environment. If no data is 
received from /sensoryAnalysis/getObjects:i, the algorithm will search the whole 
environment, otherwise it searches within a given space. The ID of 0, 1, …, 3 corresponds 
‘car’, ‘cup, ‘flower’ and ‘plane’. 
 
14. As described in item 13. 
 
15. /sensoryAnalysis/getObjectTableDistance:o  
BufferedPort<VectorOf<double>> 
Size: 1 
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Format: [d] 
Note: With the input of an object’ location from /sensoryAnalysis/getObjectTableDistance:i, 
this port outputs the vertical distance between table and the object. If no data is received from 
the input port, no data will be output.   
 
16. /sensoryAnalysis/getSoundDirection:o  
BufferedPort<VectorOf<double>> 
Size: 2 
Format: [sound_direction, probability] 
Note: Sound_direction indicates an angle that directs to the loudest sound in the environment 
in the view from the front Kinect, followed by a probability.  
 
17. /sensoryAnalysis/identifyFace:o  
BufferedPort<VectorOf<double>> 
Size: 1  
Format: [faceID] 
Note: Indicates the ID of the largest face among all faces, if there no input from 
/sensoryAnalysis/identifyFace:i. If no face is detected, no data will be output. faceID 
=1,2,…,7 refers to  Africa, Dragos, Leo, Otilia, Sebi, Vladi, SV and unknown, respectively. 
 
18. /sensoryAnalysis/identifyFaceExpression:o  
BufferedPort<VectorOf<int>> 
Size: 1  
Format: [ExpressionID] 
Note: Indicates the expression ID of the largest face among all faces, if there no input from 
/sensoryAnalysis/ identifyFaceExpression:i. If no face is detected, no data will be output. 
faceExpressionID =1,2,…,5 refers to happy, sad, angry, fear and neutral, respectively. 
 
19. /sensoryAnalysis/identifyObject:o  
BufferedPort<VectorOf<double>> 
Size: 1  
Format: [object_ID] 
Note: Indicates the ID of an object with the given location from 
/sensoryAnalysis/identifyObject:i. The ID of 0, 1, …, 3 corresponds to car, cup, flower and 
plane, respectively. 
 
20. /sensoryAnalysis/identifyTrajectory:o  
BufferedPort<VectorOf<double>> 
Size: 12 
Format: [P1, P2,…, P12] 
Note: The probability of 12 trajectory motions. P1, P2, … and P12 corresponds to ‘no 
motion’, ‘wave hands’, ‘hands on eyes’, ‘hand over head’, ‘open arm’, ‘hand car’, ‘Drink’, 
‘Complex 1’, ‘Complex 2’, ‘Complex 3’ , ‘Complex 4’ and ‘knock door’, respectively. 
 
21. /sensoryAnalysis/identifyVoice:o  
BufferedPort<VectorOf<int>> 
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Size: 1  
Format: [voice_ID] 
Note: Indicates the ID who arises the sound. 0 corresponds to a therapist, and 1 corresponds to 
a child.  
 
22. /sensoryAnalysis/recognizeSpeech:o  
 BufferedPort<Bottle>  
Size: 1  
Format: [speech_text] 
Note: Indicates the text  of a specific sound from the child, including ‘broom’, ‘veshi‘, ‘gala‘, 
‘smelling sound of flower‘, ‘wiwi‘, ‘coocoo‘, ‘bye bye‘, ‘youhuu‘, ‘cry‘, ‘ho‘, ‘hmm‘. 
 
23. /sensoryAnalysis/trackFace:o 
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: The location of a specific face indicated by the input port /sensoryAnalysis/trackFace:i 
 
24. /sensoryAnalysis/trackHand:o  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: The location of a specific hand indicated by the input port /sensoryAnalysis/trackHand:i  
 
25. /sensoryAnalysis/trackObject:o  
BufferedPort<VectorOf<double>> 
Size: 3 
Format: [x, y, z] 
Note: The location of a specific object indicated by the input port 
/sensoryAnalysis/trackObject:i  
 

3.3. Multi-sensory Fusion based Gaze Estimation 
Gaze is an essential part of the human’s attention system. The task of gaze estimation is to 

estimate where children are looking at. It can be used in many applications such as human 
computer interaction, driver attention detection, marketing research, etc. In this project, we 
aim to estimate the 3D gaze direction of ASD children who can freely move their heads while 
doing motions. These requirements bring extra challenges such as large head movements, 
occlusions. To handle these challenges, a multi-sensor fusion based gaze estimation method is 
developed. The camera with the best view angel is selected and fused with the depth map 
captured by the middle Kinect to cover wider head movements and obtain accurate 3D gaze. 
In the following subsection, we firstly introduce the eye center localization method [18], 
which is a crucial step in determining the final gaze. Then, we present our eye model based 
gaze estimation method [19] and the developed multi-sensory fusion framework [20]. 
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3.3.1. Eye Center Localization 
The human eye center is closely related to the human gaze. As a result, the accuracy of eye 

center localization plays a crucial role in determining the gazing direction. In the project, we 
present a convolution based integro-differential eye center localization method to localize the 
eye centers. The proposed method is computationally much cheaper than the original integro-
differential method [21] and achieves a higher accuracy in a public available low-resolution 
image database. 

The original integro-differential method is a very popular eye localization method in the 
literature and it is defined as follows: 

max(%,'(,)() +𝐺-(𝑟) ∗
0
0% ∮

2(',))
3-%

𝑑𝑠%,'(,)(
+  

where G-(r) is a Gaussian smoothing function with a scale of 𝜎.  I(x, y) represents for the eye 
image. ds is the contour of a circle with the centre point of (x=, y=) and radius r. The 
convolution operation is denoted as ∗. The operator locates the eye centre by making use of 
the drastic intensity along the boundary of iris and cornea. 

The following equation is the discrete implementation of the integro-differential operator: 

max(>∆@,'(,)() = + B
∆@
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∑ 𝐼[(𝑘∆𝑟 cos(𝑚∆𝜃) + 𝑥=), (𝑘∆𝑟 sin(𝑚∆𝜃) + 𝑦=)][ \+  

where ∆𝑟	and ∆𝜃 represent small increments in radius and angular. 

Instead	of	considering	the	small	increments	along	the	angular,	we	design	two	kinds	of	
masks	 to	 convolute	 the	 eye	 image.	 The	 proposed	method	 calculates	 a	 ratio	 derivative	
between	a	neighbour	curve	of	iris	and	cornea	which	is	formulated	as	follows:	
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where	𝐾%		 and	𝐾%qBr 	are	 two	 kind	 of	 designed	 masks.	 	𝐼%	and	 	𝐼%qBr 	are	 the	 convolution	
results	 of	 the	 different	 eye	 image	𝐼(𝑥, 𝑦).	 And	𝐷%	is	 the	 ratio	 derivative.	𝑟[{|	and	𝑟[}'	
represent	the	minimum	and	maximum	of	the	radius	𝑟.	The	computational	complexity	of	
the	 proposed	 eye	 localization	 method	 is	 greatly	 reduced	 by	 employing	 FFT	 in	 the	
realization	of	convolution	
	

3.3.2. Eye Model based Gaze estimation 
To estimation the gaze direction, firstly, the facial features should be located. We employ 

the method proposed by Xiong et al. [22] to locate the feature points in the human face. To 
deal with head movements, the head poses need to be determined. We employ the object pose 
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estimation method (POSIT) proposed by Dementhon et al. [23] is used to calculate the 
direction of head gaze function. Then the eye centre is located by applying the method. It 
should be noted that the gaze direction differs from the head gaze by two angles, the 
horizontal direction θ and the vertical direction φ. We proposed an effective and accurate 
gaze estimation method based on the eye model [19]. An illustration of the 3D eye model 
method is shown in Figure 12. 

  
                                                  a                                                                            b 

Figure 12: An illustration of the 3D eye model. (a) Top view of two eyes. (b) Space 

relationship between the optical axis and visual axis. 

The gaze of the left eye can be calculated by the follow equation: 

𝑃� = 𝑂� + 𝑐 ∙ 𝑉� + 𝜆 ∙ 𝑉�  

where 𝑂� denote the center of eyeball. 𝑐 is a constant. 𝑉�, 𝑉�	are the unit vector of optical axis 
and visual axis respectively. 𝜆 can be obtained by  

𝜆 = 	−
(𝑂� + 𝑐 ∙ 𝑉�)� ∙ 𝑉� + 𝑛

(𝑉�)� ∙ 𝑉�
 

where 𝑉�, 𝑛 are parameters determined during calibration. The eye parameters can be obtained 
by  

𝑃{ − 𝑅� ∙ (𝑂��)� − 𝑡�
𝑟�

= �
cos	(𝜑)sin	(𝜃)

sin	(𝜑)
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� 

𝑟� = ‖𝑃{ − 𝑅� ∙ (𝑂��) − 𝑡�‖3 

�
cos	(𝜑 + 𝛽)sin	(𝜃 + 𝛼)

sin	(𝜑 + 𝛽)
−cos	(𝜑 + 𝛽)cos	(𝜃 + 𝛼)

� =
𝑃� − 𝑂�
�𝑃�𝑃��3

 

where 𝑃{ denotes the 3D iris center. {𝑅�, 𝑡�} represent for the head pose.	𝑂�� is the eye ball 
center in head coordinate system.{	𝜑, 𝜃} is the optical axis angles and {	𝛽, 𝛼} is the gaze 
Kappa angle of each person. More detailed information can be found in [19]. 
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3.3.3. Multi-sensor Fusion  
We propose a real-time gaze estimation method by constructing a multi-sensor fusion 

system to handle the large head movement. Three cameras and two Kinects are used in this 
system. In the gaze estimation task, the cameras are used to capture the face of the child. The 
frontal Kinect is used to capture the head position in a world coordinate system. All the image 
data are captured simultaneously by creating 8 handles in programming. Each handle deals 
with difference data. The data captured in each handle includes two Kinect RGB image data, 
two Kinect depth data, three camera data and one Kinect audio data. The resolutions of the 
camera, Kinect RGB image, Kinect depth image are 1280*960, 640*480 and 640*480 
separately.     

In practice, a multi-sensor selection strategy [20] is used to keep the synchronization of 
each sensor while at the same time keep the system running in real time. To deal with the 
synchronization problem, a multi-thread programing is constructed, in which each sensor 
owns a separate thread and a new thread is used to control the start and end of the other 
threads. To acquire real time performance, the multi-sensor selection strategy is divided into 
two stages, namely the detection stage and tracking stage. In the detection stage, the face, face 
features, head pose, and object detection are performed. Then the camera that captures the 
most frontal face is selected for the gaze estimation, face recognition and facial expression 
analysis. In the tracking stage, the tracking algorithm is less time consuming than the 
detection algorithm since it uses the data of the selected camera and two Kinects.  

In the detection stage, the first step is to calibrate the different sensors. Then the data is 
synchronously captured by the multi-thread programming strategy. In the strategy, each 
sensor belongs to one separate thread and another thread is used to control the start of the five 
sensors. The face detection algorithm is then applied on the image data captured by the three 
cameras. Only the camera that captures nearly frontal face is chosen for further processing. 
The face features extraction and head pose detection algorithms are then applied on the 
chosen images. Then the camera that captures the best frontal face is selected according to the 
output of the detection algorithm. The data captured by the frontal Kinect is for child head 
detection. The data captured by the top Kinect is for the desk objects and robot head 
detection. Once the camera has been selected, further tasks such as gaze estimation, visual 
focus of attention estimation can be performed. The procedures of the two stages are shown in 
Figure 13 and Figure 14, respectively. 
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Figure 13: The detection stage. 
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Figure 14: The tracking stage. 

 

3.3.4. Experimental Results 
The experiment results of eye center localization and gaze estimation are described in the 

following section. 
 

3.3.4.1 Eye Center Localization Results 
The proposed eye center localization method is evaluated on the public available BioID 

database [24]. Firstly, the face is detected using the boosted face detector. Then we conduct 
the eye center localization within the eye’s anthropometric area of the faces. The error 
measure equation is as follows: 

e = 	
max	(𝑑�, 𝑑%)

𝑑 	

where 𝑑 means the distance between two eyes and e represents the error. The smaller error 
means higher accuracy. Figure 15 shows some example images of the eye center localization 
results. The detail accuracy of the proposed method is shown in Figure 16. We also compare 
our method with state of the art methods in Table 1. More detail of the theory and 
performance of the proposed method can be found in [18]. 
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Figure 15: Example of eye centre localization result in BioID database 

 

 
Figure 16: The accuracy of the proposed method on the BioID database. The 

three lines correspond to the minimum, average and maximum normalized 

error from the top to the bottom respectively. 



 D4.3 Evaluation of multi-modal data fusion and interpretation 

 
 

Date:  31/03/2018 
Version: No. 4.0 

 Page 28 of 54 

 

Table 1: Comparison of the state-of-the-art approaches 

 e < 0.05 e < 0.10 e < 0.25 

Jesorsky et al. [24] 40.0% 79.0% 91.8% 

Timm et al. [25] 82.5% 93.4% 98.0% 

Valenti et al. [26] 86.1% 91.7% 97.9% 

Markuˇs et al. [27] 89.9% 97.1% 99.7% 

IDO [21] 80.3% 88.5% 99.1% 

Our 86.8% 96.6% 99.9% 

 

3.3.4.2 Gaze Estimation Results 
We firstly test the proposed gaze estimation method on eleven adults. The dataset is 

collected by asking the subjects to sit in front of the developed platform and gaze at different 
locations on a screen as mentioned in [19]. Figure 17 shows the estimated eye parameters of 
the eleven subjects. 

 

 
Figure 17: Estimated eye parameters of eleven subjects 

 
Figure 18 shows the average accuracy (angular degree) and tolerance of head movements 

of gazing nine ground truth points of each subject at a same position (Dss=1000mm). The 
head movement tolerance involved in the table denotes the maximum rotation angles for roll, 
pitch, and yaw, respectively. The results show that our method can achieve a good gaze 
estimation performance with an average accuracy is 1.99◦ under an average head pose with 
roll 11.63◦, pitch 13.44◦ and yaw 9.43◦. 
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Figure 18: Average estimated gaze accuracy and tolerance of head movements 

 
To demonstrate the sensitiveness of the gaze accuracy against the distance Dss, we devise 

an experiment that a subject gazes at a ground truth point with eight different Dss. At each 
distance, the subject is also asked to rotate his/her head step-by-step in roll, pitch, and yaw, 
respectively, untill he/she cannot see the point. The average accuracy of estimated gazes is 
determined as the estimation accuracy for each distance. Fig. 7 demonstrates the relationship 
between the gaze estimation accuracy and the distance Dss. From the results, we can conclude 
that the best gaze distance is approximately 925mm-1135mm. Less than 925mm or larger 
than 1135mm will degrade the accuracy. Normally, the smaller the Dss is, it is easier to obtain 
the accurate 3D iris center and thus more possible to obtain a higher estimation accuracy. 
However, when Dss is too small to exceed the limit measure range of the Kinect, the accuracy 
will be greatly reduced (shown as Dss =630mm in Figure 19) since the 3D information 
captured by the Kinect under this distance is unreliable. 
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Figure 19: Gaze estimation accuracy with different Dss. 

 
To show the merit of averaging gazes of both eyes as a final gaze, we experimentally 

compare the accuracy of left eye gaze estimation, right eye gaze estimation, and final eye gaze 
estimation for each subject. As shown in Figure 20, the comparison result validates that the 
averaging gaze is reliable and acceptable. 

 

 
Figure 20:  Estimation accuracy of left eye gaze, right eye gaze, and final gaze. 

 
In the practical scenario of interaction with children with ASD, the multi-sensory fusion 

strategy [20] is used together with the proposed gaze estimation method.  Figure 21 shows 
some snapshots of the gaze estimation result when the head movement is small. Figure 22 
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shows some snapshots of the gaze estimation result when there are large head movements. It 
can be seen from the figures that the proposed method can even deal with the situation when 
the head is turned away. 

 

  
Figure 21: Results of optimal camera multi-camera selection strategy with small head movements 

   
Figure 22: Results of optimal camera multi-camera selection strategy with large head movements 

 

3.4. Face Identification and Facial Expression Recognition 
Face & facial expression recognition are the relevant components as mentioned in task 4.4. 

The corresponding functions are identifyFace(x, y, z, face_id) and identifyFaceExpression(x, 
y, z, expression_id). Task 4.4 provides some advice that the facial appearance cues should be 
captured and Support Vector Machine (SVM) is considered as classifier. So, we first propose 
a face frontalization method to register frontal facial appearances. Then we use Local Binary 
Patterns (LBP) to represent facial appearance cues and apply SVM for identity & facial 
expression classification.  
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3.4.1 Face Frontalization 
Face frontalization is a newly rising technique for view-invariant face analysis. It aims to 

recover frontal facial appearances from unconstraint non-frontal facial images. A few 
pioneering works have been proposed very recently [28] [29] [30]. Generic (person-
independent) face frontalization must rely on a common template of facial shape, which often 
failed to recover detailed facial expressions. So, we propose a facial expression-aware face 
frontalization [31]. 

In this approach, five different templates are manually designed to fit in with more facial 
expressions, as is shown in Figure 23. Figure 23 (a) means eyes wide open which is often 
related to surprise and fear. Figure 23 (b) indicates lowering the eyebrow, which often appears 
in sad, angry and disgust. Figure 23 (c) suggests lips apart that is relevant to smile and fear. 
Figure 23 (d) means mouth wide open that often exists in surprise. Figure 23 (e) is neutral 
face shape. As is shown in the figure, these five templates are very different from each other 
and can be immediately distinguished only by shapes. It has shown that the proposed five 
templates contain the most discriminative information. Given a query image, we shall 
reconstruct frontal facial appearances whose shape will be one of the five templates. 

 
Figure 23: Five templates of face shape 

 
For each query image and the detected facial landmarks (using supervised decent method), 

the most approximate template will be assigned to it according to the similarity calculated by 
geometric distance. The similarity measure is given as: 

𝜒�3 (𝑆, 𝑇) =¢𝜔¤
F𝑆¤ − 𝑇{,¤J

3

𝑆¤ + 𝑇{,¤{,¤
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    To reconstruct frontal facial appearances, Active Appearance Model instantiation can be 
used by minimizing: 

¢�𝐹 − 𝐼F𝑊(x; 𝑝 + ∆𝑝)J�
3

x

,				𝑠. 𝑡.		𝐹 =¢𝜆{𝐴{(x)
[

{ªB

 

where 𝐹 is the required frontal face which is obtained by a linearly combine of a set of pre-
defined eigen faces 𝐴{(x), parameterized by 𝜆. The input image will be warped to the selected 
template through piece-wise affine warp 𝐼F𝑊(x; 𝑝 + ∆𝑝)J = 𝐼F𝑊(x; 𝑝)J + ∇𝐼 0¬

0
∆𝑝 where 

𝐼F𝑊(x; 𝑝)J is the warped image, ∇𝐼 0¬
0

 is the Jacobian matrix evaluated by 𝑝. The whole 
process is shown in Figure 24. The algorithm works iteratively with update rule 𝑝 ← 𝑝 + ∆𝑝. 

 

 
Figure 24: Reconstruct frontal facial appearances 

 
The visual results of face frontalization are shown in Figure 25. 

  
Figure 25: Face frontalization on SFEW 
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3.4.2 Local Binary Pattern 
Local Binary Pattern (LBP) is a nonparametric method and has been proved to be powerful 

descriptor in representing local textural structure [32]. The main advantages of LBP are its 
strong tolerance against illumination variations and computational simplicity. This method 
has been successfully used in both spatial and spatio-temporal domains in face recognition 
and facial expression recognition. 

The original LBP operator labels the pixels of an image with decimal numbers. Each pixel 
is compared with its eight neighbors in a 3´3 neighborhood, considering the center pixel 
value as threshold; bigger values are encoded with 1 and the others with 0. A binary number 
is obtained by concatenating all these values. Its corresponding decimal number is used to 
compute LBP histogram. Figure 26 shows an example of LBP operator. 

 
Figure 26: Example of LBP operator 

 
To emphasize spatial relations of a face image, the holistic LBP histogram is extended to a 

spatially enhanced histogram by using block-based LBP strategy. The detected face image is 
divided into 7-by-9 blocks and the LBP feature is extracted in each block. All the LBP 
histograms are concatenated into a single histogram. The resulting spatially enhanced LBP 
descriptor will be the input of SVM. 

 

3.4.3 Support Vector Machine 
SVM is considered as one of the most powerful machine learning techniques for data 

classification. It achieves a good balance between structural complexity and generalization 
error. It offers great performance under the circumstance of very few training samples, high 
dimensionality and nonlinear classification. 

In a two-class learning task, SVM find a maximal margin hyperplane as its decision 
boundary. For a linear separable dataset, SVM assumes that the best classification results are 
obtained by maximizing the margin of hyperplane between two classes. It does not only allow 
the best partition on the training data, but also leave much room for the correct classification 
of the future data. In order to guarantee the maximum margin hyperplanes to be actually 
found, an SVM classifier attempts to maximize the following function with respect to 𝑤¶¶⃗  and b 

𝐿¹ =
1
2
‖𝑤¶¶⃗ ‖ −¢𝛼{𝑦{(𝑤¶¶⃗ ∙ 𝑥»¶¶¶⃗ + 𝑏)

�

{ªB

+¢𝛼{
�

{ªB
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where 𝑡 is the number of training examples, 𝛼{ are the Lagrange multipliers. The vector 𝑤¶¶⃗  and 
constant 𝑏 define the hyperplane. 

 

3.4.4 Experiment 

3.4.4.1 Data Collection 
The face database is created by manually extracting a number of frames from videos, which 

includes 204 images of 6 children (31 Africa, 37 Dragos, 39 Leo, 22 Otilia, 37 Sebi and 38 
Vladi). Basically, the face images are laid in frontal or near-frontal view. There is no large-
scale occlusion or head pose in all the images, whilst illuminations vary. Considered face 
recognition is an easy task, face frontalization will not be performed for this task.  

For the facial expression database, two databases are used. The first one is Children 
Emotional database, which combines the raw data manually extracted from videos and the 
public database NIMH Child Emotional Faces Picture Set (NIMH-ChEFS). The resulted 
database includes 437 images of 5 emotional categories (35 Angry, 51 Fear, 436 Happy, 1020 
Neutral and 55 Sad). The second one is another public database Static Facial Expression in 
the Wild (SFEW) [33] which includes 7 emotional categories: Angry (An), Disgust (Di), Fear 
(Fe), Happy (Ha), Neutral (Ne), Sad (Sa) and Surprise (Su). It will be used to compare our 
method with the state-of-the-art approaches. 

 

3.4.4.2 Experimental Results 
Figure 27 illuminates the results of our system. The red box is face region detected by the 

OpenCV face detector. All six children and 5 emotional states are displayed by the yellow 
text. It can be intuitively seen that this method has tolerance to small head poses and 
occlusions (such as wearing glasses). 

 

 
Figure 27: Face and expression recognition results 
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We evaluate our system using 10-fold cross-validation. For face recognition, the 
preliminary research is based on the identity classification of six children and experimental 
results show that this method successfully identifies them and the recognition rate is 97%. 
Considering that the face database is in a small scale, the accuracy may reduce when applying 
this system to a real-world face recognition application. 

For facial expression recognition on children database, the performance is shown in Table 
2. The overall recognition rate is 0.6371. It is very difficult to achieve a clear partition of 
emotions. The child tends to perform a combination of emotions (most frequently a 
combination of fear and angry). It therefore is difficult to distinguish the negative face 
expressions of children. We also evaluate our method on SFEW and make a comparison with 
the state-of-the-art approaches, as shown in Table 3. The results show that our method 
achieves considerable improvements. 

 
Table 2. Recognition results on the children’s emotional database 

 

 

 

 

 

 

 

 

Table 3. Comparison of the state-of-the-art approaches 

 An Di Fe Ha Ne Sad Su Total 

[33] 23.00 13.00 13.90 29.00 23.00 17.00 13.50 18.90 

[34] 25.89 28.24 17.17 42.98 14.00 33.33 10.99 24.70 

[35] 24.11 14.12 20.20 50.00 23.00 23.23 21.98 26.16 

Our 23.21 18.82 23.23 50.88 40.00 26.26 29.67 30.86 

 
3.5. Motion Recognition 

To recognise actions of the human body, both the skeleton information and colour 
information acquired by Kinect are used to perform a good recognition result. The main idea 
is to represent the movement of human body using the pairwise relative positions of the joint 
feature and features based on colour information. A colour image is employed to accurately 
and quickly infer 3D positions of the body joints. When the skeleton information is missing, 
colour features are used to assist the motion recognition.  

 

 Ne An Fe Ha Sa 

Neutral 0.5778 0.1765 0.0415 0.1107 0.0934 

Angry 0.2035 0.5196 0.0536 0.1161 0.1071 

Fear 0.1509 0.0943 0.4906 0.1509 0.1132 

Happy 0.0491 0.0552 0.0773 0.7796 0.0387 

Sad 0.0636 0.0909 0.1515 0.1060 0.5879 
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3.5.1 Motion Feature Extraction 
We firstly detect the key interest point from images using Fast feature detection method and 

describe the information with the BRIEF [36] method, and then an algorithm is used to match 
features. 

The fast feature [37] detection method is used to detect the key interest feature from the 
images, as it is very suitable for real-time video processing applications because of its high-
speed performance. The process operates in two stages: First, with a segment test of a given n 
and a convenient threshold, corner detection is performed on a set of images. Then it is 
classified as darker, similar, or brighter for 16 locations in each pixel on the circle. Second, on 
the 16 locations, the maximum information gain is selected with an Iterative Dichotomiser 
(ID3) algorithm [38], which is shown in Figure 28. Then we apply the non-maximum 
suppression on the sum of the absolute difference between the pixels in the contiguous arc and 
the centre pixel.  

 
Figure 28. ID3 algorithm framework 

 
Then the BRIEF (Binary robust independent elementary features), a kind of feature 

descriptor is introduced to describe the features detected with Fast method. For building a 
binary descriptor, the key step is to compare the intensity between two pixel positions, which 
are located from the detected interest points. This allows us to represent the features with a 
very low computational cost.  

The task of establishing correspondences between two images of the same object is the 
feature matching technique. As most algorithms are not suitable for binary features, because 
the Hamming distance is adopted when comparing the binary features. So we replace the 
linear search with an approximate matching method, which returns the approximate 
neighbours for some of the nearest neighbours.  
    A deformable mixture-of-parts model is used to represent the body parts for a single image 
because of the computational efficiency and considerable property. We model the upper body 
part as a set of major joints. Theses joints contribute significantly to the performance of the 
upper body motions. For some specific camera angles, self-occlusion could happen. To handle 
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this issue, a cluster method is used to classify each body part with annotated ground truth T½ 
for one of the n training images. The problem is formulated as a maximum-likelihood 
problem through calculating the highest probability: 

 

Θ
^
= 𝑎𝑟𝑔𝑚𝑎𝑥

À
Á𝑚𝑎𝑥

¤ªB

N
𝑃(𝑇{|Θ¤)

Ã

{ªB

 

The k indicates the total pose clusters, 	P(T½|ΘÅ) is the posterior probability of a particular 
pose for an image I, which is defined as: 

 

P(p|I) ∝ f(I|p)f(p) =Áf(r½|l½)
½

Á (l½|lÅ)
(ÇÈ,ÇÉ∈Ë)

 

l½  denotes the 2D position and orientation, which is one element of the set p =
{lB, l3, . . . l>},r½ is the corresponding image region, the prior term defines the prior probability 
of a configuration. This has two main advantages: on one side, it can help to overcome the 
ambiguous image data, on the other side, it limits the model from the plausible human 
configurations when the kinematic limits of the body is learned.  

In addition, a linear SVM classifier is used for each body parts, the classifier is 
bootstrapped with some negative samples of other body regions and non-body regions for 
training. The responses can be computed for each body part is: 

p(r½|l½, Θ½) ∝ max
ÅªB…>

wÅΦ(r½) 

In which wÅ is the weight vector for component j, Φ(r½) is the feature vector from the 
image region r½. The maximum value allows us to determine the appearances mode with the 
highest confidence. 

With the skeleton information obtained from the colour image, we use a skeletal 
representation method to represent the body part. The method mainly considered a whole 
body parts, we slightly change the method for represent only the upper body. When a pair of 
body parts is given, their relative geometry is described as eÎ and e>, which denote the eight 
joints and oriented rigid body parts respectively, the starting point (eÎB> (t)) and end point 
(eÎ3> (t)) of each part can be represented in a local coordinate system at time instance t.  

ÏeÎB
> (t) eÎ3> (t)
1 1

Ð = ÑRÎ,>(t) d
→
Î,>(t)

0 1
Õ �
0
0
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0

0
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0
1

� 
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where 	RÎ,>(t) and R>,Î(t) are the rotations, d
→
Î,>(t) and d

→
>,Î(t) are the translations, these 

are measured in the local coordinate system. 
As our aim is to recognise both static motions and dynamic motions, we introduce a scheme 

which can estimate both motions, for the single image, a pose set regards to a tree-graph 
which including the 2D coordinates for representing the body parts is defined as: 

PÖ = p½ = Fx½, y½J 
 
Then we formulate the estimation issue as a minimization problem with the cost 𝐶(𝐼, 𝑃�): 

C(I, PÖ): = Σ½ϕ½(I, p½) + Σ½,Ûφ½,Û(p½ − pÛ) 
 
When the skeleton information is captured, this project extracts 3D Moving Trend and 

Geometry property from skeleton joints (totally 10 joints from the up-body) to recognize ASD 
children's behaviour. Skeleton information is appealing for human action recognition in that it 
is invariant to illumination conditions and body appearance.  The moving trend is firstly 
computed by accumulating over time all the moving directions in 3D space. Then the 
geometry property of joints in each frame is modelled by the relative motion information. 
Finally, the feature descriptor is constructed by integrating the two features together for action 
recognition. 

3.5.1.1 3D Moving Trend Feature 
Figure 29 shows an illustration of 3D moving trend feature modelling. 3D moving 

directions are partitioned into 𝑚	main bins as shown in Figure 29(b) (we take 𝑚 = 26	in this 
project), and then a histogram including 𝑚	bins is built to describe the moving trend feature of 
joints in spatial domain (as shown in Figure 29(c)). 

Let 𝑽 = [𝐯𝟏, 𝐯𝟐, . . . , 𝐯𝐦]	be the matrix of 𝑚 main directions in 3D space. They are given by: 
 
𝐯𝟏 = (0,0,1)�, 𝐯𝟐 = (0,0,−1)�, 𝐯𝟑 = (0,1,0)�, 𝐯𝟒 = (0,−1,0)�, 𝐯𝟓 = (1,0,0)�, 
𝐯𝟏𝟎 = (−1, −1,1)�, 𝐯𝟏𝟏 = (1,−1,1)�, 𝐯𝟏𝟐 = (−1,1, −1)�, 𝐯𝟏𝟑 = (1,−1, −1)�,                 
𝐯𝟏𝟒 = (−1,1,1)�, 𝐯𝟏𝟓 = (1,1,0)�, 𝐯𝟏𝟔 = (−1,−1,0)�, 𝐯𝟏𝟕 = (1,−1,0)�, 
𝐯𝟏𝟖 = (−1,1,0)�, 𝐯𝟏𝟗 = (−1,0, −1)�, 𝐯𝟐𝟎 = (1,0,1)�, 𝐯𝟐𝟏 = (1,0,−1)�, 
𝐯𝟐𝟐 = (−1,0,1)�, 𝐯𝟐𝟑 = (0,1,1)�, 𝐯𝟐𝟒 = (0,−1, −1)�, 𝐯𝟐𝟓 = (0,1,−1)�, 𝐯𝟐𝟔 = (0,−1,1)�   
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Figure 29: An illustration of 3D moving trend feature modelling. (a) 3D moving directions (red lines 

are moving trend of example joints and red vectors are moving directions between consecutive frames).  
(b) 26 directions in 3D space. (c) Histograms of mov 

For 𝑖 − 𝑡ℎ	joint, given a point set: 
𝑷𝒊 = {𝒑𝟏𝒊 , . . . , 𝒑𝒕𝒊 , . . . , 𝒑𝑭𝒊 }     

where F is the length of the action sequence, and t represents the time. We get the 3D 
direction vector 𝐯𝐭𝐢	of 𝑖 − 𝑡ℎ		joint between 𝑝�{	and 	𝑝�òB{  ： 

𝐯𝐭𝐢 = D𝑥óô − 𝑥óõvô , 𝑦óô − 𝑦óõvô , 𝑧óô − 𝑧óõvô \	 

and then calculate the  𝑐𝑜𝑠⟨𝐯𝐭𝐢, 𝐯𝐣⟩  of angle 𝜃{(𝑡)	between 𝐯𝐭𝐢	and m vectors: 

𝑐𝑜𝑠𝜃¤{(𝑡) =
𝐯𝐣 ⋅ 𝐯𝐭𝐢

∥ 𝐯𝐭𝐢 ∥∥ 𝐯𝐣 ∥
, 𝑗 ∈ [1,𝑚] 

where 𝐯𝐣 ∈ 𝐕. We use the cosine similarity 𝑐𝑜𝑠𝜃¤{(𝑡)	to describe the similarity between 𝐯𝐭𝐢	and 
𝐯𝐣.	 Soft voting strategy is used during moving direction quantization. Specifically, we choose 
two bins that have the most similar moving directions with the current motion of 𝑖 − 𝑡ℎ	joint. 

ÿ
𝑐𝑜𝑠	 𝜃!{%��{ (𝑡) = max	{𝑐𝑜𝑠𝜃¤{(𝑡)}, 𝑗 ∈ (1,𝑚)
𝑐𝑜𝑠	 𝜃����|"{ (𝑡) = max	{𝑐𝑜𝑠𝜃¤{(𝑡)}, 𝑗 ≠ 𝑓𝑖𝑟𝑠𝑡

		 

The product of displacement 𝑐𝑜𝑠𝜃!{%��{ (𝑡)	 and the product of displacement and 
𝑐𝑜𝑠𝜃����|"{ (𝑡)	are finally added to the corresponding bins: 

ÿ
𝑏𝑖𝑛!{%�� = 𝑏𝑖𝑛!{%�� + 𝐷𝑖𝑠{(𝑡) × 𝑐𝑜𝑠𝜃!{%��{ (𝑡)

𝑏𝑖𝑛����|" = 𝑏𝑖𝑛����|" +𝐷𝑖𝑠{(𝑡) × 𝑐𝑜𝑠𝜃����|"{ (𝑡)
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where 𝑏𝑖𝑛!{%��	and 𝑏𝑖𝑛����|"	are the corresponding bins in the histogram of 3D moving 
directions, 𝐷𝑖𝑠{(𝑡) =∥ 𝐯𝐭𝐢 ∥, is the displacement. 

 

3.5.1.2 Geometry Property 
To remove the coordinate difference caused by various distances between children and the 

depth sensor, we translate the world coordinate from the depth sensor to the local coordinate 
centred at the spine point of the body in each frame. The transformed coordinates of skeleton 
joints are calculated as follows. 

𝑝�%{ = 𝑝�{ − 𝑝�
�{|�, 𝑖 = 1,2, . . . ,𝑁 

Although the world coordinate of each frame may differ under current strategy, the 
advantage is obvious as spine point is relatively stable in majority of actions. In order to 
eliminate the influence of different initial poses for the rest joints, the displacement between 
the relative joints in current frame and the joints in the initial frame is utilized to reflect the 
geometry property in current frame. 

'
△ 𝑥�{ = 𝑥�%{ − 𝑥B%{,
△ 𝑦�{ = 𝑦�%{ − 𝑦B%{,
△ 𝑧�{ = 𝑧�%{ − 𝑧B%{,

		 

where (𝑥B%{, 𝑦B%{, 𝑧B%{) and F𝑥�%{, 𝑦�%{, 𝑧�%{J	are three transformed coordinates of the initial status 
and current status, respectively. The relative displacement of the 𝑖 − 𝑡ℎ	joint in frame t is △
𝑑�{ : (△ 𝑥�{,△ 𝑦�{,△ 𝑧�{), and the geometry property of current frame is: 

𝑔(𝑡) = {△ 𝑑�B, . . . ,△ 𝑑�Ã} 
We use 𝐺(𝑘) = {𝑔(1), . . . , 𝑔(𝐹)} to denote the feature of action k. 
To address the variable-length problem, we use the cubic spline interpolation [39] to resize 

the feature before integrating them into the feature descriptor.  
Furthermore, a feature normalization method is performed on the extracted geometry 

property feature to achieve geometry feature scale-invariant to the different body sizes. 

𝐺|(𝑘) =
𝐺(𝑘)

∥ 𝐺(𝑘) ∥		 

 

3.5.1.2 3DMTG Feature Descriptor 
The combination of the 3D moving trend feature and geometry property feature, which we 

refer to as 3DMTG feature descriptor, is used to represent the motion information in action 
sequences. The general framework of the proposed 3DMTG feature descriptor is shown in 
Figure 30. 
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Figure 30: An overview of the proposed 3DMTG feature descriptor. 

 
The upper part of Figure 30 is the 3D moving trend feature where a histogram of 26 bins 

corresponding to 3D moving directions is adopted to store the moving trend of each joint 
through the whole action video. The lower part of Figure 30 is the geometry property feature, 
which is acquired from the N frames of the action sequence. In the geometry property feature, 
the world coordinate is firstly translated into spine and then the relative displacement of each 
joint is computed. Both 3D moving trend and geometry property features are normalized.  

The final 3DMTG feature descriptor for the motion is a concatenation of 3D moving trend 
and the geometry property. The 3D moving trend feature reflects spatial motion direction of 
each joint in an action sequence, while the geometry property feature indicates the temporal 
movement of each joint. The proposed method builds feature for joints of different body parts, 
so it can differentiate partial similar actions. Then these features are packaged as the input 
which can be classified with a linear SVM [32] classification algorithm. 
 

3.5.2 Experimental Results 
The recognition performance of the proposed 3DMTG feature descriptor has been 

evaluated on the publically available dataset: MSR-Action3D [40]. It has 20 action types by 
10 subjects, and each subject performs each action for two or three times. The actions are high 
arm wave, horizontal arm wave, hammer, hand catch, forward punch, high throw, draw x, 
draw tick, draw circle, hand clap, two hand wave, side boxing, bend, forward kick, side kick, 
jogging, tennis swing, tennis serve, golf swing, and pickup throw. The data is divided into 
three action sets AS1, AS2 and AS3. We compare the recognition performance of our 
3DMTG feature descriptor to the state-of-the-art feature descriptors in Table 4. Our method 
achieved 94.4%, which is higher than other listed methods. 
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Table 4. Comparison of action recognition accuracy with state-of-the-art. 

Method AS1 AS2 AS3 Average(%) 

Bag of 3D Points [40] 72.9 71.9 79.2 74.7 

DMM-HOG [41] 96.2 84.1 94.6 91.6 

SNV [42] - - - 93.1 

STOP [43] 91.7 72.2 98.6 87.5 

ROP [44] - - - 86.5 

DSTIP [45] - - - 89.3 

HOJ3D [46] 72.9 85.5 63.5 79.0 

EigenJoints [47] 74.5 76.1 96.4 82.3 

Actionlets Ensemble [48] - - - 88.2 

HOD[ [49] 92.4 90.2 91.4 91.3 

Vemulapalli et al. [50] 95.3 83.8 98.2 92.5 

HON4D [51] - - - 88.9 

pose set [52] - - - 90.2 

Moving Pose [53] - - - 91.3 

3DMTG 92.4 93.8 97.1 94.4 

 
Figure 31shows the confusion matrices of our 3DMTG method for AS1, AS2 and AS3 on 

Cross Subject Test. Most actions can be 100% recognized by the proposed descriptor, 
especially for AS3 that all actions except Tennis Swing are correctly recognized. Because 
actions in AS1 and AS2 have big intra- class variations, some actions are confused with 
others, such as Hammer and High Throw, Tennis Serve and Forward Punch. As a result, the 
recognition accuracies of these actions are lower than those actions with small or none intra-
class variations. 

 

 
Figure 31: Confusion Matrixes of the proposed 3DMTG feature descriptor: AS1,AS2 and AS3. 
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In addition, some motion recognition results are shown in Figure 32. Figure 33 shows the 
motion recognition result with normal adults, we use different numbers to indicate different 
motions. For example, the number 1 means the “waving hand”, the number 7 and 9 represent 
the complex motions.  
 

 

 
Figure 32. Motion recognition result 

 

 

 
Figure 33. Motion recognition results using adults 
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3.6. Objects Tracking and Recognition 
3.6.1 Object Tracking  

Although numerous researchers focus on tracking technology and lots tracking methods 
have been proposed, there remain a series of challenges such as object variety, illumination 
and occlusion. To effectively detect and track objects in real time, a blob based Otsu object 
detection method is firstly employed to detect the objects. Then the GM-PHD tracker is 
developed to track the objects over time due to its good performance in multi-object tracking. 
In the object detection stage, we have used the Otsu algorithm for adaptively image 
binarization and employed the blob algorithm to detect the regions of the objects. The center 
of each blob is regarded as the position of each object. 
    An efficient GM-PHD tracker is utilized for object tracking to correctly associate the 
objects in consecutive frames. In the object tracking stage, we have utilized an entropy 
distribution based method to estimate the birth intensity of the new objects. Moreover, we 
have handled the partial occlusion caused by hand grasping based on a game theoretical 
method. By doing so, objects in consecutive frames can be successfully and accurately 
tracked with correct identities.  
    Generally, the GM-PHD filter can be implemented in the prediction and update steps. 
    Step 1: Prediction. Suppose that PHD D)òB(X)òB)at time t-1  has the form D)òB(X)òB) =
∑ ω)òB

(½),-õv
½ªB 	N(x)òB;m)òB

(½) , P)òB
(½) ), then the predicted PHD D)|)òB(X)) is given by: 

D)|)òB(X)) = γ)(x)) + pÖ0¢ω)òB
(½)

,-õv

½ªB

	N(x)òB;mÖ0,)|)òB
(½) , PÖ0,)|)òB

(½) ) 

where mÖ0,)|)òB
(½) = F)òBm)òB

(½)  and PÖ0,)|)òB
(½) = Q)òB + F)òBP)òB

(½) F)òB2 . γ)(x)) and pÖ0 denote the 
probabilities of newborn targets and survival targets, respectively. N(∙; m, P) denotes a 
Gaussian component with the mean m and covariance P. F)òB is the motion transition matrix. 
    Step 2: Update. The predicted PHD can be expressed as a Gaussian mixture D)|)òB(X)) =
∑ ω)|)òB

(½),-|-õv
½ªB 	N(x);m)|)òB

(½) , P)|)òB
(½) ), then the posterior PHD D)(X)) at time t is given by: 

D)(X)) = (1 − p3)D)|)òB(X)) +¢ D4,)(x); z))
5-∈6-

 

D4,)(x); z)) = ¢ ω4,)
(½)(z))

,-|-õv

½ªB

	N(x);m4,)
(½)(z)), P4,)

(½)(z))) 

ω4,)
(½)(z)) =

p3ω)|)òB
(½) N(x);m7,)

(½) , P7,)
(½))

λ)c)(z)) + p3 ∑ ω)|)òB
(½),-|-õv

½ªB 	N(z);m7,)
(½) , P7,)

(½))
 

where m4,)
(½)(z)) = 	m)|)òB

(½) + K(z) − H)m)|)òB
(½) ), K =	P)|)òB

(½) H)2(H)P)|)òB
(½) H)2 + R))òB, P4,)

(½)(z)) =
(I − KH))P)|)òB

(½) , m7,)
(½) = H)m)|)òB

(½) , P7,)
(½) = H)P)|)òB

(½) H)2 + R). p3 is the detection probability. λ) 
and c)(z)) are the average rate and probability density of the spatial distribution of Poisson 
distributed clutters, respectively. H) and R) are the measurement matrix and the covariance 
matrix of the measurement noise, respectively. 
    To predict the newborn targets, we need to find the peak (the mean of Gaussian) of 
intensity γ)(x)),i.e., the position where the targets are most probable to appear. To 
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automatically and accurately estimate the birth intensity, we employ the pruning and merging 
algorithms to prune the irrelevant components and to merge the same intensity components 
into one component. The peaks of the intensity are the points of the highest local 
concentration of the expected number N) of targets. Finally, we can estimate the target states 
with N) ordered mean with the largest weights. 
    In terms the tracing problems of this project, a weight penalization is added to the targets 
that move closely, which help improve the tracking accuracy. First, a weight matrix that 
consists of all updated weights is constructed. Then, an ambiguous weight is defined, and the 
corresponding methods for searching ambiguous weights are proposed. Finally, multiple 
features are fused and incorporated into the tracker to penalize the ambiguous weights. 
    In the constructed weight matrix, the i-th row represents the weights of the i-th predicted 
target updated by all measurements, while the j-th column represents the weights of all 
predicted targets updated by the j-th measurement. WÅ

½ = ∑ ω)
(½,Å);<,-

ÅªB   is the total weight of the 

i-th row, while WÅ
½ = ∑ ω)

(½,Å),-|-õv
ÅªB  is the total weight of the j-th column. NÎ,) and J)|)òB are the 

numbers of measurements and predicted target states, respectively.  Among them : 

ω)
(½,Å) =

p3ω)|)òB
(½) N(z)

Å;m7,)
(½) , P7,)

(½))

λ)c)Fz)
ÅJ + p3∑ ω)|)òB

(½),-|-õv
½ªB 	N(z)

Å;m7,)
(½) , P7,)

(½))
 

    After the ambiguous weights between the measurement j and the target i have been 
determined, multiple features that include the spatial-colour appearance, histogram of oriented 
gradient and target area are fused to penalize these ambiguous weights. The fusion method 
between the measurement j and the target i can be described as following: 

P>(i, j) = (pÖ(i, j) + p7(i, j) + p@(i, j))/3 
where pÖ(i, j) is the similarity between the measurement j and the target i in respect to the 
Spatial-colour appearance;  p7(i, j) the Histogram of oriented gradient likelihood between the 
measurement j and the target i;  p@(i, j) the degree of change between the areas of the target i 
and measurement j. 
    Obviously, the larger the P>(i, j) is, the more possibility there is that the measurement j is 
generated from the target i. In fact, if a measurement j is truly generated from a target i, the 
P>(i, j) should approximately be one. 
    The ambiguous weight ω)

(½,Å) can be penalized according to the multi-feature fusion. 
ω)
(½,Å) = ω)

(½,Å) ∙ P>(i, j) 
    After all of the ambiguous weights have been penalized, all of the weights in the j-th 
column in the weight matrix should be further normalized by: 

ω)
(½,Å) = ω)

(½,Å)/W½
Å 

where i = 1,...,J)|)òB. 
 

3.6.2 Object Recognition 
In this section, we mainly focus on the technical details on how to recognize the tracked 

object. To overcome the challenges of object shape variation、illumination changes, and 
occlusion. We propose a robust object classification framework based on Histogram of 
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Oriented Gradient (HoG) and multiple class Support Vector Machine (SVM). The pipeline is 
summary as follows. 

 

 
Figure 34. Object recognition pipeline 

 
HoG image descriptor treats the gradient direction information as a representation of the 

local image area. The extraction process can be divided into four steps: 
Step1: To reduce the influence of light factors, we first need to normalize (normalize) the 

whole image, which can effectively reduce the local shadow and illumination changes. 
  

where gamma is the correction coefficient and is set to 0.5. 
Step2: Compute the gradient of the image  in  and  directions. 

  

  

Step3: calculate the gradient amplitude  and angle . 

  

  

The following image shows an example of the extracted HoG feature for an object: 
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                         (a)                                                             (b) 
Figure 35 The raw image and corresponding Hog descriptor visualization. (a) Raw image data. (b) Hog 

feature 

 
After the feature of the tracked image is achieved, the next step is to train a multiple class 

SVM to recognize its image category. The training dataset is formulated as 
, where is the HoG descriptor of the n-th sample, and 

is the corresponding label. The goal of training is to maximum the margin of different classes 
by solving the following formulation: 

 

The tracking and recognition results are demonstrated in the Figure 36. 
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Figure 36: Object tracking and recognition results 

 

3.7. Audio Processing 
In DREAM project, the effective child-robot social interactions in the supervised autonomy 
RET requires the robot to be able to infer the psychological disposition of the child. The 
speech recognition and sound direction localization can help the system to understand the 
psychological disposition of the child better. Therefore, the implementation of the speech 
recognition, sound direction localization and voice identification is given in the system. With 
the speech recognition functions, the specified words and sentences spoken by children can be 
transformed into plain texts for easier understanding of what the children say. The sound 
direction localization is to detect the loudest sound in in the environment. The task of voice 
identification is to distinguish whether the sound comes from a child or therapist. Our 
implementation is based on Microsoft Kinect SDK. 
 
The isolated words or continuous sentences can be recognized with our implementation of 
speech recognition built on top of word recognition technology. The output of audio direction 
is shown in degrees. The results of speech recognition, audio direction and voice 
identification was shown inside the red ellipsoid of Figure 37.  
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Figure 37. Audio processing information 
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