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Executive Summary

Deliverable D6.3 defines the specification, design, implementation and validation of the Deliberative

subsystem within the cognitive architecture in WP6. Specifically, this report presents the advances in

task T6.3 for the first, second and third years of the DREAM project. During the first year the cognitive

architecture and the Deliberative subsystem were designed. During the second year the focus was on

the autonomous acquisition of action selection through machine learning. In the third year, the design

of the deliberative subsystem was improved and implemented to enable the delivery of the core robot

behaviour for use in interventions.

Note: this is a living document and extends on the preliminary version of this deliverable which was

submitted for review last year.
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1 Overview of WP6 Architecture

In DREAM we will move away from Wizard of Oz-controlled (WoZ) behaviour for the robot, which

too often is the de facto mode of interaction in Robot Assisted Therapy [1]. Therefore, work package

WP6 aims to progress the theoretical and methodological understanding of how an embodied system

can interact autonomously with young users in a learning task, specifically developed for atypically

developing children. WP6 is concerned with the development of the robot behaviour subsystems

to provide social robots with a behaviour underlying social interaction, which permits the robot to

be used in Robot Enhanced Therapy (RET) autonomously with supervision. This involves both

autonomous behaviour and behaviour created in supervised autonomy, whereby an operator requests

certain interventions, which are then autonomously executed by the robot.

A general high level description of the robot control system is shown in Figure 1 (also see Annex

5.2). This describes how the autonomous controller is informed by three external sources: the child

behaviour description, sensory information, and current intervention script state. Input from a therapist,

e.g., emergency stop, is also present, but not shown in the diagram. Combining these sources, the

autonomous controller should trigger an appropriate sequence of action primitives to be performed (as

well as some feedback via a graphical user interface), which then gets executed on the robot.

Figure 1: High level description of the robot control system. Child behaviour interpretation (WP5)

and sensory information (WP4) provide the context for the autonomous action selection (as well as

feedback from motor command execution), in combination with the particular intervention script being

applied. The intervention script provides context for child behaviour interpretation.

The autonomous controller is composed of a number of subsystems, as described in the DoW:

Reactive, Attention, Deliberative, Self-Monitoring, and Expression and Actuation. In the Reactive

subsystem, sensory inputs are immediately acted upon with appropriate actuator outputs. The Attention

subsystem determines the robot’s focus of attention. In the Deliberative subsystem, the necessary

interventions will be implemented in a general approach so it is not scenario-specific. The Self-

Monitoring subsystem acts as an alarm system in two specifications. An internal one when the robot

detects that it cannot act because of a technical limitation or an ethical issue. An external alarm is

one where the therapist overrules the robot behaviour selection. Finally, the Expression and Actuation

subsystem is responsible for generating believable human/animal-like smooth and natural motions and

sounds that are platform independent. These subsystems interact, and must combine their suggested

courses of actions to produce a coherent robot behaviour, in the context of constraints laid down by the

therapist (for example, the script to be followed, types of behaviour not permissible for this particular

child because of individual sensitivities, etc). As a result, we have formulated the following architecture

describing how cognitive control informed by the therapy scripts is to be achieved (Figure 2). This
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design is an iterative improvement on earlier plans laid out in Annex 5.2; the fundamental principles

remain the same, but the design required modification to ensure logical information flow when specified

to a lower level. Additional components were also added due to the inclusion of the Sandtray as a core

aspect for many of the interventions.

A detailed description of the cognitive architecture was provided in deliverable D6.1 at month 18.

At the month 36 delivery of this report we describe the functionality of the Deliberative subsystem in

connection with Milestone 4: core functionality in robot behaviour. The final preliminary version of

this document will be ready for month 48.

scriptManager

selfMonitoring

Subsystem

deliberativeSubsystem

attentionReaction

Subsystem

actuation

Subsystem

userModel

systemGUI

naoInterface

other robot

morphologies

sandtrayServer

sandtrayEvent

Figure 2: Diagram of the cognitive controller subsystem. The overall WP6 architecture decomposes into

10 components for delivery as part of the DREAM integrated system for use in therapeutic evaluations.

This deliverable is concerned with the deliberative aspects of the controller; this includes the following

components: deliberativeSubsystem, scriptManager, userModel, systemGUI, sandtrayServer, and

sandtrayEvent. The remaining components are discussed in other WP6 deliverables.

2 The Deliberative Subsystem

The main goal for this subsystem is to make decisions on which behaviour has to be selected based

on the requirements of the therapy; what the Attention subsystem is capturing from the surroundings;

whether or not the child is motivated enough and how he or she is performing in each of the scenarios;

and finally, the on-line feedback that the therapist could be providing through the Graphical User

Interface (systemGUI component). Such behaviour will be sent to the Expression and Actuation

subsystem.
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2.1 Overview

A central aspect of the cognitive controller is its ability to follow intervention scripts as defined by the

clinicians for both diagnosis and therapy. These scripts describe the high-level desired behaviour of the

robot1, and the expected reactions and behaviours of the child, in a defined order.

The decision was made to separate the script manager from the Deliberative subsystem itself (Figure

3). This decision was taken for a number of reasons. Firstly, it enables the cognitive control of the

robot to be independent of the precise application domain - with the intention that the developments

made would be more generally applicable within the field of social robotics, although the script-based

behaviours remain a central part of the behaviour generation of the system. Secondly, it ensures

that it would be possible to change the scripts in the future to alter their relative difficulty, by for

example including further steps in the intervention, changing the type of intervention, or creating

different activities, due to a modular design2. As a consequence of this, the Deliberative subsystem

is now primarily focussed on action selection considerations, making use of a range of algorithms

and methodologies under research (more details will follow later in this document). Thirdly, this

division of the script manager from the Deliberative subsystem enables the system to generate coherent

behaviour even if there is not a script active at a given moment. This could be useful for periods

between the explicit intervention sessions for example, where the robot would then still be able to

respond appropriately to environmental stimuli, if so desired by the therapists. These are consistent

with the aims expressed within the WP6 Description of Work.

Figure 3: Overview of the script manager subsystem. The scripts are defined independently of the

script manager, which is responsible for stepping through the script as appropriate and communicating

with the other subsystems as required.

The script manager itself separates the logic necessary to manage progression through the script

1These predefined robot behaviours differ from the the low-level motor control of the robot, as these may be mixed

with other aspects of behaviour not specified explicitly in the high-level intervention script; e.g., the addition of attention to

unexpected events in the environment.
2As noted above, these high-level scripts do not necessarily completely define the behaviour of the robot, and are distinct

from any predefined robot motor control sequences that may be used, such as waving or nodding.
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(by taking into account the available sensory feedback after actions for example) from the script itself.

This makes it straightforward to add new scripts or modify existing scripts as required. This logic

management is achieved by using a Finite State Machine (FSM). The initial plan of each step in the

script being defined as a 3-tuple of the form: [existing state, proposed action, consequent state] was

found to be insufficient when the details of the intervention scripts were finalised. Some script steps

also need to define a series of parameters, such as an expected action for the child to make (to be used

in autonomously evaluating their performance) and the time in which this action should be performed.

As a consequence, scripts are defined in an XML format, with each step consisting of a series of comma

separated values. These values take the form: [step id, script step, (comma separated parameters)],

where values in parenthesis are optional depending on the proposed action.

As all of the script steps are encoded in unique identifiers, they are not easily read or modified by a

human. To address this, a graphical tool was developed (E.S., PLYM) so that the therapists can create

and modify scripts in a straightforward manner. This tool is not delivered as part of the core YARP

system functionality, but is committed to the project repository as an auxiliary tool. A screenshot of the

application can be seen in Figure 4, with the associated output in Figure 5.

Figure 4: Screenshots from the scriptGenerator tool developed for therapists to create scripts for the

system. The left pane shows all current scripts. The right pane shows all possible intervention actions

as defined by the therapists and the current steps for the script being created. Where parameters are

required for a script step, the GUI will automatically request them where necessary.

The Deliberative subsystem is the primary locus of autonomous action selection in the cognitive

controller (Figure 2). This subsystem takes as input sensory data, child behaviour information,

information on what step should be next executed from the therapy script, and higher-level direction

from the Self-Monitoring subsystem. It then proposes what action should be taken next by the robot

(this proposal is sent to the Expression and Actuation subsystem). In a normal script execution context,

the Deliberative subsystem is the primary driver of behaviour, which would typically propose the next

script step. Details of the deliberative subsystem implementation may be found below in Section 2.2.

There are however a number of circumstances in which this may not the most appropriate action to

perform. For example, if the child is detected to have very low engagement with the task (as determined

from the WP5 component/s, and/or information from WP4 sensory system saying the child is looking

away for example), then it would be appropriate to attempt to re-engage the child with the robot/task

prior to executing the next stage in the therapy script. In this case, the Deliberative subsystem can
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Figure 5: Example output from the scriptGenerator tool. The scripts are stored as XML, which can

then be read in code with ease.

choose to depart from the behaviour defined in the script. At present, in the core robot functionality,

it is up to the therapist to suggest this corrective behaviour, but it is anticipated that the Deliberative

subsystem will learn the correct course of action and be able to suggest the behaviour in the future (see

Section 2.3 for further details about research in this direction).

2.2 Core Deliberative Components

Based on the functional description of the cognitive controller system of the DREAM architecture (see

section above, and Annex 5.2), core implementations of all WP6 components have been formulated.

This section will discuss the Deliberative subsystem component. For full context, the sandtrayServer,

sandtrayEvent, systemGUI and scriptManager component descriptions are also described here as they

tightly interact with the deliberative subsystem.

These first versions of the components are defined in terms of the input and output ports, following

the guidelines established in the software engineering standards (WP3). These versions are directly

informed by the development of the WP6 control architecture in Y1, where each subsystem was defined

in terms of the interactions with other subsystems, and their functions as outlined in the DREAM DoW.

Please refer to Figure 1 to provide this context. In the third year of the project, this was more tightly

specified (down to the port level) for functional implementation; please see the diagram in Annex 7.3

for full details of port names, port types, and message structures for primitives.

2.2.1 Script Manager

The functions of the script manager are described above: the main point is that the script manager is

separated from the rest of the Deliberative subsystem, which is instead focussed on autonomous action

selection. The ports for this component are described in Figure 6.

scriptManager

[02] /scriptManager/commandSuccess:i

[01] /scriptManager/startStop:i [01] /scriptManager/interventionCommand:o

Figure 6: Script Manager component YARP ports. This component handles the script state and provides

this information to other components.
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2.2.2 Deliberative Subsystem

An overview of the ports for this component are shown in Figure 7. Further to the definition of

this version of the YARP component to fit into the DREAM architecture according to the established

software engineering framework (see D3.1), a range of work has been conducted on the theoretical basis

of autonomous action selection mechanisms for social robots. In addition to the technical principles

described below (Section 2.3), this development work has also included the principled examination of

what sort of functionality should be undertaken by this component, and what the limitations of this

should be with respect to the supervisory oversight provided by the ever-present therapist (as defined

by the supervised autonomy objective of DREAM). Our work in this regard is summarised in Annexes

5, 6, and 7.

deliberativeSubsystem

[29] /deliberativeSubsystem/sandtrayEvent:i

[22] /deliberativeSubsystem/sandtrayCommand:o

[30] /deliberativeSubsystem/sandtrayReturn:i

[05] /deliberativeSubsystem/selectedAction:i

[07] /deliberativeSubsystem/attentionBias:o

[03] /deliberativeSubsystem/sensorySummary:o

[04] /deliberativeSubsystem/interventionCommand:i

[01] /deliberativeSubsystem/commandSuccess:o

[02] /deliberativeSubsystem/getChildBehaviour:i

[07-28] /deliberativeSubsystem/WP4Inputs:i

[05] /deliberativeSubsystem/suggestedAction:o

[02] /deliberativeSubsystem/deliberativeFeedback:o

[01] /deliberativeSubsystem/actionFeedback:i

[21] /deliberativeSubsystem/interactionEvent:o

[06] /deliberativeSubsystem/getInterventionStatus:o

[08-20] /deliberativeSubsystem/WP4Outputs:o

[06] /deliberativeSubsystem/userDelib:i

[31] /deliberativeSubsystem/robotSensors:i

[03] /deliberativeSubsystem/getChildPerformance:i

[04] /deliberativeSubsystem/startStop:o

Figure 7: Deliberative subsystem component YARP ports: the prefix for the port names is listed in the

main text. This component is responsible for the autonomous action selection in cases of deviation

from the script, etc. Ports to/from the sensory systems (WP4) have been condensed for clarity.

2.2.3 Sandtray Server and Event

Following earlier studies, the therapists conducting the evaluations as part of the DREAM project

(partner UBB) found that children responded well to the use of the Sandtray in interventions. The

Sandtray is a large horizontal touch screen that can be used to display various media and games, and for

both children and the robot to interact with (such as selecting or moving images); the Sandtray can be

seen in Figure 14. As the use of the Sandtray in the interventions increased, it required incorporating

into the WP6 system design. This was done in two components: sandtrayServer and sandtrayEvent.

sandtrayServer communicates tightly with the Deliberative subsystem component: the Deliberative

subsystem can modify what is shown on the screen and can access information from the screen to

transmit to the robot. sandtrayEvent raises events when the child interacts with the screen, such as when

they select an image, which can be forwarded to as sensory input to WP5 (to be used, for example, in

calculating the child performance). The description of these components can be seen in Figure 8. As an

additional part of this work, the Sandtray tasks for use in interventions were also developed (PLYM),

with images provided by the therapists (UBB). The Sandtray components and code do not rely on any

specific hardware, so these components and the Sandtray software can flexibly be re-used should other

scenarios or hardware require them.

Date: 30/03/2017
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sandtrayEvent

[01] /sandtrayEvent/sandtrayEvent:o

sandtrayServer

[01] /sandtrayServer/sandtrayCommand:i

[01] /sandtrayServer/sandtrayReturn:o

Figure 8: Sandtray event and sandtray server components. Sandtray event notifies the DREAM system

of child actions on screen, whereas sandtray server is used for managing robot interaction with the

screen.

2.2.4 User Model

In period 3, the core user model component was developed. The aim of this component is to store

prior diagnosis information about each child, as well as their ongoing intervention session performance

with both the robot and the therapist. This information can then be used as part of analysis of the

system, and is displayed in the DREAM system GUI as it is useful information for the therapists

to view when interventions are being conducted. Each user has a file storing their information, this

is accessed through the user model component, which has the function of reading the information,

transmitting it, and saving any updates. The user model files are implemented using XML so that they

can be extended in the future. It is anticipated that subsequent versions of the user model files may

store data required by the SPARC action selection mechanism, so the file format and port pathways

for this data to be transmitted to and from the Deliberative subsystem component have been designed

in the current version, but without passing the data. The user model port descriptions can be seen

in Figure 9. Figure 10 shows a GUI tool created for therapists to input initial user model data from

pre-existing diagnosis data.

userModel

[01] /userModel/userData:o

[02] /userModel/updatedData:i

[01] /userModel/userID:i

Figure 9: User model component YARP ports. This component is responsible for reading and writing

data about the intervention outcomes and child preferences.

Figure 10: GUI tool for generating user models (which are saved as XML documents).
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2.2.5 System GUI

The system GUI is based on requirements of supervised autonomy, prototyping with end users, and

research into appropriate interface mechanisms [2]. The final design from a port description perspective

can be seen in Figure 11. The deliberative subsystem suggests an action for the therapist through the

self monitoring subsystem, which is displayed on the GUI. The action will automatically execute after

some period of time, or the therapist can speed up the selection, or select an alternative action if the

robot needs to go off-script. These corrections are communicated back to the deliberative and self

monitoring subsystems. This provides the opportunity to learn from the therapist corrections (as per

the SPARC principle; Section 4) to improve the autonomy of the robot in the future. A screenshot of

the GUI can be seen in Figure 12, and a technical report for partners using the software can be seen in

Annex 7.1.

systemGUI

[01] /systemGUI/selectedBySupervisor:o

[04] /systemGUI/smsSummary:i

[02] /systemGUI/therapistCommand:o

[03] /systemGUI/userID:o[03] /systemGUI/proposedToSupervisor:i

[02] /systemGUI/getChildPerformance:i

[01] /systemGUI/getChildBehaviour:i

Figure 11: System GUI component YARP ports. This component acts as the interface between the

therapist and the DREAM system.

Figure 12: System GUI screenshot. The layout is based on prototyping with end-users and research

into appropriate interface methods. Script steps can be seen to the left, with supervised autonomy

options to the right, with possible corrective actions loaded depending on the requirements of the script.
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2.3 Action Selection Mechanism

2.3.1 Context

The script provides a series of actions that the robot should execute and that are expected to be followed

by a child-specific reaction. However, the actual reaction from the young user can be different to the

one expected. To be able to follow the script, the robot needs to find a way to execute the appropriate

behaviour in order to obtain the desired reaction from the child. To succeed in such a challenging task,

a social Action Selection Mechanism (ASM) is required.

This social ASM has to fulfil multiple specifications: the first one is to allow the robot to detect

a state where the execution of an action not planned in the script is required. This can be done by

comparing the child’s current state to the expected one. Then, once the need to act outside of the script

is detected, the ASM has to select an action that would obtain the expected reaction from the child and

thus allow continuation of the script.

Having to select an action in a Robot Assisted Therapy (RAT) scenario gives rise to several concerns.

First of all, at every moment of the interaction, the action executed by the robot needs to be the correct

one, i.e. the one desired to maximise the positive effect of the therapy. Furthermore, as we are working

with children, the environment is highly unpredictable and there is probably not a unique general

solution for every child and a solution for one child might not be appropriate later in the interaction:

the robot needs to be able to adapt to different interaction partners and also to the same partner at

different times in the interaction. Lastly, with RAT, we have access to experts with good knowledge of

the environment (both the children and the task to be accomplished): the therapists. We can use the

therapists to obtain some knowledge, but we can not rely totally on them as this would impose a high

workload on them and this is not scalable.

Consequently, we end up with three principles that the ASM has to follow:

1. The action selected has to be therapeutically correct at every stage of the interaction.

2. The ASM has to be adaptive, i.e. be able to change the action policy over time.

3. The workload on the therapist should be as low as possible.

2.3.2 State of the Art

When having to design an ASM, the simplest possibility is to use a static predefined behaviour, such as

a reactive system or a finite state machine, as has been used in some experiments of the Aurora project

[3]. This has the advantage of not relying at all on the therapist, but as we are working in the real world,

the sensors are represented in a high-dimensional and continuous space. This means that either the

behaviour expressed would be simple, or that a more complex controller would probably not be able

to be designed manually; there is no way to know in advance what the best action to perform in each

state is. Similarly, as it is not possible to have a precise enough model of the child, pure planning is not

suitable in our case.

The other main approach used in RAT is the Wizard of Oz (WoZ) paradigm [4, 5]. The robot is

not autonomous, but is instead fully teleoperated by a therapist. This can fulfil principles 1 and 2 as

the action is always the one that the therapist would desire and the human also provides adaptivity.

However, as explained by Thill et al. in [1], there are many reasons which motivate us to move away

from WoZ, such as the reliance on the humans violating principle 3 through the imposition of a heavy

workload.
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A way to fulfil principles 2 and 3 is to provide a robot with learning capabilities. If the robot can

learn from successes and errors, it becomes adaptive and does not rely on a human to select its actions.

A classical technique used to allow an agent to learn by itself when interacting with an environment

is Reinforcement Learning (RL) [6]. With this approach, the robot explores its environment by

interacting with it. Through receiving positive or negative rewards from its environment, it optimises

an action policy after a learning phase, which can achieve high task performance. This technique could

asymptotically also fulfil principle 1, but at the start of the interaction the robot relies on exploration

to create its action policy. As such, random actions can be executed to obtain knowledge, and this

has the potential to violate principle 1, with possible negative therapeutic outcomes. Furthermore,

without external help, this method can take a long time to converge, and depends on rewards from the

environment to learn, which might be hard to define explicitly for RAT.

Some researchers have worked on ways to improve RL, for example in [7], authors assume that the

environment is not giving rewards, and that a human can give them. This could be suitable for our case

as the therapist possesses the adequate knowledge to evaluate the robot actions. A similar approach has

been followed by Thomaz et al. in [8] where they combined rewards from the environment, reward

from a user and guidance from a user. This allows faster convergence toward an efficient policy and

reduces the number of potentially incorrect actions. However in all of these methods, the evaluation

is done a posteriori, so if an action is not correct, it will not be executed again, but it has still been

executed once. In RAT, this is something we have to avoid as even one incorrect action could have

negative consequences.

To cope with this exploration problem, some authors proposed Safe RL [9], in this case, an additional

mechanism is combined with the RL policy to prevent dangerous actions from being executed. They

present two main ways to make RL safer: using initial knowledge to prevent the execution of actions in

specific cases, or to bootstrap the learning with safe demonstration, and to only explore around them.

But even these methods can not guarantee that only correct actions will be executed as there is still

a reliance on exploration and all of the potentially dangerous state-action pairs can not be defined in

advance.

Another method proposed to achieve autonomy in RAT without having the robot to explore

environment by itself is inspired by Learning from Demonstration and the WoZ paradigm. In [10],

authors propose that the interaction is begun in a classical WoZ setup. The robot is only controlled

by the therapist initially, then when enough data has been gathered, batch learning is applied and an

action policy is derived. As only correct actions have been given to the robot, and if we assume that

enough data points are obtained to cover the environment space, the action policy derived is correct.

Only therapeutically valid actions will be executed, and this is achieved without further reliance on

the therapist to control the robot. However, as no further learning is used, the ASM is not adaptive, so

it can not cope with additional changes in the child behaviour. As such, even if principle 1 and 3 are

fulfilled, principle 2 is still missing.

2.3.3 Proposed Solution

As shown previously, there is currently no solution in the literature fulfilling all of the desiderata for

our Action Selection Mechanism. Methods either require important knowledge to be hard-coded inside

the software, rely on exploration involving randomness, impose a heavy workload on the therapists, or

are not adaptive once the learning is finished.

To be able to fulfil principles 2 and 3, the ASM has to include a machine learning component. This

is the only way to provide the required adaptivity without relying on a human. However, the majority

of the algorithms used for learning face a trade-off between exploitation and exploration: the agent
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Wizard of Oz Autonomous Learning SPARC

Workload Performance Autonomy

Constant High Performance 

Reduced Workload

Constant High Performance 

Reduced Workload

Constant High Performance 

Reduced Workload

Figure 13: Comparison of SPARC with WoZ and Reinforcement Learning in terms of autonomy,

supervisor workload, and performance. The aim is for workload to be low, whilst autonomy and

performance are high.

first needs to explore its environment to be able to select the best action to perform later, and generally

there is an element of randomness in the exploration. As encompassed by principle 1, in RAT there is

no place for randomness. We need to find an ASM allowing the robot to become autonomous, to learn

the best action to execute in a highly unpredictable, continuous and complex space without relying on

random exploration.

As developers, we have limited knowledge of the best action to execute in an unexpected state; this

knowledge is the expertise of the therapist. This expertise can be used to provide the initial knowledge

for our learning mechanism. Furthermore, this knowledge can also prevent incorrect actions from

being executed during the learning phase, or indeed in any part of the interaction.

This is the reason why we propose Supervised Progressively Autonomous Robot Competencies as a

solution (SPARC; see Section 4). This technique relies on a system of suggestion/correction: the robot

selects an action according to the ASM and suggests it to the supervisor (in this case, the therapist).

In response, the therapist can either do nothing and thus the suggested action is executed, or select a

different action for the robot to execute. This concept ensures that the right action is always executed:

fulfilling principle 1. Simultaneous learning on the robot side allows the suggested action to be more

appropriate with more interactions, reducing the workload on the therapist over time and fulfilling

principles 2 and 3 (behavioural adaptivity and low therapist workload), whilst maintaining principle 1

(correct therapeutic action). This method is described in more detail in [11] and Section 4 presents the

work done in evaluating this approach.

Figure 13 presents the concept of SPARC compared to WoZ or RL in terms of workload on the

supervisor, autonomy and performance. With WoZ, at all times, there is no autonomy and a high

workload on the supervisor providing a high performance. With RL, the human is not involved, so

the autonomy is high and the workload is low. At the start, the robot is exploring the environment

resulting in low task performance in the learning phase, and this performance rises until reaching an

asymptotically high value once the robot knows how to act. SPARC imposes a high workload on

the therapist at the start, when the robot is still learning. This provides faster learning, which allows

the robot to be more autonomous with time and decreases the workload on the supervisor, whilst

maintaining good task performance throughout the interaction.
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2.4 Planned Work

In Period 1, the WP6 and Deliberative subsystem architectures were established from a theoretical basis,

leading to the development of preliminary Deliberative subsystem and script manager components

(see Sections 2.1 and 2.2). During this period, WP6 also supported manually controlled evaluation of

the diagnosis/intervention scripts (defined in deliverable D1.1), further detail can be seen in Section 3

below. This provided guidance for further development within Period 2, which gave increased focus on

how machine learning can be utilised to improve the autonomy of the robot in interactions (see Section

4 for details).

During Period 3, the Deliberative subsystem was developed in accordance with milestone MS4

specified within the WP6 Description of Work (“core functionality in robot behaviour”). Specifically,

this included completed versions of the script manager, sandtray event, and sandtray server components,

alongside core versions of the user model, GUI and deliberative subsystem components, as described in

Sections 2.1 and 2.2. This provides the software for autonomous progression through the intervention

scripts as defined in deliverable D1.1.

Section 2.3 described the approach to machine learning (SPARC) adopted within the context of the

Deliberative subsystem that will strive to increase the autonomy of the robot behaviour. Successful

evaluation of this approach in non-therapeutic environments in Period 2 (discussed in Annex 6.3 and

Section 4) provided a solid platform for further exploration in Period 3.

The SPARC model had already been tested with a Neural Network and Reinforcement Learning,

with preliminary results suggesting promising performance when compared to WoZ or classical

Interactive Reinforcement Learning (Section 4). Period 3 has seen a comparison with another method

from the field of Interactive Machine Learning. Results from a study with 40 participants [2] show that

the principles advocated by SPARC allow a safer, quicker and more efficient learning than Interactive

Reinforcement Learning as proposed in [8]. The current SPARC implementation exists outside of the

core Deliberative subsystem component, but the inclusion of the SPARC approach was allowed for in

the design adopted in Period 3. It is planned for the approach to be evaluated in settings more closely

resembling the therapeutic environment of the DREAM project to provide additional validation prior

to potential integration into the cognitive controller moving forwards.

3 Script Following

A primary objective of the first year of work was the evaluation of manually controlled (‘wizarded’ or

tele-operated) versions of the diagnosis/intervention scripts defined in deliverable D1.1, as relevant to

T2.1. This evaluation provides guidance for the further development of the autonomous interpretation

and behaviour systems for the DREAM architecture.

In Y1, WP6 provided substantial support to provide the systems necessary for these evaluations.

The robot behaviour capabilities to enable execution of each of the basic versions of the scripts has

been implemented: imitation task, joint attention task, and the turn-taking task. These systems have

been deployed and used at partner UBB.

Two methods were used to provide this functionality. For the imitation and joint attention tasks,

behaviours were constructed in the Aldebaran-produced Choregraphe suite, such that a therapist could

manually control the robot behaviours for each of the stages of the task. Details of this system can be

found in Annex 5.4 of this deliverable. For the turn-taking task, since the Sandtray device is used, a

standalone system using the software engineering standards defined in WP3 were used. Details of this

system can be found in Annex 5.3 of this deliverable.

Date: 30/03/2017
Version: No 1.6

Page 17



D6.3.3 Deliberative Subsystem

This work provided the basis for further developments within WP6 in Y2. The development of the

behaviours for each of the intervention tasks was reused in the autonomous versions of these tasks,

along with further behaviours as required. Furthermore, the establishment of preliminary versions

of the various components using the software engineering framework, and the development of the

WP6 cognitive control architecture, facilitated the implementation of the autonomous versions of these

components, and their subsequent integration with the rest of the system in Y3.

4 Increasing Robot Autonomy

In the second year of work there was an increased focus on studying how machine learning could be

used to gradually take over from the therapist, or in the broader sense of the word, the “Wizard”. For

this, a new method was developed, dubbed SPARC (Supervised Progressively Autonomous Robot

Competencies). SPARC proposes actions to the supervisor and observes which actions the Wizard

takes in which states; the states are comprised of internal states of the robot and external states in the

social and physical environment, including the child. SPARC gradually builds up a state-action model,

and as the interaction progresses, suggests more appropriate actions to the Wizard. The Wizard can

relinquish control to SPARC by accepting its proposed actions.

Figure 14: Setup used for the user study from the perspective of the human supervisor. The child-robot

(left) stands across the touchscreen (centre-left) from the wizarded-robot (centre-right). The supervisor

can oversee the actions of the wizarded-robot through the GUI and intervene if necessary (right).

In Period 2, the architecture was further developed from the simulation model presented in Period 1.

The SPARC model was tested both with a Neural Network and Reinforcement Learning and developed

to suit the context of Robot Assisted Therapy [11, 12]. A main focus has been on evaluating how

human operators, or Wizards, perceive the gradually increasing autonomy of the robot and the impact

on the task performance.

To this end we used a novel method, in which the child in the interaction is substituted by a robot

running a “child” model (Figure 14). This allows experimenting without putting undue pressure

and stress on young participants, and provides a setup with high repeatability, which is required for

rigorously testing the SPARC architecture. A number of hypotheses were evaluated in a study [11].

Overall, the study showed that controlling a learning robot enables supervisors to achieve similar task

performance as with a non-learning robot, but with both fewer interventions and a reduced perception
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of workload. These results demonstrate the utility of the SPARC concept and its potential effectiveness

to reduce the cognitive and workload on human operators.

SPARC has recently been implemented in a restricted (non-therapeutic) environment and compared

to previous work done in Interactive Reinforcement Learning (IRL): the environmental reward is

combined with reward given by the user after the action execution. Analysis of the results indicates

that SPARC is compatible with Reinforcement Learning, and it leads to faster and better results than

classical IRL with a lower workload on the supervisor. From these results, several limits of the current

proposition of SPARC have been highlighted, such as the limitation to a single type of inputs from

the user, assumption of a perfect supervisor and the current discretisation of time. To be useful in real

human-robot interactions, SPARC will have to tackle these challenges.

Year 4 will see the implementation of a more complete version of SPARC and this new implemen-

tation will be tested in a human-robot interaction with children where the system will have to face

challenges not explored in previous studies. The exact framework of the learning algorithm is not

defined yet, but inspiration might be taken from Supervised Actor-Critic [13] which proposes a more

complex integration of a supervisor in a Reinforcement Learning approach.
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5 Period 1 Annexes

5.1 Senft, E. et al. (2015), When is it better to give up? Towards autonomous action

selection for robot assisted ASD therapy

Bibliography - Senft, E., Baxter, P., Kennedy, J., Belpaeme, T (2015), “When is it better to give up?

Towards autonomous action selection for robot assisted ASD therapy”, HRI‘15 Extended Abstracts,

doi: 10.1145/2701973.2702715

Abstract - Robot Assisted Therapy (RAT) for children with ASD has found promising applications.

In this paper, we outline an autonomous action selection mechanism to extend current RAT approaches.

This will include the ability to revert control of the therapeutic intervention to the supervising therapist.

We suggest that in order to maintain the goals of therapy, sometimes it is better if the robot gives up.

Relation to WP - This work directly contributes to Task T6.3.

5.2 Baxter, P. et al. (2015), Technical Report: Organisation of Cognitive Control and

Robot Behaviour

Abstract - The purpose of this technical report is to summarise the motivations and constraints

underlying the cognitive control structures, and to outline an organisation of these subsystems. This

is a proposal only; this document is intended to be a working one, to be updated as required during

development. This version of the report is based primarily on the discussions that took place in Brussels

(23/01/15).

Relation to WP - This work directly contributes to Task T6.3.

5.3 Baxter, P. et al. (2015), Technical Report: Sandtray Wizard-of-Oz System for

Turn-taking Intervention

Abstract - In this technical report we describe the software organisation of the Sandtray system

created for the turn-taking diagnosis/intervention interactions. This system is based on the organisation

defined by the WP3 software engineering standards, although at the moment does not fit into the rest

of the DREAM system: this was to facilitate ease of setup and launch for the end-user (i.e. minimal

installation, and no compilation required). The WoZ system provides a GUI from which the therapist

can control the robot behaviour in the turn-taking task, and logs of the interaction are automatically

stored for retrospective analysis.

Relation to WP - This work provides the basis of work in Task T6.3, and is relevant to T2.1.

5.4 Esteban, P.G. et al. (2015), Technical Report: Manual for the use of Choregraphe

boxes in Wizard of Oz experiments

Abstract - In this technical report we describe a manual to help UBB team in the development of the

Wizard of Oz experiments within Work Package 2. Both PLYM and VUB have collaborated to develop

the corresponding modules in Choregraphe. This manual aims at being a reference point to ease the

habituation of the therapists to the software.

Date: 30/03/2017
Version: No 1.6

Page 21



D6.3.3 Deliberative Subsystem

Relation to WP - This work provides the basis of work in Task T6.3, and is relevant to T2.1.
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6 Period 2 Annexes

6.1 Baxter, P. et al. (2015), Touchscreen-Mediated Child-Robot Interactions Applied

to ASD Therapy

Bibliography - Baxter, P., Matu, S., Senft, E., Costescu, C., Kennedy, J., David, D., and Belpaeme,

T. (2015) Touchscreen-Mediated Child-Robot Interactions Applied to ASD Therapy. New Friends

symposium, Almere, The Netherlands.

Abstract - Robots are finding increasing application in the domain of ASD therapy as they provide a

number of advantageous properties such as replicability and controllable expressivity. In this abstract

we introduce a role for touchscreens that act as mediating devices in therapeutic robot-child interactions.

Informed by extensive work with neurotypical children in educational contexts, an initial study using a

touchscreen mediator in support of robot assisted ASD therapy was conducted to examine the feasibility

of this approach, in so doing demonstrating how this application provides a number of technical and

potentially therapeutic advantages.

Relation to WP - This paper summarises our use of touchscreen devices as mediating devices in

child-robot interaction, and its specific use in diagnosing ASD.

6.2 Senft, E. et al. (2015) Human-Guided Learning of Social Action Selection for

Robot-Assisted Therapy

Bibliography - Senft, E., Baxter, P., and Belpaeme, T. (2015). Human-guided learning of social

action selection for robot-assisted therapy. In 4th Workshop on Machine Learning for Interactive

Systems.

Abstract - This paper presents a method for progressively increasing autonomous action selection

capabilities in sensitive environments, where random exploration-based learning is not desirable, using

guidance provided by a human supervisor. We describe the global framework and a simulation case

study based on a scenario in Robot Assisted Therapy for children with Autism Spectrum Disorder. This

simulation illustrates the functional features of our proposed approach, and demonstrates how a system

following these principles adapts to different interaction contexts while maintaining an appropriate

behaviour for the system at all times.

Relation to WP - This paper sketches the early ideas on progressively learning autonomous behaviour

from a human Wizard.

6.3 Senft, E. et al. (2015) SPARC: Supervised Progressively Autonomous Robot Com-

petencies

Bibliography - Senft, E., Baxter, P., Kennedy, J., and Belpaeme, T. (2015). SPARC: Supervised Pro-

gressively Autonomous Robot Competencies. In Social Robotics (pp. 603-612). Springer International

Publishing.
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Abstract - The Wizard-of-Oz robot control methodology is widely used and typically places a high

burden of effort and attention on the human supervisor to ensure appropriate robot behaviour, which

may distract from other aspects of the task engaged in. We propose that this load can be reduced

by enabling the robot to learn online from the guidance of the supervisor to become progressively

more autonomous: Supervised Progressively Autonomous Robot Competencies (SPARC). Applying

this concept to the domain of Robot Assisted Therapy (RAT) for children with Autistic Spectrum

Disorder, a novel methodology is employed to assess the effect of a learning robot on the workload

of the human supervisor. A user study shows that controlling a learning robot enables supervisors to

achieve similar task performance as with a non-learning robot, but with both fewer interventions and a

reduced perception of workload. These results demonstrate the utility of the SPARC concept and its

potential effectiveness to reduce load on human WoZ supervisors.

Relation to WP - This paper describes the SPARC architecture, which can learn which actions to

take in which states by observing a Wizard. The paper also presents a first user study which validates

the concept.

6.4 Senft, E. et al. (2016) Providing a Robot with Learning Abilities Improves its

Perception by Users

Bibliography - Senft, E., Baxter, P., Kennedy, J., Lemaignan, S. and Belpaeme, T. (2016) Providing

a Robot with Learning Abilities Improves its Perception by Users. In Proceedings of the 11th Annual

ACM/IEEE International Conference on Human-Robot Interaction, Christchurch, New Zealand.

Abstract - Subjective appreciation and performance evaluation of a robot by users are two important

dimensions for Human- Robot Interaction, especially as increasing numbers of people become involved

with robots. As roboticists we have to carefully design robots to make the interaction as smooth and

enjoyable as possible for the users, while maintaining good performance in the task assigned to the

robot. In this paper, we examine the impact of providing a robot with learning capabilities on how

users report the quality of the interaction in relation to objective performance. We show that humans

tend to prefer interacting with a learning robot and will rate its capabilities higher even if the actual

performance in the task was lower. We suggest that adding learning to a robot could reduce the apparent

load felt by a user for a new task and improve the users evaluation of the system, thus facilitating the

integration of such robots into existing work flows.

Relation to WP - This study looks into how an operator (a Wizard) subjectively experiences a robot

which gradually learns and takes over the operator’s task.

6.5 Baxter, P. et al. (2016) Cognitive Architectures for Social Human-Robot Inte-

raction

Bibliography - Baxter, P., Lemaignan, S. and Trafton, G. (2016) Cognitive Architectures for Social

Human-Robot Interaction. In Workshop on Cognitive Architectures in Human-Robot Interaction, at the

11th Annual ACM/IEEE International Conference on Human-Robot Interaction, Christchurch, New

Zealand.
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Abstract - Social HRI requires robots able to use appropriate, adaptive and contingent behaviours

to form and maintain engaging social interactions with people. Cognitive Architectures emphasise a

generality of mechanism and application, making them an ideal basis for such technical developments.

Following the successful first workshop on Cognitive Architectures for HRI at the 2014 HRI conference,

this second edition of the workshop focusses specifically on applications to social interaction. The

full-day workshop is centred on participant contributions, and structured around a set of questions to

provide a common basis of comparison between different assumptions, approaches, mechanisms, and

architectures. These contributions will be used to support extensive and structured discussions, with

the aim of facilitating the development and application of cognitive architectures to social HRI systems.

By attending, we envisage that participants will gain insight into how the consideration of cognitive

architectures complements the development of autonomous social robots

Relation to WP - A position paper framing the need and state-of-the-art in cognitive architectures

for social HRI, relevant to the deliberative subsystem in WP6.

6.6 Baxter, P. (2016) Memory-Centred Cognitive Architectures for Robots Interacting

Socially with Humans

Bibliography - Baxter, P. (2016) Memory-Centred Cognitive Architectures for Robots Interacting

Socially with Humans. In Workshop on Cognitive Architectures in Human-Robot Interaction, at the

11th Annual ACM/IEEE International Conference on Human-Robot Interaction, Christchurch, New

Zealand.

Abstract - The Memory-Centred Cognition perspective places an active association substrate at the

heart of cognition, rather than as a passive adjunct. Consequently, it places prediction and priming on

the basis of prior experience to be inherent and fundamental aspects of processing. Social interaction is

taken here to minimally require contingent and co-adaptive behaviours from the interacting parties. In

this contribution, I seek to show how the memory-centred cognition approach to cognitive architectures

can provide an means of addressing these functions. A number of example implementations are briefly

reviewed, particularly focusing on multi-modal alignment as a function of experience-based priming.

While there is further refinement required to the theory, and implementations based thereon, this

approach provides an interesting alternative perspective on the foundations of cognitive architectures to

support robots engage in social interactions with humans.

Relation to WP - A paper providing theoretical insights in how associative memories can serve as

the backbone of a cognitive architecture. This approach is at present not implemented in DREAM, but

is being explored in the context of the SPARC architecture.
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7 Period 3 Annexes

7.1 Kennedy, J. et al. (2017), Technical Report: A Guide to Using systemGUI

Abstract - The purpose of this technical report is to provide a guide for all technical partners and the

end users of the systemGUI developed as part of WP6. Technical partners may need this information in

order to perform tests with an expanded subset of the integrated DREAM system. Therapists will need

to understand how the systemGUI interface is used in order to run planned experiments effectively.

This report is based on the current systemGUI at the production date; details may change to align with

the GUI changes in the future.

Relation to WP - This work directly contributes to Task T6.3.

7.2 Lemaignan, S. et al. (2016), Towards “Machine-Learnable” Child-Robot Interacti-

ons: the PInSoRo Dataset

Bibliography - Lemaignan, S., Kennedy, J., Baxter, P., Belpaeme, T (2015), Towards “Machine-

Learnable” Child-Robot Interactions: the PInSoRo Dataset, Workshop on Long-term Child-Robot

Interaction at RO-MAN 2016

Abstract - Child-robot interactions are increasingly being explored in domains which require longer-

term application, such as healthcare and education. In order for a robot to behave in an appropriate

manner over longer timescales, its behaviours should be coterminous with that of the interacting

children. Generating such sustained and engaging social behaviours is an on-going research challenge,

and we argue here that the recent progress of deep machine learning opens new perspectives that

the HRI community should embrace. As an initial step in that direction, we propose the creation

of a large open dataset of child-robot social interactions. We detail our proposed methodology for

data acquisition: children interact with a robot puppeted by an expert adult during a range of playful

face-to-face social tasks. By doing so, we seek to capture a rich set of human-like behaviours occurring

in natural social interactions, that are explicitly mapped to the robots embodiment and affordances.

Relation to WP - A paper providing theoretical insights in how current trends in deep neural

networks may assist in generating autonomous robot behaviours, specifically with a focus on child-

robot interactions. This approach is at present not implemented in DREAM, but forms part of the

ongoing research in developing deliberative cognitive controllers as per Task T6.3.

7.3 Kennedy, J. et al. (2017), Technical Report: WP6 Full Port Descriptions

Abstract - The purpose of this technical report is to provide a guide for all technical partners to

the port-level implementation of WP6. Port names and types are described for all WP6 components,

with additional detail for those ports which are exposed to components outside of WP6 (primitives).

This is useful for both developers of WP6 and other work packages to see the information flow and

decomposition of WP6.

Relation to WP - This work directly contributes to Task T6.3.
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7.4 Senft, E. et al. (2016), SPARC: an efficient way to combine reinforcement learning

and supervised autonomy.

Bibliography - E. Senft, S. Lemaignan, P. E. Baxter, and T. Belpaeme, Sparc: an efficient way

to combine reinforcement learning and supervised autonomy, at workshop on Future of Interactive

Learning Machine at NIPS 2016

Abstract - Shortcomings of reinforcement learning for robot control include the sparsity of the

environmental reward function, the high number of trials required before reaching an efficient action

policy and the reliance on exploration to gather information about the environment, potentially resulting

in undesired actions. These limits can be overcome by adding a human in the loop to provide additional

information during the learning phase. In this paper, we propose a novel way to combine human

inputs and reinforcement by following the Supervised Progressively Autonomous Robot Competencies

(SPARC) approach. We compare this method to the principles of Interactive Reinforcement Learning

as proposed by Thomaz and Breazeal. Results from a study involving 40 participants show that using

SPARC increases the performance of the learning, reduces the time and number of inputs required for

teaching and faces fewer errors during the learning process. These results support the use of SPARC as

an efficient method to teach a robot to interact with humans.

Relation to WP - Research on the combination of SPARC and Reinforcement Learning - initial

results of study.

7.5 Senft, E. et al. (2016), Supervised Autonomy for Online Learning in Human-Robot

Interaction

Submitted - Special issue on User Profiling and Behavior Adaptation for Human-Robot Interaction

(Letters in Pattern Recognition)

Abstract - When a robot is learning it needs to explore its environment and how its environment

responds on its actions. When the environment is large and there are a large number of possible actions

the robot can take, this exploration phase can take prohibitively long. However, exploration can often

be optimised by letting a human expert guide the robot during its learning. Interactive machine learning,

in which a human user interactively guides the robot as it learns, has been shown to be an effective

way to teach a robot. It requires an intuitive control mechanism to allow the human expert to provide

feedback on the robot’s progress. This paper presents a novel method which combines Reinforcement

Learning and Supervised Progressively Autonomous Robot Competencies (SPARC). By allowing the

user to fully control the robot and by treating rewards as implicit, SPARC aims to learn an action policy

while maintaining human supervisory oversight of the robot’s behaviour. This method is evaluated and

compared to Interactive Reinforcement Learning in a robot teaching task. Qualitative and quantitative

results indicate that SPARC allows for safer and faster learning by the robot, whilst not placing a high

workload on the human teacher.

Relation to WP - Research on the combination of SPARC and Reinforcement Learning - full results

of study.
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7.6 Senft, E. et al. (2017), Leveraging Human Inputs in Interactive Machine Learning

for Human Robot Interaction

Bibliography - E. Senft, S. Lemaignan, P. E. Baxter, and T. Belpaeme, Leveraging Human Inputs in

Interactive Machine Learning for Human Robot Interaction, HRI‘17 Extended Abstracts.

Abstract - A key challenge of HRI is allowing robots to be adaptable, especially as robots are

expected to penetrate society at large and to interact in unexpected environments with non-technical

users. One way of providing this adaptability is to use Interactive Machine Learning, i.e. having a

human supervisor included in the learning process who can steer the action selection and the learning

in the desired direction. We ran a study exploring how people use numeric rewards to evaluate a robot’s

behaviour and guide its learning. From the results we derive a number of challenges when designing

learning robots: what kind of input should the human provide? How should the robot communicate its

state or its intention? And how can the teaching process by made easier for human supervisors?

Relation to WP - Research on the combination of SPARC and Reinforcement Learning - Additional

results of the study, and challenges.
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When is it better to give up?

Towards Autonomous Action Selection for Robot Assisted ASD Therapy

Emmanuel Senft, Paul Baxter, James Kennedy, Tony Belpaeme
Centre for Robotics and Neural Systems, Cognition Institute

Plymouth University, U.K.
{emmanuel.senft, paul.baxter, james.kennedy, tony.belpaeme}@plymouth.ac.uk

ABSTRACT

Robot Assisted Therapy (RAT) for children with ASD has
found promising applications. In this paper, we outline an
autonomous action selection mechanism to extend current
RAT approaches. This will include the ability to revert
control of the therapeutic intervention to the supervising
therapist. We suggest that in order to maintain the goals of
therapy, sometimes it is better if the robot gives up.

Categories and Subject Descriptors: H.1.2 [Models and
Principles]: User/Machine System

Keywords: Action selection, ASD, Cognitive Robotics,
RAT, Social Robotics.

1. INTRODUCTION
Recent studies estimate that around 1.1% of the population

in the UK and also in other European countries have Autism
Spectrum Disorders (ASD). These people typically lack social
skills normally expected in human interactions. Consequently,
therapies have been designed to help children with ASD to
improve their social abilities; these therapies can be enhanced
by using robots [5].
However, due to the complexity of social interactions in-

volving children, the majority of existing studies use the
Wizard of Oz (WoZ) technique, where the robot is not au-
tonomous but controlled by a human. Despite the clear
advantages of this method, there are a number of reasons for
researchers to move away from it, such as reducing the per-
sonnel required to use the robots, or improve the consistency
of therapy [3, 6].

The present work is conducted within the DREAM project:
a European project which aims to develop new Robot-Enhanced
Therapy. We seek to develop the therapy robot’s control
system to enable supervised autonomous operation. A clini-
cian will set the therapeutic goal for the session, from which
the robot should be able to decide by itself which actions to
execute, under explicit supervision. Rather than maintaining
autonomy, we argue that allowing the robot to revert control
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classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-
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http://dx.doi.org/10.1145/2701973.2702715.

to the therapist when appropriate would improve both the
interaction and the therapeutic outcome.

Figure 1: The Aldebaran Nao was selected as the common
robot platform, to facilitate consistency and reproducibility.

2. BACKGROUND
Different approaches of Robot Assisted Therapy (RAT)

have been explored by researchers in the last two decades.
In previous studies robot control was typically achieved in
one of two ways: either fully tele-operated using the WoZ
method, e.g. [4, 7] or fully autonomous, e.g. [1, 2]. For
WoZ control, a hidden, manual manipulation of the robot
allows the therapist to obtain exactly the desired behaviour
and to adapt to unpredicted events. On the other hand, an
autonomous robot requires lower load on a human operator
and allows greater repeatability of behaviour, but requires to
design a complex controller. As such, only reactive control
schemes are used in prior work.

Several attempts have already been made to combine the
flexibility offered by the WoZ method and the autonomy and
the consistency provided by autonomous operation. How-
ever, working with children with ASD presents additional
challenges: the infrastructure required to perform the exper-
iments is more extensive, it is hard to gather a population
large enough to obtain statistically valid results, therapies
take place over long periods of time and, as ASD is a spec-
trum, the children’s behaviour can be more difficult to predict
than neurotypical children.

To be able to use a robot as a therapeutic tool, we use a set
of interaction scripts that determine the interaction between
the child and the robot. These scripts are defined and selected
by a therapist according to the goals of the current session
and describe a clear, serial interaction where both the robot’s
and the expected child’s actions are specified.

However, as we are working with children with ASD, it is
unlikely that the script will be completely adhered to. The
robot needs to be able to react to unpredicted actions to either
return to the script or find alternate means of continuing



the interaction. An autonomous action selection mechanism
must therefore be able to cope with unplanned events whilst
maintaining the therapeutic goals for the current session.
A general description of the context in which the action
selection mechanism should operate is presented in Figure 2.
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Figure 2: Context for the action selection mechanism.

Despite this, in some cases, the best action to select may
be to stop the interaction and request help from the therapist.
Contrary to the current approach, where the clinician must
detect a problem and stop the interaction themselves, we
aim to allow the robot to autonomously decide to refer to a
human when this is appropriate.

3. APPROACH AND METHODOLOGY
The requirement for help for the robot may arise for a

number of reasons. Firstly, there could be physical danger
for the robot or the child. Some movements required by
the script could harm the child if he is too close, requiring
intervention if automated attempts to prevent collision fail.

Secondly, children could also react strongly to some specific
actions, and force the therapist to stop the interaction. The
robot could identify these actions and require help if one of
them is requested for execution, thereby adjusting its level
of autonomy. As the robot will be use in therapies, every
action has to be carefully therapy-oriented and some actions
could be defined that require approval before each execution.

Finally, the interaction could also fail (e.g. child no longer
engages with the robot), where the robot does not have the
competencies to pursue the interaction. In this case, therapist
intervention would be required. If the therapist and the robot
behave consistently in this context, the interaction may be
more effective in terms of therapy.

3.1 Action Selection Mechanism
Based on previous studies about action selection in robotics,

we have identified two broad approaches which could enable
control to revert to the therapist. The first one is using a
rule-based mechanism: as soon as a specific state is reached
the therapist is consulted. An example is using the child’s
engagement in the interaction as a homeostatic variable: as
soon as the implication goes outside a certain region, the
interaction is stopped.

Another possibility is to use a predictive mechanism. Based
on its previous interactions with this specific child or also
with other children, the robot could have a model of what
reaction is expected from its actions, and use it to predict the
consequences of stopping the interaction versus continuing
with its behaviour.

3.2 Evaluation methodology
To test our approach, we will use our algorithm in real

session both with neurotypical children and ones with ASD
in three scenarios: turn taking, imitation, and joint attention.
If the robot detects a case where it has to revert the control

to the therapist, it will broadcast a message describing what
action should have been executed and why it stopped. The
therapist will have the opportunity to execute the action,
select another one, intervene in the interaction, or stop the
session. We will use the therapist’s action after control
reverting and the number of times a therapist has to interrupt
the interaction without a robot’s prompt to evaluate the
efficiency of the action selection mechanism.

4. DISCUSSION
Even when triggered by the robot, an unplanned human

intervention in the interaction may have consequences on the
child, the robot, and the therapist. For example, allowing
autonomous failure detection, the robot can learn about it,
and find itself a way to avoid the same state in the future.
Concerning the child, even if the session stops before an

important problem, the emotional impact of interrupting
the current interaction need to be taken into account. As
children are sensitive, it is important to think carefully about
the way to communicate the robot’s failure to the child.
Should the information about the interruption come from
the robot? Should the therapist explain to the child what
happened to the robot? We have no general solution yet,
and the solutions may depend on individual characteristics.
These questions have to be addressed based on data from
empirical studies and collaboration with therapists.

5. CONCLUSIONS
In this paper we propose an approach to RAT for children

with ASD: allowing a robot to voluntarily interrupt the
interaction with a child and request help from a therapist.
We outlined our motivations for this behaviour and presented
possible consequences and questions to be resolved. The
proposal is that autonomous action selection supports RAT
because it reduces the workload on therapists, and improves
its consistency.
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Summary

The purpose of this technical report is to summarise the motivations and constraints underlying the

cognitive control structures, and to outline an organisation of these sub-systems. This is a proposal

only; this document is intended to be a working one, to be updated as required during development.

This version of the report is based primarily on the discussions that took place in Brussels (23/01/15).
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1 Aims and Constraints

An attempt is made in this section to formulate what the ideal (semi) autonomous system should

conform to in terms of both clinical outcomes (i.e. the requests from the psychologists to improve

the outcomes of individual children through robot-assisted therapy) and potential research (where this

does not conflict with the clinical objectives).

The primary goal of the work in WP6 is to provide robot behaviour to facilitate the Robot-Assisted

Therapy, see [1]. The main visible outcome of this should be the ability of the robot to execute the

evaluation and therapeutic scripts as defined by the therapists. Whilst this must be achieved to fulfil

the aims of the project, there are a number of areas in which there would be a role for behavioural

adaptation, learning, and autonomous decision making. These should not however conflict in any

way with the therapeutic goals for any given interaction session - indeed, it is necessary to vary the

degree of shared control between the autonomous behaviour and the wizard supervisory control if this

is more appropriate for a given child and/or circumstance.

Primary among these is the high probability that the interaction (due to the behaviour of the child

for example) will deviate from the script. This must be handled in a manner consistent with the

therapy, to not upset the child, and possibly (depending on the context) trying to re-engage the child

with the script. A range of strategies will be required to deal with these situations, depending on the

individual child (his/her characteristics) and the actual context for the departure from the script. This

behaviour is likely to require flexible action selection, and will therefore require substantial research

effort.

A second reason is that the robot is to demonstrate social behaviour in a supervised autonomous

manner (with the requirement that the supervisor may over-rule this autonomous social behaviour if

required). Social behaviour requires behaviour that is adaptive to the interaction partner in a range

of interaction modalities (e.g. movement and speech). The autonomous behaviour of the robot must

therefore be responsive to this, in a manner that is not, and indeed can not, be predetermined in the

script.

Thirdly, given the range of intervention scripts that have been defined, there is also a possible need

to modify the relative difficulty of the task (and/or interaction) given the specific characteristics and

performance of the interacting child. This would, for example, involve varying the number and type

of social behavioural cues used, the complexity of the required motor behaviours to complete the task,

and/or the number of steps in the task.

The interfaces of the cognitive controller (WP6) with the rest of the DREAM integrated system

(WP’s 4 and 5) have already been defined. The intention in providing this overview document is to

show how the subsystems of WP6 fit together to determine the behaviour of the robot in therapy inter-

actions: the context in which each subsystem must operate is thereby defined. Initially, the skeleton

of this system will be implemented in the most straightforward manner possible (with simplified code

implementations of full component functionality for example) to check that the system fulfils all the

requirements. This skeleton can then be filled in with more appropriate functionality over the course

of the project.

2 Overall Organisation

A general high level description of the robot control system is shown is figure 1. This basically

describes how the autonomous controller is informed by three external sources: the child behaviour

description, sensory information, current intervention script state, and input from a therapist (e.g.
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emergency stop, not shown in diagram). Combining these sources, the autonomous controller should

trigger as an output the appropriate sequence of action primitives to be performed (as well as some

feedback via the WoZ GUI), which then gets executed on the robot.

Figure 1: High level description of the robot control system. Child behaviour interpretation (WP5)

and sensory information (WP4) provide the context for the autonomous action selection (as well as

feedback from motor command execution), in combination with the particular intervention script

being applied. The intervention script provides context for child behaviour interpretation.

The autonomous controller is composed of a number of sub-systems, as described in the DoW:

Reactive, Attention, Deliberative, Self-Monitor and Expression and Actuation. These sub-systems

interact, and must combine their suggested courses of actions to produce a coherent robot behaviour,

in the context of constraints laid down by the therapist (for example, the script to be followed, types

of behaviour not permissible for this particular child because of individual sensitivities, etc). An

additional challenge is to ensure that the resulting system is independent of specific robot platform. As

a result, we have formulated the following architecture describing how cognitive control informed by

the therapy scripts is to be achieved (figure 2), an outcome of the WP6 meeting in Brussels (23/01/14).

The following sections provide some further outline details of the main subsystems.

Figure 2: Description of the cognitive controller subsystems. The script manager is separate from,

but tightly interacts with, the deliberative subsystem to enable the robot control system to generate

appropriate social/interaction behaviour even in the absence of an explicit interaction script. UMs:

User Models.
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3 Reactive/Attention Subsystem

In the DoW, these are separated into two distinct subsystems. The reactive subsystem provides the

general life-like behaviour of the robot (small motions, eye blinking, balancing, recovering from falls,

‘pain’ reactions, etc) in an as appropriate manner as possible (possibly requiring pilot studies to ver-

ify this). However, it should be possible to turn off these behaviours should the therapist deem it

necessary for a particular child. This functionality is not envisaged to involve learning or adapta-

tion. The attention subsystem is a “combination of perceptual attention ... and attention emulation”.

Making eventual use of saliency maps and habituation filters, this functionality will be guided by the

deliberative subsystem.

We instead propose that these two subsystems be combined into a single component, due to the

significantly overlapping technical systems required to fulfil the functions required. Both subsystems

require access to features of the environment and interacting person(s) to respond appropriately (e.g.

looking at a face or diverting attention to a loud noise somewhere in the environment). Managing this

in a single component therefore seems a sensible choice so that functionality is not replicated. As

planned in the DoW, it will be possible for the supervising therapist to switch off these functionalities

if required for interaction with a particular child.

4 Deliberative Subsystem

A central aspect of the cognitive controller is the ability to follow intervention scripts as defined by

the clinicians for both diagnosis and therapy. These scripts describe the high-level desired behaviour

of the robot1, and the expected reactions and behaviours of the child, in a defined order.

The decision was made to separate the script manager from the deliberative subsystem itself (fig

3). This decision was taken for a number of reasons. Firstly, it enables the cognitive control of the

robot to be independent of the precise application domain - with the intention that the developments

made would be more generally applicable within the field of social robotics, although the script-based

behaviours remain a central part of the behaviour generation of the system. Secondly, it ensures

that it would be possible to change the scripts in the future to alter their relative difficulty, by for

example including further steps in the intervention, changing the type of intervention, or creating dif-

ferent activities, due to a modular design2. As a consequence of this, the deliberative subsystem is

now primarily focussed on action selection considerations, making use of a range of algorithms and

methodologies as will be explored in the coming years. Thirdly, this division of the script manager

from the deliberative subsystem enables the system to generate coherent behaviour even if there is not

a script active at a given moment. This could be useful for periods between the explicit intervention

sessions for example, where the robot would then still be able to respond appropriately to environ-

mental stimuli, if so desired by the therapists. These are consistent with the aims expressed within the

WP6 DoW.

The script manager itself separates the logic necessary to manage progression through the script

(by taking into account the available sensory feedback after actions for example) from the script itself.

This makes it straightforward to add new scripts or modify existing scripts as required. This logic

management could in the first instance be achieved using a Finite State Machine (FSM).

1These predefined robot behaviours differ from the the low-level motor control of the robot, as these may be mixed

with other aspects of behaviour not specified explicitly in the high-level intervention script; e.g. the addition of attention to

unexpected events in the environment.
2As noted above, these high-level scripts do not necessarily completely define the behaviour of the robot, and are distinct

from any predefined robot motor control sequences that may be used, such as waving or nodding.
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Figure 3: Overview of the script manager subsystem. The scripts are defined independently of the

script manager, which is responsible for stepping through the script as appropriate and

communicating with the other subsystems as required.

One possibility for the scripts is that each step in the script be defined as a 3-tuple of the form:

[existing state, proposed action, consequent state]. In this context, existing state could be defined

by default to be the consequent state of the previous step. The proposed action defines what action

should be taken by the robot, and be one of the actions (or unique identifier thereof) defined in D1.2.

The consequent state defines what robot state should be expected (in terms of sensed state) if the

proposed action were successfully completed. This may be used by the script manager to determine

if and when it is appropriate to move onto the next script step. These 3-tuples may initially be held in

a plain text file to facilitate examination and modification by the clinical staff as required. This can be

changed later to ease the process (for example by providing a drag-and-drop script construction GUI).

The deliberative subsystem is the primary locus of autonomous action selection in the cognitive

controller (fig 2). This subsystem takes as input sensory data, child behaviour information, informa-

tion on what step should be next executed from the therapy script, and higher-level direction from

the wizard/self-monitoring subsystem. It then proposes what action should be taken next by the robot

(this proposal is sent to the expression and actuation subsystem). In a normal script execution context,

the deliberative subsystem is the primary driver of behaviour, which would typically propose the next

script step.

There are however a number of circumstances in which this is not the most appropriate action to

perform. For example, if the child is detected to have very low engagement with the task (as deter-

mined from the WP5 component/s, and/or information from WP4 sensory system saying the child is

looking away for example), then it would be appropriate to attempt to re-engage the child with the

robot/task prior to executing the next stage in the therapy script. In this case, the deliberative sub-

system can choose to depart from the behaviour defined in the script, and instead propose a different

behaviour.
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5 Expression and Actuation Subsystem

The main functionality of this subsystem is to determine which combination of low-level actions the

robot should execute next, and how these actions are to be performed. Suggestions for actions to take

will come from three other subsystems: deliberative, reactive/attention, and self-monitoring, and the

affective state generated by the deliberative subsystem, see left side of figure 4. Along with this, it is

assumed that the supervising therapist, through the GUI, will determine (either beforehand or in real

time) the aspects of robot behaviour that should be executed, from which relative priorities will be

determined for the three subsystems. This covers for example whether external disturbances (a loud

noise in the background, or the appearance of a new face) should be reacted to by the robot (by leaving

the script for a while for example), or ignored (with the script rigidly adhered to). The Expression and

Actuation subsystem will combine these sources of information in an appropriate manner, see Motion

Mixer in figure 4, ensuring that the stability of the robot is maintained. For example, if a greeting wave

is requested by the deliberative subsystem, and the reactive/attention subsystem wants to look at a face

that has been detected, then the expression and actuation subsystem can combine the two by executing

both (if the robot can remain stable by doing so). For a basic first step switches based on priority level

could be used: i.e. if the script requests an action, execute it (and only it), but if there is no script

action requested, then do what the reactive/attention subsystem proposes. However, the intention is to

provide full behaviour mixing capabilities based on derived priorities from the therapists.

All this should be complemented by affective information, if this is available and appropriate to

use. For example, the speed of motor execution could be related to arousal levels, or the choice of

action sequence could be based on valence levels (if appropriate alternative sequences exist). This

functionality will need to be switched on or off as required by the therapist based on child-specific

considerations, and the relation to the therapy script (it may not appropriate to add emotional colouring

to actions during the diagnosis procedure for example).

To approach such challenges, the first task should be to design a platform-independent represen-

tation of expressions. Different robots use the Facial Action Coding System (FACS) by Ekman and

Friesen [2] to abstract away from the physical implementation of the robot face. FACS decomposes

different human facial expressions in the activation of a series of Action Units (UA), which are the

contraction or relaxation of one or more muscles. In a similar way, Body Action Units (BAU) will be

defined together with a Body Action Coding System, where the different gestures are decomposed in

the activation of BAUs. The BACS will point out the Action Units that need to be actuated for the gen-

eration of a desired gesture or body pose. This system avoids pre-programming of robot-dependent

body poses and actions, which is relevant since humans are able to recognize actions and emotions

from point light displays (so without body shape) [3].

The physical actuation of Action Units will depend on the morphology of the robot: a mapping

will be needed between Action Units and physical actuators, this mapping will be specific to a robot

platform and we will explore the possibility of learning this mapping. To translate this to the mor-

phology of the robot, the Action Units need to be mapped to the degrees of freedom, and thus to the

joints of the robot, see right side of figure 4.

A second task will be the categorisation of actions, comprised of temporal series of FACS and

BACS, and the organisation in libraries that are accessible from the behaviour subsystems (Reactive,

Attention and Deliberative). All actions for the different behaviours should be stored and expanded

upon without the need to reprogram other subsystems.
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Figure 4: Overview of the Expression and Actuation subsystem. This subsystem receives inputs from

several sources, categorizes them using the Library module and mixes them up to create a unique

behavior. Such behavior is mapped into the joint configuration of the corresponding robot. This last

process is done collaboratively between the subsystem and the robot.

6 Self-Monitoring Subsystem

The self-monitoring subsystem provides an oversight mechanism (or set of mechanisms) of the robot

behaviour. It is intended to provide a check to prevent technical limits being exceeded (of the robot3),

and to prevent any ethical boundaries being crossed. This subsystem should have some degree of au-

tonomous behaviour, with the intention being that these checks be implemented in a set of predefined

rules, with no role for learning within this subsystem.

During the discussions, it was proposed that the self-monitoring subsystem should also be inte-

grated explicitly with the therapist GUI. In line with the principle of supervised autonomy established

in the project, the therapist (“wizard”) should be able to monitor the behaviour of the robot, and be

able to intervene if necessary, either stopping the behaviour, modifying a behaviour, or setting an al-

ternative behaviour. Having this oversight function go through the self-monitoring subsystem seems

to be a reasonable solution. By specifying the required priorities for each subsystem depending on

the needs of the therapy, and using the “alarm signals”, the supervising therapist can stop the robot or

modify its behaviour as desired.

Regarding both the autonomous oversight functions and the supervised actions, there are a number

of issues that require exploration and further definition over the course of the project. One thing is

how the robot should behave, and what feedback it should give to the child, should something go

wrong. Possible alternatives are described in the DoW.

7 Action Primitives and Motor Execution

The behavioural functions of the action primitives required for completion of the therapy scripts have

been defined. The execution of these is handled in a number of steps, as outlined in the “Robot

3This is mentioned here as it is listed in the DoW as a competence of the self-monitoring subsystem, however, this

functionality is at least partially implemented in the low-level motor control system of the robot: see section 7.
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Low-Level Motor Control” technical report. This provides an interface between the control system

(handled in a Yarp-based system) and the API of the robot hardware (Naoqi in the case of the Nao).

The purpose is both to provide a bridge between the two systems, and to provide information to

behaviour planning and supervisory oversight regarding the progress of motor command execution,

including why a fail occurs if it does. This can be used to inform future action selection for example

(by providing feedback for learning).

In addition to this low-level control system, there is the possibility that hardware abstraction can

be handled automatically: i.e. that motor commands at the joint level can be determined automatically

for different robot embodiments, without having to manually encode each specific action.

8 Other aspects of the Cognitive Control System

8.1 User Models

One functionality that was not explicitly defined in the proposed architecture, WP6, or indeed else-

where in the project, is some source of information on the child. This information could encompass

personal identification and preference information that could be used in conversations (e.g. name,

age, favourite colour, etc), and possibly also ASD diagnosis information (perhaps as emerging from

the diagnosis interaction scripts).

These user models would enable, for example, inform learning mechanisms (within the delibera-

tive subsystem for example) to link behaviours and outcomes with specific characteristics of individ-

uals (indicated in figure 2). This information need only be uniquely identifiable rather than linked to

a specific child - although the extent to which this can be done needs to be assessed in light of ethics

considerations (cf. WP7 ethics manual draft, December 2014). Technically, in the first instance, a

unique impersonal identifier may be used to represent an individual child. Where this information

should reside, how it should be stored, etc, has not been decided. It would probably be useful how-

ever to coordinate this system with WP5, as the child behaviour interpretation methods may find such

information useful too to be able to provide more personalised characterisations of engagement and

performance for example.
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Summary

In this technical report we describe the software organisation of the Sandtray system created for the

turn-taking diagnosis/intervention interactions. This system is based on the organisation defined by the

WP3 software engineering standards, although at the moment does not fit into the rest of the DREAM

system:this was to facilitate ease of setup and launch for the end-user (i.e. minimal installation, and no

compilation required). The WoZ system provides a GUI from which the therapist can control the robot

behaviour in the turn-taking task, and logs of the interaction are automatically stored for retrospective

analysis.

Principal Contributors
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Emmanuel Senft, Plymouth University
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1 Turn-taking Diagnosis/Intervention

The turn-taking diagnosis and intervention tasks are specified in D1.1. In the context of the Sandtray

device, this is a task in which the child and the robot take turns in moving an image displayed on

the touchscreen to one of two target locations. The robot plays the game with the child, and provides

verbal indications of whose turn it is. Figure 1 shows the constructed Sandtray device. The task may

be varied by changing the images to be sorted (e.g. characters, emotions, etc).

Figure 1: The final setup of the Sandtray with robot shown with the intervention table. The robot

should ideally be centred in front of the screen to facilitate the interaction, and to ensure that the

pointing behaviours are accurate.

In this first version of the task, a therapist provides all of the decisions regarding the behaviour

of the robot: it is a full “Wizard-of-Oz” (WoZ) interaction. This enables experiments to take place

before a full autonomous system has been implemented. Despite this, all of the components of the

WoZ system are implemented using the software engineering standards established in WP3.

However, being designed as a standalone system with the intention of minimising the learning

curve necessary for deployment and use, these components are not yet implemented in the context

of the complete DREAM system architecture. The purpose of this technical report is to describe the

system, its components and its use.

2 Wizard-of-Oz System

2.1 Dependencies

The intention is that this Sandtray WoZ system can be deployed easily and without need of recom-

pilation on the target PC. There is only one dependency that requires installation before use: Yarp

v2.3.63. This is needed in order to start the system. Instructions for installing this can be found on the

project wiki (“Software Installation Guide”).

Additional setup instructions are as follows:

1. Copy folder ”dreamSandtray-release” into C: drive

Date: 23/03/2015
Version: No 1.0

Page 4



Sandtray Wizard-of-Oz System for
Turn-taking Intervention

2. Add ”C:/dreamSandtray-release/working/bin” to PATH (user) environment variable: this allows

the precompiled executables to be found

3. Change the DREAM ROOT environment variable to point to ”C:/dreamSandtray-release/”: if

the full DREAM system is to be installed afterwards, be sure to change this back!

4. In file ”/working/config/config.ini”, change the IP address to that of the robot

5. In this same file, set the relative position of the robot to the touchscreen: this will be different

depending on whether the robot is standing or crouching when playing the game; point of origin

on robot is the neck joint

6. On sandtray machine, change the IP address to that of the Host PC (in ”settings.ini”)

2.2 Deployment

To launch the system, the following two steps are required:

1. On host PC: in directory ”/run” double click on ”run-sandtray.bat”: this will launch the system:

if successful, the robot will readjust the position of its arms up and a GUI will appear; before the

first launch, it may be useful to disable any firewalls, or else enable firewall access permissions

for the four components that are launched; if launch fails, then close all windows and try again

(if naoInterface.exe persists in failing to launch, then try restarting the robot)

2. After the robot has set its position and the GUI has appeared, then start the sandtray GameEngine:

if successful, then will see confirmation on the terminal; if fails then check that the sandtray is

on the same wireless network as the robot and the hot PC, and that the correct IP addressed have

been set in the config files

3. Full interaction logs are automatically created: see section 2.4 below

2.3 Behaviour Control

Assuming a successful system launch, three terminal windows are spawned, and the control GUI

(figure 2). This minimalistic GUI provides some feedback from the robot (success, or otherwise, of

the desired motor commands - see low-level robot motor control technical report) and the Sandtray

GameEngine (such as child successful or unsuccessful move, and the same for the robot, library

change confirmation, etc).

The GUI provides two types of command. The first is presented in the middle column of buttons.

These provide the verbal feedback that the robot can provide the child, such as a brief introduction,

indication of whose turn it is, and feedback on the outcome of the categorisation. Additionally, a

“rest” button is provided that moves the robot to a neutral position and switches off the motors. This

provides a first level safety feature: if there is any chance of injury to child or damage to robot during

movements, then this button will disable the robot. This is a basic feature at the moment, which will

be extended in due course (see below).

The second type of command allows manipulation of the Sandtray GameEngine. “Good Move”

and “Bad Move” make the robot perform the relevant classification of the image on screen (the image

moves across the screen with the robot hand tracking it, thus providing the illusion of robot control).

The “New lib” button presents a new image library on the touchscreen, and the “Reset lib” button

presents the current image library on the screen again. “Shutdown” closes the GameEngine remotely.
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Figure 2: The Sandtray Turn-taking task control GUI. The windows on the left provide text feedback

from the Sandtray and robot; the column of buttons in the middle provides robot verbal feedback;

and the right-hand column of buttons provides robot behaviour control and GameEngine controls.

The “Stop” button is intended to provide a second level of safety control for the controlling therapist

by enabling the interruption of robot movements that are currently under way. This functionality is

under development, as part of the continued work on the low-level motor control (please refer to the

relevant technical report).

2.4 Automated Interaction Logging

In addition to providing control, the Sandtray WoZ system also provides automated logging of all of

the important events in the interaction that are detected by the Sandtray, or that are initiated by the

therapist. These files are created automatically when the system is run: a filename with a timestamp

is created in the directory where the batch file is located (where the system is launched from) - see

section 2.2 for details.

This log file contains all events initiated through the GUI, events detected by the Sandtray, and

motor command execution feedback. All events are logged with a timestamp (one second resolution),

an identifier, and a description in comma-separated lines of a plain-text file. This facilitates parsing

at a later time for retrospective analysis, replaying the interaction for diagnosis purposes, etc. This

method of interaction logging will be extended as more data becomes available to the system.

3 Component Descriptions

The Sandtray Turn-taking WoZ system is comprised of four main components (in addition to the

two external devices): sandtrayController, sandtrayServer, naoInterface and a GUI. sandtrayServer

provides a communication interface between the yarp-based system and the Sandtray GameEngine.

sandtrayController provides the primary coordinating role between the different components, contain-

ing some functionality that will soon be split between the Deliberative and Expression & Actuation
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sub-systems. The GUI provides the therapist-facing controls (described above). The naoInterface

component

Figure 3: Components in the Sandtray WoZ control system. Communication between components is

handled by yarp: shown are the component port names for the sandtrayController component (not all

port names shown for clarity). Communication with the Sandtray device and Nao robot is handled

over wireless networks outside of yarp.

3.1 gui component

This component is the interface used by the therapist to send request to the system. The current design

is shown in figure 2. The description of the buttons may be found above.

The FLTK library is used to generate the GUI, the code is adapted from David Vernon’s protoGUI,

so the GUIutilities library is needed to generate it. The update is performed with a while(isStopping),

could be improved with a rated thread or something else. The organisation of files is the same as

described in YarpGenerator tech report: the 4 files needed for yarp, a yarpInterface class, a controller

class where the main code is, and the display class containing all the information required for design-

ing and running the GUI. Currently each button in display is linked to a static callback redirecting to

a callback in display.cpp, which calls the appropriate function in controller.cpp, this could probably

be simpler.

This component also uses the childName variable in the main config.ini to generate the string send

to load the introduction behaviour to make it personal to each child. So one introduction behaviour

need to be exported for each different child and should use the following convention: introduction-

childName , e.g. ”introductionGeorges”.
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3.2 sandtrayController component

The sandtrayController component is the main and central component. This is the one managing

the interaction between the other components. It has input and output ports from/to all the other

components. It gets the command from the gui and relay them to the server or the naoInterface and

act in accord with the feedback obtained.

As this is the central component, the logging is done from here. The file structure used is the

classical YarpGenerated one, with an additional logger class (.cpp and .h) to be able to generate

logging files. Currently the logging is disabled but the file is still created, this could be changed.

This file does some string processing, so new methods have been added to handle that. It also

integrate a Link class allowing to Link an action to a previous if a certain state is reached. The linking

process is described in depth below.

This component is also responsible of the bezier calculation and the transformation from pixel

coordinates to robot’s ones. All the variables are defined in sandtrayControllerController.h except the

horizontal and vertical distances between the robot and the screen which are defined in the global

config.ini file in centimetre.

3.3 sandtrayServer component

This component is responsible of the interface between Yarp and the Sandtray, its main functionality

is to transform Yarp message into sockets one and vice versa.

The global structure is the same as the others components. In addition, two class are define in the

controller file: SandtrayControl and SandtrayEvent. The first one is a classical class which handle

the communication along the command socket port with the Sandtray, which is used to transmit in-

formation from the controller to the Sandtray, and receive the answers. The communication is only

triggered by the SandtrayController, and handled by Yarp callbacks, so no while loop is required.

The other one manges the communication along the event socket port and in that case, the discus-

sion is triggered by the Sandtray. In the current implementation, this class wait using a while(isStopping)

to get information from the Sandtray, so yarp::os::Thread is inherited from.

A limit of the current implementation is that the Sandtray needs to be started after the server

component.

3.4 naoInterface component

This component implements the action primitives as defined in the deliverables. The idea is to process

commands to the robot, check if the command is possible, avoid conflicts and provide a way to stack

commands.

Currently the commands allowed are: pointAt, say, execute a behaviour. In addition to the classical

files, an action class has been added, which is used to serialise the different type of actions: movement,

text to speech or behaviour. All the tests performed are implemented here. The other new class

is naoInterfaceModule, this provide the interface with Nao, with all the functions robot specifics.

In principle the code should be easily modified to adapt to another robot, only this class and the

refFeature map used to avoid conflicts should be modified. More information is available in the Low

Level Control tech report.

Comparing to the previous implementation, multiple features have been added, and few changes

have been implemented in the flow, no completion check is performed when an action is received.

Multiple action cannot be successfully check anymore, like tts or behaviour and the movements can

be composed of multiple points, so a previous completion check makes no sense. The ISTARTED
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message has been also overloaded, now it can be followed by a “ sub id” with id a negative number

used to synchronyse the controller and the naoInterface.

The component now integrate a pointAt function which does a simple inverse kinematic to trans-

form x, y, z coordinate in joint space. It selects first an arm depending on how many points are more

on the right side or the left one, then compute the joint angles. This function can take multiple points

with the parameter x, y, z and t, and only a subset of the movement can be executed.

3.5 Detailed description

3.5.1 Action linking and synchronisation between the naoInterface and sandtrayController

In the previous implementation, each action required by a component and executed by the naoInter-

face was identified by a unique id. However this id was provided by the naoInterface and when a

component required an action, it had no way to know the id of this exact action, multiple components

can require action at the same time. We wanted a way to serialise two or more action. To do so, when

a component request an action it needs to know what is this action’s id to be able to command a new

action when this one is finished depending on its result.

To allow this synchronisation, a system of subId was implemented. When a action is requested by

a port, it can be overloaded by adding a new parameter at the end of the parameter list to assign a subId

to an action. The subId is a negative int allowing to know what is the id (in naoInterface) assigned to

a defined action. In naoInterface, this subId is extracted and added to the action and when the action

is started, the subId is added at the end of the ISSTARTED message to allow the other component to

know what is the id of the action with a specific subId. Currently, this subId is displayed and used

only with the ISSTARTED message. In the future it should be important to use it also in case of direct

failure.

In our setup, only the SandtrayController requires the use of synchronised actions. This is done

via the Link class. Defined in sandtrayControllerController.h, this class define an action: id and subId,

a linking condition ( status), a consequence and a pointer to another link if needed. This allow us to

perform a specific action when a defined action is finished, and cascade it if required. Currently, after

the completion of and action, we can request a new tts, movement or behaviour, the type of action

is stored in consequence, the parameters of this action are stored in the two strings param1 and

param2 or move.

To create a Link, we need to know what is the subId the causal action, the one which will trigger

the Link, later, this subId will be associated to a proper id (the same as used by naoInterface). If we

want to chain multiple action, we need first to define all our actions with the proper subId (defined in

the port parameters), and then create the different Links with the subId assigned to their causal action

and giving them the parameters for the consequence action. Then, each consequent Link can be added

to the previous Link in nextLink, and the first Link can be added to the currentLink vector in the

controller class.

A subId variable is stored in the controller, and is decremented once for each Link, and this is used

to assign subId to an action.

Currently, when an action is a success, the nextLink is added to the currentLink vector, and

if it is a faillure, it is destroyed. However there is a memory leak, if we have a chain of links, and the

first one is failed, only the next one is deleted, not all the chain...
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3.5.2 Flow when move requested

The flow is as defined in the previous the design. The added part is the following: the sandtray returns

coordinates for the bezier move in pixel, this is relayed to the controller via the server. Then the

controller extracts the bezier points and transform the coordinate in robot space.

A first pointAt is prepared with all the bezier points plus a one at the end of the vector to signify

that only the first movement should be perform. The current subId is added also at the end of the

vector. Then a link is create with this subId and the success status to execute the full movement and

the boolean synchronizedSandtray is set to 1 meaning that the command need to be sent to the

Sandtray also. The subId variable is decremented and added to the movement after a 5, meaning that

we want to perform the full movement with the new subId. A last link is created with this subId and

the behaviour init in parameter, to reset the robot. This last link (behaviour) is added in the nextLink

pointer of the movement Link, which is added in currentLink.

Finally the first movement (initial pointAt) is sent to naoInterface. There the subId is extracted,

and sent with the ISSTARTED message to the controller, which assign this id to the first link. When

the pointing is completed, the first link is triggered: we send to the naoInterface and the Sandtray

the request to move and we add the second link to the currentLinks. Once the full movement is

received by the naoInterface, it send to the controller a new ISSTARTED message with the new id and

subId. Similarly this is handled by the controller to assign the right id to the second link. And finally

when the action is completed, the last link is triggered to reset the robot.

4 Sandtray GameEngine Management

4.1 Sandtray GameEngine

The Sandtray sorting task software is already loaded onto the touchscreen, with some sample image

libraries (see next section for details of these). There is an executable in a folder on the desktop, and

a shortcut on the desktop itself. Double-clicking this starts the programme in full-screen mode. This

automatically loads all available image libraries, and cycles through them in numerical/alphabetical

order.

There is only one keyboard shortcut that is required for operating the sorting game: the ESC key

exits the programme and returns to the desktop. We advise not to do this in front of the child unless

absolutely required - we recommend having the sorting game on the screen when the child enters the

room.

Further to this there are two on-screen buttons that can be used to control the sorting game. The

circular arrow leads to a reset of the current library (i.e. the same images are displayed again). The

other icon (a sun with two + symbols...) indicates a switch to the next library. With further integration

with the rest of the system, switching to specific image libraries will be possible at a later date. These

on-screen buttons can be disabled if required in the config file (see below).

The software has a number of options that can be modified in a configuration file, located in

“settings.ini”. There should not be any need to change the paths in this file. The “robotiP” field

should be set to the IP address of the host PC being used. The “game” options control aspects of the

GUI, as described below (table 1).
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Table 1: Sandtray sorting game options, can be found in settings.ini

Setting Description Default

LadderRungs The number of fields visible for classified images 5

LadderWidth Width of fields (in pixels) 50

ReserveTests (do not modify) deprecated functionality false

TestLibStart (do not modify) deprecated functionality -1

UseButtons Whether to display control buttons on screen true

ShowFeedback Whether to display feedback on classifications true

OneAtATime Display images one at a time on screen true

CentreImages Display images in the centre of screen (random otherwise) true

4.2 Sandtray Image Library Management

The Sandtray sorting game is based on image libraries. Each image library has a unique identifier,

and contains a set of images (in .png format). Each library is in a separate folder in /images/libraries/.

The name of each library folder follows a specific format:

libxx name opt

Where xx is an integer (e.g. 01), name is a string identifier (e.g. carbohydrates), and opt is an

optional extension that provides additional information.

For the purposes of the present experiments (turn-taking), a two category sorting task is assumed

(one, two of four category sorting tasks are possible). Each library is a folder containing a number

of images. There are no explicit limitations on the number of images per library, although resource

issues (all images are pre-loaded at run-time) may mean that splitting up large libraries into parts is

necessary. Two category images must be defined. These can be any image of the same type and size

as standard images, but with the following naming convention:

catx name.png

Where x is either A or B, and name is a string identifier of the category. For example, the following

two filenames may be used to define two categories: catA high.png or catB low.png.

Standard images (in .png format) have to be assigned to one of the two categories (A or B), and

their filenames should follow a similar but slightly different naming convention:

xNN name.png

Where x is the category to which the image belongs (as defined for the category images above), NN

is a unique image integer identifier (e.g. 01), and name is a string identifier that provides some descrip-

tive information. Examples of suitable image file names are A01 chicken.png or C11 lasagne.png.

Please see the example image libraries supplied with the Sandtray for indications of appropriate

image size and resolution (as tested with hundreds of UK primary school children in the approximate

age range of six to nine): please ensure that the images are not too large, as this will cause problems.

The string identifiers (and optional extra information) attached to the names of the libraries and the

images are not used at the moment. However, they will be used to enable the robot to refer to specific

objects, and specific properties of those objects as the autonomous system is developed. It is therefore

worth adding this information to the folder and file names during the creation process.

Date: 23/03/2015
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Summary

The purpose of this manual is to help UBB in the development of the Wizard of Oz experiments within

Work Package 2. Both PLYM and VUB have collaborated to develop the corresponding modules in

Choregraphe. This manual aims at being a reference point to ease the habituation of the therapists to

the software.

Principal Contributors

The main authors of this document are as follows (in alphabetical order).

Pablo Gómez, Vrije Universiteit Brussel

Revision History

Version 1.0 (P.G. 11-02-2015)

First draft
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1 How to use this manual

In order to make the software the more understandable as possible we have divided each of the sce-

narios in Deliverable D1.1 into different project files. So that, in between breaks, the forthcoming

scenario has to be loaded. The procedure to follow to load a project will be explained in Section 2.

Once opened, each project file includes a set of boxes to make the robot perform an action or say

something. Each of these boxes is identified by a self-explaining name. To make easier the manage-

ment of the boxes during the experiment we have not grouped them chronologically but into families

of similar behaviors, i.e. all text boxes are close to each other, actions regarding pointing are together,

and so on. In addition, a representative image identifies each family of behaviors.

At the end of the manual some notes about the limitations of this software are included. We must

not forget that it is following a Wizard of Oz methodology so most of the work to follow the script is

required from the therapists.

2 How the software is organized

As mentioned above each of the scenarios in the deliverable D1.1 is one project file named after the

name included in D1.1.

2.1 How to load a project file

In order to load a project file, once Choregraphe has been opened, click on File, Open project... and

select the one you prefer from the list of projects, and click Open. Then, you will see something like

in Figure 1.

Figure 1: Opening a project file.

By double-clicking on the box that appears, Figure 2 will show up. You need to click on the

Interaction block shown in blue. All the required behaviors for the corresponding scenario will be

Date: 11/02/2015
Version: No 1.0
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shown.

Figure 2: Accessing the behaviors within a project file. To activate each behavior click twice on the

small Play button on the left of each of them.

All behaviors include a name to briefly identify what they do. They are grouped according to their

functionality. There is no chronological order.

We have included a Restart button to use in case something went wrong to initialize all the vari-

ables and start the intervention over. There is a Stop button which is required by Choregraphe, you

don’t need to pay attention to it.

2.2 How to run a project file and stop it

In order to run a project file you just need to click on the Play button, in green in Figure 2. Once

it is running, you can activate each behavior double-clicking on the small Play button each behavior

includes, in red in Figure 2. When such behavior is activated the button changes its color to green for

a few seconds. If it didn’t happen the behavior was not correctly activated.

In order to stop a project file, is as easy as clicking on the Stop button next to the Play button

within the upper menu.

3 Description of the scenarios

In this Section, the scenarios developed will be briefly described. All scenarios include the required

behaviors in Sections 3.1 and 3.9 in Deliverable D1.1. Those behaviors are described here in Subsec-

tion 3.1.

Date: 11/02/2015
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3.1 Actions at the start of all RET tasks

At the beginning the robot stays standing up in a relax pose waiting to start. Two motivating motions

are provided to try to engage the child, see AirJuggle and CallSomeone boxes in Figure 3 as well as

a box to make the robot dance, see blue frame in Figure 3. There is also a box called Random which

creates 6 different behaviors with the purpose of engaging the child.

There are several text boxes to start the session with the child and one to suggest to have a break.

Click on each of them to make the robot say something. These boxes are those under the red frame

in Figure 3. There are also text boxes to re-engage the child if something was unexpected, see yellow

frame in Figure 3

3.2 Joint Attention Diagnosis ADOS

Within this project file there are text boxes to be used to make the robot say Look at that <object>

where object could be a plane, a car, a cup or a flower, see purple frame in Figure 3; text boxes to

provide feedback to the child after each interaction; and there are also boxes to direct the gaze of the

robot (left, right and center) and boxes for pointing to left and right see green frame in Figure 3.

Figure 3: Joint Attention Diagnosis project file.

3.3 Joint Attention Intervention

In addition to what was included in the previous scenario, within this project file there are text boxes

to ask the child to choose an emotion, purple frame in Figure 4; and boxes for expressing different

emotions, see green frame in Figure 4.

Date: 11/02/2015
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Figure 4: Joint Attention Intervention project file.

3.4 Imitation Diagnosis with Objects

Additionally to what there are in other project files, within this one there are text boxes to ask the

therapist to give the robot certain object, see purple frame in Figure 5; a box to ask the child to

replicate the motion, in yellow in Figure 5; and boxes for making different gestures with and without

the objects, see green frame in Figure 5.

Figure 5: Imitation Diagnosis with Objects project file.
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In order to make the robot pick up an object, the therapist should approach the object to the robot

and touch its head, then the robot will open its hands. With a second touch in the head, the robot will

close the hands grabbing the object. To make the robot drop the object, the same procedure should be

followed.

3.5 Imitation Diagnosis without Objects

For this project file there are specific boxes to make the robot make 4 different motions (cover its eyes,

touch its head, airplane arms and wave with one hand), see green frame in Figure 6.

Figure 6: Imitation Diagnosis without Objects project file.

3.6 Imitation Intervention without Objects

This project file includes text boxes already described in previous scenarios.

3.7 Turn-taking diagnosis

The turn-taking diagnosis behaviour for the WoZ experiments is handled by a separate system based

on the software engineering framework established in WP3. Please refer to the technical report “Sand-

tray Wizard-of-Oz System for Turn-taking Intervention” for more details.

3.8 Turn-taking intervention

The turn-taking intervention behaviour for the WoZ experiments is handled by a separate system

based on the software engineering framework established in WP3. Please refer to the technical report

“Sandtray Wizard-of-Oz System for Turn-taking Intervention” for more details.
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4 Limitations of the software

As the experiments will follow the Wizard of Oz methodology, the therapists are responsible for

following the script of each scenario. There is no autonomous behavior within this software at all.

Moreover, in case it is needed more boxes can be added.

If you need further information about Choregraphe, you may find it in Aldebaran documentation

(http://doc.aldebaran.com/2-1/news/2.0/choregraphe_rn2.0.html).

5 Miscelanea

The software has been developed using Naoqi version 2.1.2.17. If you need to upgrade it, please fol-

low the instructions from the wiki (https://dreamproject.aldebaran.com/projects/

dream/wiki/Nao_software).
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Abstract. Robots are finding increasing application in the domain
of ASD therapy as they provide a number of advantageous prop-
erties such as replicability and controllable expressivity. In this
abstract we introduce a role for touchscreens that act as medi-
ating devices in therapeutic robot-child interactions. Informed by
extensive work with neurotypical children in educational contexts,
an initial study using a touchscreen mediator in support of robot-
assisted ASD therapy was conducted to examine the feasibility of
this approach, in so doing demonstrating how this application pro-
vides a number of technical and potentially therapeutic advantages.

Keywords: ASD, Robot-Assisted Therapy, Sandtray

INTRODUCTION

The application of robots to aid in the therapy of chil-

dren with Autistic Spectrum Disorders (ASD) has become

increasingly established [1], [2], with evidence suggesting

that it can provide beneficial outcomes for the children [3].

In addition to this, recent efforts have emphasised providing

an increasing degree of autonomy for the robot [4].

Providing such autonomous behaviour in interaction con-

texts is a challenging task, with sensory and motor limi-

tations imposing a number of constraints. In our previous

work, we have developed a methodology that makes use

of a touchscreen mediator between children and robots to

overcome a number of these difficulties: the Sandtray [5]. In

this setup, a child and a robot engage in a collaborative task

that is provided on the touchscreen (e.g. sorting of images

into categories). The Sandtray has been successfully applied

to a range of neurotypical child-robot interaction studies

in various contexts, for example behavioural alignment [6],

education [7], and others. As the Sandtray was inspired by

the therapeutic intervention of sandplay (with this having

proposed advantages for children with ASD [8]), we now

seek to apply this same methodology to robot-assisted ASD

therapy.

Touchscreens (without the robot) have found previous

applications to this domain [9]. For example, a touchscreen

has been used to enforce collaborative activity between pairs

of children with ASD, resulting in an increase in coordination

and negotiation behaviours [10], a finding supported else-

where [11]. Furthermore, there have been attempts to enable

sandplay therapy-like interactions with touchscreens [12],

*This work was supported by the EU FP7 project DREAM (grant number
611391, http://dream2020.eu/).

Fig. 1. Indicative setup and use of touchscreen for child-robot therapeutic
interaction - robot is controlled by a wizard, and the mediator provides input
to the interaction if needed (not to scale; positions are indicative only).

although our approach differs in both application context

and involvement of the robot. These studies indicate the

suitability of using touchscreens for children with ASD.

There are a number of advantages afforded by the use of

such a mediating touchscreen in HRI. Firstly, it provides a

shared space for collaboration that does not require complex

manual dexterity for either the child or the robot; indeed it

provides the same affordances for both interactants (pointing

and dragging). Secondly, it reduces the sensory processing

load (vision processing) on the robot since information on

screen-oriented activity by the child can be obtained directly

from the touchscreen. Thirdly, it provides a straightforward

means of changing the task (or more broadly the interaction

context) by just changing the images displayed on the screen:

for instance, a sorting task can be appropriate for domains

as diverse as mathematics and nutrition just by changing the

pictures displayed.

The aim of this contribution is to motivate and illustrate

how such touchscreen mediators can specifically serve as

useful tools in the domain of robot-assisted therapy by first

describing an application currently in progress, and then

discussing the opportunities and challenges for the future.

APPLICATION CASE STUDY: TURN-TAKING

An initial application to ASD therapy has been imple-

mented and evaluated. Turn-taking is an important social skill

that is used as part of therapeutic interventions [13]. We have

created an emotion image categorisation task (using sad and

happy faces) on the Sandtray for a child and Nao robot to

play, with robot verbal behaviour used to encourage turn-

taking behaviours. For this study, the robot was explicitly

remote controlled (wizarded) by a remote operator (fig. 1).

With a four year-old girl with ASD, six interaction ses-

sions with the Robot-Sandtray turn-taking task were con-



Fig. 2. (Top) Sample data from the sixth child-robot Sandtray turn-
taking interaction session. The feedback was employed to encourage the
child to move and to give them feedback. Orange circles indicate robot
encouragements for the child to take a turn. (Bottom) Trends over six
sessions, showing change in delay between robot prompt and the child
moving, and the mean number of prompts per child move (with 95% CI).

ducted over a period of four weeks. Other robot-based

therapy activities were conducted at a separate time. Each

interaction had a mean length of 11:06 mins (sd 5:03 mins).

Since interaction data can be captured through the touch-

screen, it is possible to retrospectively examine the events

that occurred and their timing. Considering the relationship

between robot encouragement and child moves in a single

interaction (e.g. fig. 2, top), the data suggest that both the

number of robot encouragement instances required before

the child made a move, and the delay between suggestions

and actual moves increases over time (fig. 2, bottom). A

clinical explanation for this relationship is not proposed here,

although the ideal behaviour in this context is a turn-taking

interaction with the robot, without necessarily requiring ex-

plicit prompting. What can be noted though is that data such

as these provide some insight into the interaction between

the child and the robot over time.

DISCUSSION AND OPEN QUESTIONS

The examination and use of touchscreen-derived informa-

tion has two benefits. Firstly, it may come to constitute an

additional source of information for the therapist to aid in

diagnosis or inform future therapy, with additional processing

making aspects of emotion available for example [14]. The

extent to which this is clinically useful is an open question

that requires investigation. It should however be noted that

we do not suggest that such data can replace traditional

diagnosis information, rather that it can provide supplemental

information. It should be further noted that the touchscreen-

derived information alone is likely to be insufficient to

provide a complete characterisation of the child’s behaviour.

Secondly, since the information captured by the touch-

screen is directly accessible to the robot system, it can be

used by the robot to adapt its behaviour to the specific cir-

cumstances of an individual child in individual interactions,

e.g. [6]. In the case of autonomous robot behaviour, such a

source of information that does not require the overhead of

complex visual or audio processing is a significant benefit.

Extensive previous work has been conducted with this

touchscreen mediated interaction between (neurotypical)

children, and robots. While this has shown that the touch-

screen effectively constrains the content of the interaction

(thus facilitating robot autonomous behaviour) [15], it is

an open question as to whether a similar effect (such as

helping to maintain focus on the interaction) is observable

for children with ASD, or over what time scales such an

effect may be manifested.

To conclude, we have presented data from an example set

of interactions between a child with ASD and a robot in

the context of the Sandtray. This provides an illustration of

the type of data that is readily available through the use of

the touchscreen mediation technology. While further devel-

opment and data collection is required (and is ongoing), we

suggest that the use of touchscreens as mediators for child-

robot interactions in the context of ASD therapy provides

benefits in terms of behaviour characterisation and technical

feasibility that should be further taken advantage of.
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Abstract

This paper presents a method for progres-
sively increasing autonomous action selec-
tion capabilities in sensitive environments,
where random exploration-based learning is
not desirable, using guidance provided by a
human supervisor. We describe the global
framework and a simulation case study based
on a scenario in Robot Assisted Therapy
for children with Autism Spectrum Disorder.
This simulation illustrates the functional fea-
tures of our proposed approach, and demon-
strates how a system following these princi-
ples adapts to different interaction contexts
while maintaining an appropriate behaviour
for the system at all times.

1 Introduction

Humans are interacting increasingly with machines,
and robots will be progressively more important part-
ners in the coming years. Human-human interactions
involve high dimensionality signals and require com-
plex processing: this results in a large quantity of data
that ideally needs to be processed by an autonomous
robot. One potential solution is the application of ma-
chine learning techniques. Specifically, online learning
is desirable, however, some level of initial knowledge
and competencies are required to avoid pitfalls in the
early phases of the learning process, particularly in
contexts where random exploration could lead to un-
desirable consequences.

In this paper, we propose an approach inspired by, but
separate from, learning from demonstration to guide

Appearing in Proceedings of the 4th Workshop on Ma-
chine Learning for Interactive Systems (MLIS) 2015, Lille,
France. JMLR: W&CP volume 40. Copyright 2015 by the
authors.

this early learning of an action selection mechanism for
autonomous robot interaction with a human, by tak-
ing advantage of the expert knowledge of a third-party
human supervisor to prevent the robot from exploring
in an inappropriate manner. We first present the for-
mal framework in which our action selection strategy
learning takes place (section 2), then illustrate this
with a case study from the domain of Robot Assisted
Therapy for children with Autism Spectrum Disorder
(ASD), where the incorrect selection of actions can
lead to an unacceptable impact on the goals of the
interaction (section 3).

Agent
Execute Action A

Environment

Supervisor
Select A based on

C, S, A', K 
and history 

Context

Algorithm

Update M based 
on history

Suggest A'
Based on inputs 

and model M

 

State (S)

Context (C)

AA'

Impact

Taken into account for learning

Impact

Figure 1: The supervised online learning of au-
tonomous action selection mechanism.

2 Supervised Emergent Autonomous

Decision Making

2.1 Framework

The situation considered involves a robotic agent, a
human supervisor of the agent, and a human with
which the agent, but not the supervisor, should in-
teract. The agent proposes actions that are accepted
or rejected by the supervisor prior to executing them.
The method proposed in this paper aims at enabling
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the agent to progressively and autonomously approxi-
mate the ideal behaviour as specified by the supervisor.

Our framework has five components: an agent and an
environment interacting with each other, a supervi-
sor, the algorithm controlling the agent and a context
characterising the interaction between the agent and
the environment. The agent has a defined set of avail-
able actions A. The environment could be a human, a
robot, or a computer for example and is characterised
by a n-dimensional vector S ∈ Rn, which is time vary-
ing. The context C ∈ Rm gives a set of parameters
defining higher-level aspects, such as goals or the state,
of the interaction, see figure 1. The supervisor and the
agent have direct access to the context, but may ignore
the real value of the state and see it only through ob-
servations.

The principal constraints are that the interaction has
one or more high level goals, and some available ac-
tions can have a negative impact on these goals if ex-
ecuted in specific states. This should be avoided, so
algorithms depending on randomness to explore the
environment state space are inappropriate.

In order to simplify the system, we are making the
following assumptions. Firstly, that the environment,
while dynamic, is consistent: it follows a defined set of
rules E which also describe how the context is updated.
Secondly, the supervisor T is omniscient (complete
knowledge of the environment), constant (does not
adapt during the interaction), and coherent (will react
with the same action if two sets of inputs are identi-
cal). Finally, the supervisor has some prior knowledge
of the environment K.

The algorithm has a model M of the supervisor and
the environment and will update it through online
learning following the learning method L. M is it-
eratively updated based on supervisor feedback to ap-
proximate T and E , in this way progressively approxi-
mating the action that the supervisor would have cho-
sen, and what impact this would have on the environ-
ment. Equation 1 describes the update of each part of
the framework from the step n to n+ 1.

Mn : (C0→n, S0→n, A0→n−1, A
′
0→n−1) −→ A′

n

T : (C0→n, S0→n, A
′
0→n

, A→n−1,K) −→ An

E : (C0→n, S0→n, A0→n) −→ (Sn+1, Cn+1)

L : (C0→n+1, S0→n+1, A
′
0→n

, A0→n) −→ Mn+1

(1)

At the start of the interaction, the environment is in a
state S0 with the context C0 and the algorithm has a
model M0. Applying M0 to C0 and S0, the algorithm
will select an action A′

0 and propose it to the super-
visor. The supervisor can either accept this action or

select a new one according to T , and makes the agent
execute the resulting action A0. The environment will
change to a new state S1 and the context will be up-
dated to C1 according to E . Based on S1, S0, C1, C0,
A0, and A′

0, the algorithm will update its model to
M1. The process can then be repeated based on the
updated model.

2.2 Related Work

The approach we take here necessarily requires the ap-
plication of machine learning, but we do not commit at
this stage to a single algorithmic approach; the specific
requirements for our application include online learn-
ing, deferring to an external supervisor, and being able
to handle a dynamic environment.

A widely used method to transfer knowledge from a
human to a robot is Learning from Demonstration
(LfD), see [2] for a survey. In the case of policy learn-
ing, a teacher provides the learning algorithm with cor-
rect actions for the current state and repeats this state-
action mapping for enough different states to give the
algorithm a general policy. LfD is usually combined
with supervised learning: trying directly to map out-
puts and inputs from a teacher, see [12] for a list of
algorithms that can be used in supervised learning.
The other important point is how the demonstrations
are generated, a first approach is using batch learn-
ing: the teacher trains the algorithm during a training
phase after which the robot is used in full autonomy
[11]. Or there may be no explicit training phase; us-
ing online learning the demonstrations are given dur-
ing the execution if required: the robot can request
a demonstration for the uncertain states, e.g. when
a confidence value about the action to perform is too
low [6].

Another method is Reinforcement Learning: the algo-
rithm tries to find a policy maximising the expected
reward [3, 10]. However, this implies the presence of
a reward function, which may not be trivial to de-
scribe in domains (such as social interaction) that do
not lend themselves to characterisation. Consequently
Abbeel and Ng proposed to use Inverse Reinforcement
Learning by using an expert to generate the reward
function [1], subsequently extended to use partially-
observable MDPs [8], although expert-generated re-
wards also pose problems on the human side [17].

The goal of our proposed approach differs from these
alternative existing methods. The intention is to pro-
vide a system that can take advantage of expert hu-
man knowledge to progressively improve its competen-
cies without requiring manual intervention on every
interaction cycle. This is achieved by only asking the
human supervisor to intervene with corrective infor-
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mation when the proposed action of the robot agent is
deemed inappropriate (e.g. dangerous) prior to actual
execution. This allows the robot to learn from con-
strained exploration; a consequence of this is that the
load on the supervisor should reduce over time as the
robot learns. The supervisor nevertheless retains con-
trol of the robot, and as such we characterise the robot
as having supervised autonomy. Contrary to the active
learning approach used by, for example, Cakmak and
Thomaz [5] the robot is not asking a question and re-
quiring a supervisor response, it is proposing an action
which may or may not be corrected by the supervisor.

3 Case Study: Application to Therapy

One potential application area is Robot Assisted Ther-
apy (RAT) for children with Autism Spectrum Disor-
ders (ASD). Children with ASD generally lack typical
social skills, and RAT can help them to acquire these
competencies, with a certain degree of success, e.g.
[7, 14]. However, these experiments typically use the
Wizard of Oz (WoZ) paradigm [13], which necessitates
a heavy load on highly trained human operators.

We propose the use of supervised autonomy [15, 16],
where the robot is primarily autonomous, but the ther-
apeutic goals are set by a therapist who maintains
oversight of the interaction. Having a supervised au-
tonomous robot would reduce the workload on the
therapist.Both the therapist and the robot would be
present in the interaction, the robot interacting with
the child and the therapist supervising the interaction
and guiding the robot while it is learning its action
selection policy.

The formalism described above (section 2.1) can be di-
rectly applied to this scenario. In this case, the context
is the state of the task selected by the therapist to help
the child develop certain social competencies, for ex-
ample, a collaborative categorisation game [4] intended
to allow the child to practice turn taking or emotion
recognition. The state may be defined using multiple
variables such as motivation, engagement, and perfor-
mance exhibited by the child during the interaction,
the time elapsed since the last child’s action, and their
last move (correct or incorrect). The robot could have
a set of actions related to the game, such as proposing
that the child categorises an image, or giving encour-
agement to the child.

In this scenario, the goal would be to allow the child to
improve their performance on the categorisation task,
and this would be done by selecting the appropriate
difficulty level and finding a way to motivate the child
to play the proposed game. We can expect the child to
react to the robot action and that these reactions can
be captured by the different variables that define the

child’s state (as provided by therapists for example).
In principle, while precise determinations are likely to
be problematic, we assume that some aspects of these
variables can be estimated using a set of sensors (e.g.
cameras and RGBD sensors to capture the child’s gaze
and position; the way the child interacts with the touch
screen; etc). For the remainder of this paper, however,
we assume that a direct estimation of internal child
states are available to the system.

3.1 Proof of concept

A minimal simulation was constructed to illustrate the
case study described above. The state S is defined us-
ing three variables: the child’s performance, engage-
ment and motivation in the interaction. The robot has
the following set of actions A: encouragement (give a
motivating feedback to the child), waving (perform a
gesture to catch the child’s attention), and proposi-
tion (inviting the child to make a classification). In
this minimal example, the environment E is the child
model. A minimal model of the child was constructed
that encompassed both processes that were dependent
on the robot behaviour (e.g. responding to a request
for action), and processes that were independent of
the robot behaviour (e.g. a monotonic decrease of en-
gagement and motivation over time independently of
other events). The reaction of the model follows a
rule-based system, but the amplitude of the response
is randomly drawn from a normal distribution to rep-
resent the stochastic aspect of the child’s reaction and
the potential influence of non-defined variables in the
state. A number of simplifications are necessary, such
as the assumption of strict turn-taking and interac-
tions in discrete time. The minimal child model is
summarised in figure 2.

State: 
Performance

Motivation
Engagement 

 Motivation+=Norm(0.1,0.05)  Engagement+=Norm(0.1,0.05)
Motivation>0.6

Engagement>0.6

Perf += 0.05 Perf -= 0.05

Motivation = 0.5
Engagement = 0.5

Motivation -= Norm(0.01,0.001)
Engagement -= Norm(0.01,0.001)

Encouragement vaving

Proposition

Yes No

Figure 2: Model of the child used in the minimal sim-
ulation; random numbers are drawn from normal dis-
tributions.

Formally, the minimal simulation follows the frame-
work established above (equation 1), with the simpli-
fication that a history of prior states, contexts, and
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actions is not used in the learning algorithm. This re-
sults in a setup where the system makes a suggestion
of an action to take, which the supervisor can either
accept or reject, in which case an alternative action is
chosen (figure 3).

This allows the supervisor to take a more passive ap-
proach when the algorithm selects an acceptable action
since they will only have to manually select a correc-
tive action when this is needed. If the learning method
is effective, the number of corrective actions should de-
crease over time, decreasing the workload on the ther-
apist over the interaction.

State (S)
 & 

Context (C)

M proposes
action A'

Does 
Supervisor (T) agree 

with A'?

A = 
alternate 

action

Agent executes
action A

      No

Change in Environment (E)

Yes, A = A'
Learning M

using L

Figure 3: Description of agent’s action selection pro-
cess: the agent proposes actions that are validated by
the supervisor prior to execution.

The learning model M is a MultiLayer Perceptron
(MLP), with three input nodes for the input states,
three output nodes for the three possible actions and
nine nodes in the hidden layer. The model is trained
using backpropagation (as L), the true labels are given
by the supervisor decision: output of 1 for the action
selected by the supervisor (A) and −1 for the other
ones. A Winner-Takes-All process is applied on the
output of the MLP to select the action suggested by
the robot (A’).

Figure 4 shows a subset of a run from step 100 to
150. With this approach, there is no distinct learning
and testing phases, but in the first part of the interac-
tion (before step 100), the supervisor had to produce
multiple corrective actions to train the network to ex-
press the desired output. The strategy used by the
supervisor is the following: if the motivation is lower
than 0.6 the supervisor enforces the action ‘encourage-
ment’, else if the engagement is below 0.6 ‘waving’ is
enforced, and if both are above 0.6 then a proposition
is made. The first graph presents the evolution of the
state over time, and the second one the output of the
MLP for each action. The vertical red lines represent
an intervention from the supervisor, i.e. a case where
the supervisor enforces a different action than the one
suggested by the MLP. The action actually executed
is represented by a cross with the same colour as the
respective curves.

Figure 5 shows a comparison of the cumulative total
of the different actions suggested and of the interven-
tion as well as the child performance for three differ-
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Figure 4: Subset of an interaction from step 100 to
150.

ent models of a child and for a random action selection
scheme. The difference in the child models in the three
first graphs is the value of the thresholds required for
a good classification action, high reactive child: 0.6
and 0.6, asymmetrically: 0.9 for encouragement and
0.6 for engagement, and low reactive: 0.9 and 0.9. Be-
low these thresholds, a proposition would lead to a bad
action decreasing the performance. It can be observed
that the algorithm learns different strategies for each
child and that there is more learning apparent at the
start of the interaction than at the end (the rate of
interventions is decreasing over time), indicating that
the system is choosing the appropriate action at the
appropriate time, and that the workload on the super-
visor (necessity to provide these corrective actions) de-
crease over time. The last plot demonstrates a random
action selection with a high reactive child. Contrary
to the other cases, the child’s performance decreases
over time, and the number of interventions increases.
Here, a bad action only decreases the performance, but
in reality it may result in the termination of the inter-
action, which must be avoided.

4 Discussion

While demonstrating promise, there are a number of
limitations to the framework as presented. The as-
sumptions described in section 2.1 are typically vio-
lated when working with humans. Firstly the children
are all different, and a method learned for one child
may often not be suited when working with another.
Furthermore, the same child may have non-consistent
behaviour between the sessions and even within a sin-
gle session. There is no perfect solution to solve this
problem, but we can expect that with enough training
sessions and a more complex learning algorithm, the
system would be able to capture patterns and react to
the different behaviours appropriately. Since it is ex-
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Figure 5: Comparison of the cumulative total of the different actions suggested, the supervisor interventions
required, and child performance for three different models of a child (highly responsive; asymmetrically increased
responsiveness to engagement than motivation; low responsiveness), and a random action selection scheme.

pected that in a real application of such an approach a
therapist who knows the child will always be present,
we propose that for a new child the algorithm will use
a generic strategy based on previous interactions with
other children, with subsequent fine-tuning under su-
pervision.

Another assumption that is likely to be violated is that
of a perfect supervisor. As explained in [6] humans
are not always consistent nor omniscient, but meth-
ods presented in the literature can be used to cope
with these inconsistencies if enough data is gathered.
Further mitigating solutions could be employed, such
as the robot warning the therapist if it is about to
select an action which had negative consequences in
a previous interaction (even if for a different child).
Furthermore, it may not be possible to measure the
true internal states of the child in the real world, with
imperfect estimations of these states being more likely
accessible. In this case, inspiration from [9] can be
used to mixed the POMDP framework with the help
of an exterior oracle. Another problem which will have
to be addressed in the future is the difference in in-
puts between the robot and the therapist: the thera-
pist will have access to language, more subtle visual
features and their prior experience, whereas the robot
may have direct and precise access to some aspects of
the child’s overt behaviour (such as timings of touch-
screen interaction).

In the currently implemented case study, we assume
that the supervisor responds to the action proposed
by the robot within some predetermined fixed time,
whether this response is accept or reject (figure 3).
This, in principle, allows the supervisor to only ac-
tively respond if a proposed action is clearly inappro-
priate. In further developments, we will incorporate
a measure of certainty (given prior experience) into
the time allowed the supervisor to respond to the pro-

posed action: for example increasing the time available
if the confidence in the proposed action is low. This
modulation of the load on the supervisor’s attention
according to confidence should result in the supervisor
being able to increasingly pay attention to the child
directly, rather than to the robot system, as training
progresses.

5 Conclusion

We have presented a general framework to progres-
sively increase the competence of an autonomous ac-
tion selection mechanism that takes advantage of the
expert knowledge of a human supervisor to prevent in-
appropriate behaviour during training. This method
is particularly applicable to application contexts such
as robot-assisted therapy, and our case study has pro-
vided preliminary support for the utility of the ap-
proach. While the simulation necessarily only pro-
vided a minimal setup, and thus omitted many of the
complexities present in a real-world setup, we have
nevertheless shown how the proposed method resulted
in the learning of distinct action selection strategies
given differing interaction contexts, although further
refinement is required for real-world application. In-
deed, given real-world supervisor knowledge limita-
tions, we suggest it will furthermore be possible for
a suitably trained action selection mechanism of this
type to aid the supervisor in complex and highly dy-
namic scenarios.
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Abstract. The Wizard-of-Oz robot control methodology is widely used
and typically places a high burden of effort and attention on the human
supervisor to ensure appropriate robot behaviour, which may distract
from other aspects of the task engaged in. We propose that this load can
be reduced by enabling the robot to learn online from the guidance of
the supervisor to become progressively more autonomous: Supervised
Progressively Autonomous Robot Competencies (SPARC). Applying this
concept to the domain of Robot Assisted Therapy (RAT) for children with
Autistic Spectrum Disorder, a novel methodology is employed to assess
the effect of a learning robot on the workload of the human supervisor. A
user study shows that controlling a learning robot enables supervisors to
achieve similar task performance as with a non-learning robot, but with
both fewer interventions and a reduced perception of workload. These
results demonstrate the utility of the SPARC concept and its potential
effectiveness to reduce load on human WoZ supervisors.

1 Introduction

Over the last two decades, an increasing amount of research has been conducted
to explore Robot Assisted Therapy (RAT). Using robots in therapies for children
with Autism Spectrum Disorder (ASD) has revealed promising results [5, 10, 11].
The Wizard-of-Oz (WoZ) paradigm is typically used for this application, and
others, where the robots are not autonomous but tele-operated. Many motivating
factors for moving away from WoZ in RAT have been put forward [8, 13]. In
particular, autonomous behaviour facilitates repetition of the robot behaviour
and decreases the workload on therapists, freeing them to pay attention to other
aspects of the interaction. It is the intention of our research to facilitate this shift
to robot autonomy.

As the optimal robot behaviour is unlikely to be known in advance (be it
in a therapeutic or indeed other domain), and with adaptability during and
between the different interactions being generally desirable, it is necessary to
provide the robot with learning capabilities. In the context of RAT, by using the
knowledge of a therapist, the learning can be guided so that it is faster and safer,
especially as the robot cannot use random exploration to acquire knowledge about
its environment when interacting with children with ASD in case of negative



therapeutic and/or clinical outcomes. We propose an approach taking inspiration
from the Learning from Demonstration and online learning literature, and call it
SPARC: Supervised Progressively Autonomous Robot Competencies. In SPARC,
a therapist guides the robot in the early stages of the interaction, and progressively,
the robot learns an action policy adapted to the particular therapeutic session
[12]. Assuming the effective learning of the robot in this context, the therapist
can allow the robot to behave increasingly autonomously, whilst maintaining
oversight. Although not reducing the attentional requirements, this would reduce
the physical interventions to direct the robot behaviour required by the therapist.
Thus, by proposing and executing good actions, SPARC can reduce the therapists’
workload.

A RAT scenario typically involves three parties: the patient, a robot, and
the human therapist. In this context, the therapist does not interact with the
patient directly, but rather through the robot. The therapist could therefore
be described as playing the role of a robot supervisor. The focus of this paper
is not on a new learning algorithm, but rather on the interaction between the
robot and the therapist (supervisor), and the role that robot autonomy can
play in this relationship. Specifically, as an initial validation of the principle, we
seek to assess whether the SPARC concept can feasibly result in a reduction
in workload for the supervisor, even given different strategies used by different
individuals. A user study employing a novel methodology is conducted (section
3), demonstrating that progressive robot autonomy does indeed result in lower
supervisor workload (section 4). This outcome provides support for the proposed
approach and motivates further development efforts in the domain of RAT.

2 Related work

A number of research groups have studied the use of robot in therapy for children
with ASD, which allowed children to express previously unseen social behaviour
for example [9, 10]. Two primary methods have been used for these investigations:
using an autonomous robot following preprogrammed rules [6, 14], or using the
WoZ paradigm, allowing more flexibility in the robot’s reaction. As noted in
[8, 13], using WoZ allows testing and prototyping of interaction scenarios, but
researchers should consider moving away from it to achieve more scalability, more
repeatability, and to allow the use of robots without increasing the workload on
therapists. Complex behaviour is required for a therapeutic robot, thereby making
learning a desirable feature for future, more autonomous, RAT. As therapists
possess the knowledge required to make appropriate decisions in different contexts,
Learning from Demonstration [1] provides a useful starting point. Recently, Knox
et al. proposed the Learning from Wizard paradigm in [7]. The robot is first
controlled by a human operator as in a WoZ scenario, and after a number of
interactions, batch learning is applied on the previous interaction data to obtain
autonomous behaviour.

A fixed action policy of this type is however not desirable for RAT as children
may not be consistent between interactions, and thus online learning is required



Fig. 1. Setup used for the user study from the perspective of the human supervisor.
The child-robot (left) stands across the touchscreen (centre-left) from the wizarded-robot

(centre-right). The supervisor can oversee the actions of the wizarded-robot through the
GUI and intervene if necessary (right).

to provide the robot with the adaptability necessary to update its action policy
depending on the current circumstances. Several experimenters in HRI have
studied active learning: a robot actively questions a human teacher in order to
request data points or demonstration for an uncertain scenario. A study exploring
the type of questions that a robot could ask and the human reactions can be seen
in [3], and Chernova and Veloso propose a progressive learning algorithm where a
robot can estimate the confidence in its action decision in a fixed environment [4]:
if the confidence is too low, a demonstration from a human teacher is required to
complete the task.

However, an important element missing from the current literature is online
learning for interaction. The robot needs to be able to progressively create an
action policy, and update it later if necessary, to reach a more complex interaction
behaviour. This paper explores how supervised progressive learning can be used in
an interaction scenario and introduces a novel methodology to test this technique.

3 Assessing the effect of a progressively autonomous

robot on supervisor workload

The focus of the present study is to assess whether the application of the SPARC
concept to RAT results in a decrease in workload for the human supervisor. Two
types of robot controller are employed to determine the presence and magnitude of
this effect: a robot that learns from the actions of the supervisor to progressively
improve its behaviour (learning controller), and a robot that only generates
random actions (non-learning controller).

The methodology used in this paper is based on a real scenario for RAT for
children with ASD based on the Applied Behaviour Analysis therapy framework.
The aim of the therapy is to help the child to develop/practice their social skills:
the task we focus on here is emotion recognition. This scenario involves a child



playing a categorisation game with a robot on a mediating touchscreen device
[2]. Images of faces or drawings are shown to the child, and she has to categorise
them by moving the image to one side or the other depending on whether the
picture shown denotes happiness or sadness (e.g. fig. 1). The human supervisor
is physically present and guides the robot using the Wizard of Oz paradigm, but
does not interact with the child directly.

In our proposed system, the basic interaction structure following the SPARC
concept is as follows: the robot suggests an action to the supervisor, the supervisor
agrees or disagrees with this suggestion (providing an alternative if disagreeing),
the robot executes the action, and then both robot and supervisor observe the
outcome. Over time, it is possible for the robot to learn an appropriate strategy
based on observations of the child and oversight from the supervisor, with the
supervisor still maintaining overall control if necessary.

Given the focus on human supervisor workload, it is necessary to provide
a consistent experimental environment across both conditions in which the
task, setup, and interaction partner is kept constant. A minimal model of child
behaviour is therefore used to stand in for a real child. A second robot is employed
in the interaction to embody this child model: we term this the child-robot. The
robot being directly guided by the human supervisor is termed the wizarded-robot
(fig. 1).

3.1 Child model

The purpose of the child model is not to realistically model a child (with or
without autism), but to provide a means of expressing some of the behaviours we
observed in our interactions with children in a repeatable manner. The child-robot
possesses an internal model encompassing an engagement level and a motivation
level, together forming the state of the child. The engagement represents how
often the child-robot will make categorisation moves and the motivation gives
the probability of success of the categorisation moves. Bound to the range [−1, 1],
these states are influenced by the behaviour of the wizarded-robot, and will
asymptotically decay to zero without any actions from the wizarded-robot. These
two states are not directly accessed by either the supervisor or the wizarded-
robot, but can be observed through behaviour expressed by the child-robot: low
engagement will make the robot look away from the touchscreen, and the speed
of the categorisation moves is related to the motivation (to which gaussian noise
was added). There is thus incomplete/unreliable information available to both
the wizarded-robot and the supervisor, making the task non-trivial.

The influence of the wizarded-robot behaviour on the levels of engagement
and motivation are described below (section 3.2). In addition to this, if a state
is already high and an action from the wizarded-robot further increases it,
then there is a chance that this level will sharply decrease, as an analogue of
child-robot frustration. When this happens, the child-robot will indicate this
frustration verbally (uttering one of eight predefined strings). The reason this
mechanism is required is that it prevents a straightforward engagement and



motivation maximisation strategy, thus better approximating the real situation,
and requiring a more complex strategy to be employed by the supervisor.

3.2 Wizarded-robot control

The wizarded-robot is controlled through a Graphical User Interface (GUI) and
has access to multiple variables characterising the state of the interaction. The
wizarded-robot has a set of four actions, which each have a button in the GUI:

– Prompt an Action: Encourage the child-robot to do an action.
– Positive Feedback: Congratulate the child-robot on making a good classifica-

tion.
– Negative Feedback: Supportive feedback for an incorrect classification.
– Wait: Do nothing for this action opportunity, wait for the next one.

The impact of the action on the child-robot depends on the internal state and
the type of the last child-robot move: good, bad, or done (meaning that feedback
has already been given for the last move and supplementary feedback is not
necessary). A prompt always increases the engagement, a wait has no effect on
the child-robot’s state, and the impact of positive and negative feedback depends
on the previous child-robot move. Congruous feedback (positive feedback for
correct moves; negative feedback for incorrect moves) results in an increase in
motivation, but incongruous feedback can decrease both the motivation and the
engagement of the child-robot. The supervisor therefore has to use congruous
feedback and prompts, whilst being careful not to use them too often, to prevent
the child-robot becoming frustrated. A ‘good’ strategy would keep the engagement
and motivation high, leading to an increase in performance of the child-robot in
the categorisation task.

Through the GUI, the supervisor has access to observed states (noisy esti-
mations of the child-robot state), and information about the interaction his-
tory: number of moves, child-robot performance, time since last child-robot and
wizarded-robot actions, type of the last child-robot move, and elapsed time. How-
ever the supervisor can not control the wizarded-robot directly, actions can only
be executed only at specific times triggered by the wizarded-robot. Two seconds
after each child-robot action, or if nothing happens in the interaction for five
seconds, the wizarded-robot proposes an action to the supervisor by displaying
the action’s name and a countdown before execution. Only after this proposition
has been done can the supervisor provide feedback to the wizarded-robot. If the
supervisor does nothing in the following three seconds, the action proposed by the
wizarded-robot is executed. This mechanism allows the supervisor to passively
accept a suggestion made by the wizarded-robot or actively make an intervention
by selecting a different action and forcing the wizarded-robot to execute it.

3.3 Learning algorithm

The two robot controllers used for the study were a learning controller and a
non-learning random action selection controller. The learning algorithm used was



a Multi-Layer Perceptron, trained with back propagation (five input, six hidden
and four output nodes): after each new decision from the supervisor, the network
was fully retrained with all the previous state-action pairs and the new one.

3.4 Participants

In WoZ scenarios, the wizard is typically a technically competent person with
previous experience controlling robots. As such, to maintain consistency with
the target user group, the participants for this study (assuming the role of the
supervisor) are taken from a robotics research group. Ten participants were used
(7M/3F, age M=29.3, 21 to 44, SD=4.8 years).

3.5 Hypotheses

To evaluate the validity of our method and the influence of such an approach,
four hypotheses were devised:

H1 A ‘good’ supervisor (i.e. keeping the motivation and engagement of the
child-robot high) will lead to a better child-robot performance.

H2 When interacting with a new system, humans will progressively build a
personal strategy that they will use in subsequent interactions.

H3 Reducing the number of interventions required from a supervisor will reduce
their perceived workload.

H4 Using a learning wizarded-robot allows the supervisor to achieve similar
performance with fewer interventions when compared to the same scenario
with a non-learning wizarded-robot.

3.6 Interaction Protocol

Each participant experienced both robot controllers, with the order changed
between participants to control for any ordering effects. In Condition LN the
participants first interact with the learning wizarded-robot, and then with the
non-learning one; in Condition NL the participants first interact with the non-
learning wizarded-robot, and then the learning robot. Participants were randomly
assigned to one of the two conditions.

The interactions took place on a university campus in a dedicated experiment
room. Two Aldebaran Nao robots were used; one robot had a label indicating
that it was the Child-Robot. The robots face each other with a touchscreen
between them, and participants assuming the role of the supervisor sit at a desk
to the side of the wizarded-robot, with a screen and a mouse to interact with
the wizarded-robot (fig. 1). The participants were able to see the screen and the
child-robot.

A document explaining the interaction scenario was provided to participants.
After the information had been read, a 30s video presenting the GUI in use was
shown to familiarise them with it, without biasing them towards any particular
intervention strategy. The participant then clicked a button to start the first



interaction which lasted for 10 minutes. The experimenter was sat in the room
outside of the participants’ field of view. After the end of the first interaction, a
post-interaction questionnaire was administered. The same protocol was applied
in the second part of the experiment with another post-interaction questionnaire
following. Finally, a questionnaire asking the participants to explicitly compare
the two conditions was administered.

4 Results

4.1 Interaction data

The state of the child and the interaction values were logged at each step of the
interaction (at 5Hz). All of the human actions were recorded: acceptance of the
wizarded-robot’s suggestion, selection of another action (intervention), and the
states of the child-robot (motivation, engagement and performance) at this step.
From this the intervention ratio was derived: the number of times a user chose a
different action to the one proposed by the wizarded-robot, divided by the total
number of executed actions. On average, after a first exploration phase, where
the participant discovers the system, the learning robot robot has an intervention
ratio lower than the non learning one (fig. 2, left)

The performance indicates the number of good categorisations executed by the
child-robot minus the number of bad categorisations. A strong positive correlation
(Pearson’s r=0.79) was found between the average child-robot motivation and
engagement and its performance.

In both conditions, the average performance in the second interaction (MLN−2

=38, 95% CI [36.2, 39.8], MNL−2=34.8, 95% CI [30.8, 38.8]) was higher than
in the first one (MLN−1=29.4, 95% CI [25.3, 33.5], MNL−1=24.3, 95% CI [19.4,
29.4]; Fig. 2 left). The 95% Confidence Interval of the Difference of the Mean
(CIDM) for the L-NL condition is [4.1, 13.1] and for the NL-L condition is [4.0,
16.8]. However, the performance is similar when only the interaction order (first
or second) is considered. The participants performed slightly better in the LN
condition, but the CIDM includes zero in both cases (95% CIDM1 [-1.5, 11.5],
95% CIDM2 [-1.2, 7.6]). In the condition L-NL, the intervention ratio increased
between the learning and non learning condition (MLN−1=0.31, 95% CI [0.20,
0.42] to MLN−2=0.68, 95% CI [0.66, 0.70], CIDMLN=[0.26, 0.48]). But in the NL
condition, the intervention ratio is almost identical between the two interactions
but slightly lower for the learning case (MNL−1=0.50, 95% CI [0.44, 0.57] to
MNL−2=0.46, 95% CI [0.40, 0.51], CIDMNL [-0.03, 0.13]). This shows that when
the wizarded-robot learned, a similar performance is attained as without learning,
but the number of interventions required to achieve this is lower.

4.2 Questionnaire data

The post-interaction questionnaires evaluated the participant’s perception of the
child-robot’s learning and performance, the quality of suggestions made by the



Fig. 2. (Left) evolution of intervention ratio over time for the learning and non learning
cases. Intervention ratio (centre) and final performance (right) for the two conditions
and the two interactions (errors bars show 95% CI ). In condition LN participants
started wizarding a robot which learns their interaction style, followed by a non-learning
robot; in condition NL participants started with a non-learning robot, followed by a
learning robot. Results show that a learning robot reduces the workload of the wizard,
but performs equally well as a non-learning robot that needs wizarding at all times.

Fig. 3. Questionnaire responses (mean and 95% CI ): increased confidence in the
learning wizarded-robot over the non-learning version is apparent, as is a lower perceived
workload.

wizarded-robot, and the experienced workload. All responses used seven point
Likert scales.

Across the four possible interactions, the rating of the child-robot’s learning
was similar (M=5.25, 95% CI [4.8, 5.7]). The same effect was observed for the
evaluation of the child performance (M=4.75, 95% CI [4.3, 5.2]). As the child-
robot was using the same interaction model in all four conditions, this result is
expected.

Participants report the wizarded-robot as more suited to operate unsupervised
in the learning than in the non learning condition ( MLN−1=4.8, MLN−2=3.6,
MNL−1=3, MNL−2=5.2 ; CIDM for LN condition [-0.2, 2.6], CIDM for the NL
condition [1.6, 2.8]).

Similarly, a trend was found showing that learning wizarded-robot is perceived
as making fewer errors than the non-learning robot (MLN−1=1.6, MLN−2=4.0,
MNL−1=2.6, MNL−2=2 ; CIDM for LN condition [1.3, 3.4], CIDM for the NL
condition [0.1, 1.1]).

The participants tended to rate the workload as lighter when interacting with
the learning robot, and this effect is much more prominent when the partici-
pants interacted with the non-learning robot first ( MLN−1=4.6, MLN−2=3.6,
MNL−1=3.8, MNL−2=5.4 ; CIDM for LN condition [-0.6, 2.6], CIDM for the NL
condition [0.7, 2.5]).



5 Discussion

Strong support for H1 (a good supervisor leads to a better child performance)
was found, a correlation between the average states (engagement and motivation)
and the final performance for all of the 10 participants was observed (r=0.79).
We could expect a similar effect when working with real children, but measuring
these values would be a challenge.

The results also provide support for H2 (supervisors create personal strategies):
all the participants performed better in the second interaction than in the first
one. This suggests that participants developed a strategy when interacting with
the system in the first interaction, and were able to use it to increase their
performance in the second interaction. Looking in more detail at the interaction
logs, it is possible to see that different people used different strategies.

H3 (reducing the number of interventions will reduce the perceived workload) is
partially supported: the results show a trend for participants to rate the workload
as lighter when interacting with the learning robot, and another trend between
using a learning robot and the intervention ratio. However, when considering the
difference of workload rating and intervention ratios between the two interactions,
a positive correlation is only found for the LN condition, which could be accounted
for by the initial steep learning curve for the study participants. Nevertheless,
regardless of the order of the interactions, the learning robot consistently received
higher ratings for lightness of workload (fig. 3).

Finally, H4 (using learning keeps similar performance, but decreases inter-
ventions) is supported: interacting with a learning robot results in a similar
performance than interacting with a non-learning robot, whilst requiring fewer
active interventions from the supervisor. This has real world utility, it frees some
time for the supervisor, to allow her to focus on other aspects of the intervention,
e.g. analysing the child’s behaviour rather than focusing on the robot control.

It should be noted that the actual learning algorithm used in this study is only
of incidental importance, and that certain features of the supervisor’s strategies
may be better approximated with alternative methods – of importance for the
present work is the presence of learning at all. Future work will assess what the
most appropriate machine learning approach is given the observed features of
supervisor strategy from this study.

In conclusion, this paper proposed the SPARC concept (Supervised Progres-
sively Autonomous Robot Competencies). Based on a suggestion/intervention
system, this approach allows online learning for interactive scenarios, thus in-
creasing autonomy and reducing the demands on the supervisor. Results showed
that interacting with a learning robot allowed participants to achieve a simi-
lar performance as interacting with a non-learning robot, but requiring fewer
interventions to attain this result. This suggests that while there is always adap-
tation in the interaction (leading to similar child-robot performance given the
two wizarded-robot controllers), the presence of learning shifts this burden of
adaptivity onto the wizarded-robot rather than on the human. This indicates
that a learning robot could allow the therapist to focus more on the child than
on the robot, with improved therapeutic outcomes as potential result.
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Abstract—Subjective appreciation and performance evaluation
of a robot by users are two important dimensions for Human-
Robot Interaction, especially as increasing numbers of people
become involved with robots. As roboticists we have to carefully
design robots to make the interaction as smooth and enjoyable
as possible for the users, while maintaining good performance
in the task assigned to the robot. In this paper, we examine the
impact of providing a robot with learning capabilities on how
users report the quality of the interaction in relation to objective
performance. We show that humans tend to prefer interacting
with a learning robot and will rate its capabilities higher even if
the actual performance in the task was lower. We suggest that
adding learning to a robot could reduce the apparent load felt
by a user for a new task and improve the user’s evaluation of
the system, thus facilitating the integration of such robots into
existing work flows.

I. INTRODUCTION

This paper presents a study exploring the impact of providing

a robot with learning capabilities on the interaction preferences

and robot performance evaluations by users.

Two main approaches are reported in the literature to study

human preferences about robots. The first one involves the

administration of surveys where participants are asked robot-

related questions with or without priming. For example, in

[1] 240 subjects are asked questions about tasks that could be

replaced by robots and about general attitudes toward robots,

without trying to influence the participants a priori. Priming

can also be a useful means of educating the participants before

administering a questionnaire, allowing them to imagine a

more constrained and plausible scenario than they otherwise

would. This approach has been followed by Coeckelbergh et al.

[2], who surveyed the attitudes of participants toward Robot

Assisted Therapy (RAT) for children with autism spectrum

disorder. The participants answered more positively, in contrast

to previous studies conducted without priming, when they were

first exposed to a one minute video presenting the state of the

art of robotics in RAT.

The second main approach is administering a questionnaire

to participants after an actual interaction with a robot. Using

this method, the responses are grounded in the context of their

interaction: this can diminish the generalisability of the results,

but makes them more reliable. This method has been applied

to explore how elderly people react to a robot with learning

abilities [3].

This paper follows the real robot interaction approach,

and presents additional results gathered in the experiment

presented in [4]. In this study, participants interacted with

a robot both with and without learning capabilities, and this

manuscript reports their interaction preference and their relative

performance evaluation of the two robots.

II. METHODOLOGY

The study (and therefore the methodology) is the same as in

[4] where we introduced Supervised Progressively Autonomous

Robot Competencies (SPARC), a means for the robot to learn

from the interaction to improve its capabilities. This previous

paper also reported the impact of SPARC on the performance

and workload of a robot’s human supervisor in a scenario

inspired by RAT for children with autism spectrum disorder.

In classical RAT, the robot is interacting with the child and is

often controlled using the Wizard of Oz (WoZ) paradigm, i.e.

fully tele-operated. This often implies a high workload on the

therapist, which could be reduced by providing the robot with

a supervised autonomy. As this study focuses on the interaction

between the wizarded-robot and its supervisor, we replace the

child with a robot interacting in his place (the child-robot) to

produce consistent experimental conditions (fig. 1).

Fig. 1. Installation used for the study. The child-robot stands on the left,
performing the task on the touchsceen, and facing the wizarded-robot on the
centre-right. The human supervisor can control the action about to be executed
by the wizarded-robot using the GUI on the right.

The child-robot is interacting with a touchscreen, and

performs a categorisation task where it has to classify images

of face as either happy or sad, with the aim of improving

its performance. The wizarded-robot can execute actions (e.g.

giving positive or negative feedback, waiting, or prompting the

child to act), aiming to help the child-robot in its task.



The participants have to control the wizarded-robot to make

it execute the correct actions to help the child-robot. This

is however context dependent: actions can either improve or

worsen the performance of the child-robot based on its current

state. A Graphical User Interface (GUI) allows the users to

control the wizarded-robot in a WoZ inspired scenario involving

supervised autonomy. At specific times, the wizarded-robot

makes suggestions to the supervisor who can either not react

and let the action execute, or use a button to force the wizarded-

robot to execute another action. A habituation phase allows the

participants to become familiar with the interface and action

set. If the suggestion of the robot is correct, the supervisor

does not need to act to have this action executed.

The participants interacted with two systems. In the first

system, the actions proposed by the wizarded-robot are random,

so we expect the user to correct them most of the time. This

system simulates a classical WoZ setup, which we denote

the non-learning robot. The second system uses SPARC

and includes a learning algorithm based on a Multi-Layer

Perceptron using noisy observation of states as inputs and a

winner-take-all on the actions as output. This system is referred

to as the learning-robot. It is important to note that in both

systems, these terms relate to the capabilities of the wizarded-

robot, not the child-robot (which had constant behaviour in

both systems).

The study involved ten participants (7M/3F, age M=29.3, 21

to 44, SD=4.8 years) taken from a robotic research group, as

typical WoZ users are technical. Each participant interacted for

10 minutes with both systems, with the order counterbalanced.

In the LN condition, participants interacted first with the

learning robot then with the non-learning one, and the order is

reversed in the NL condition. This paper presents and analyses

the responses from the participants to the questions:

– Which wizarded-robot was better able to perform the task?

– Which wizarded-robot did you prefer supervising?

III. RESULTS AND DISCUSSION

Overall, the participants preferred supervising the learning-

robot (6 out of 10) and found it better able to perform the

task (8 out of 10). Despite the limitations of the small sample

size, these results suggest that providing a robot with learning

capabilities can improve its perception by users and also make

the users prefer supervising it. These results are consistent with

previous results [4], which showed that providing a robot with

learning capabilities can decrease the number of interventions

required to achieve a similar performance compared to a robot

without learning. The reduction in the number of interventions

needed might explain the results observed here.

Breaking the results down by ordering condition (LN vs.

NL) provides a more detailed perspective (fig. 2). From these

separated results, the learning capability is not the only effect

influencing the preferences of, and the evaluation by, the

participants: the order of interaction also plays an important

role. On average, the second robot is the preferred one to

supervise (7 of 10) and rated as better able to perform the

task (7 of 10). This ordering effect was probably due to the
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Fig. 2. Results for supervisory preference and rating of ‘preferred to supervise’
and ‘better to perform the task’ for the two conditions. The vertical bars
represent the number of times that the learning robot was selected and the
horizontal dotted line denotes chance (i.e. 50%).

complexity of the system that the participants interacted with.

The participants had to get used to a GUI displaying a large

volume of information, and to the time constraints.

Additionally, in 4 of the 5 cases when participants interacted

with the learning robot first, they achieved a better performance

during the second interaction than during the first one. Three of

these participants also rated the learning robot as better able to

perform the task even when it had a lower performance. This

could indicate that participants can distinguish between the

robot’s abilities and the performance achieved (depending also

on their abilities). It could also be a reflection of the natural

propensity of humans to adapt and learn through interaction.

Viewed in this way, the results could be interpreted as showing

that interaction with the learning robot first better equips the

human to interact with the non-learning robot than vice-versa,

leading to higher performance, and hence preference ratings,

for the non-learning robot in the LN condition. While another

potential benefit of learning robots, this interpretation will

require further empirical investigation.

In this paper we presented results showing a trend towards

the addition of learning capabilities to a robot helping users to

cope with a new or complex task, and improving the rating

of their performance by their supervisor. This is an important

point for design, especially when there is a heavy workload

on users such as in RAT when therapists have to use WoZ to

continuously control the robot.
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Abstract—Social HRI requires robots able to use appropriate,
adaptive and contingent behaviours to form and maintain en-
gaging social interactions with people. Cognitive Architectures
emphasise a generality of mechanism and application, making
them an ideal basis for such technical developments. Following
the successful first workshop on Cognitive Architectures for HRI
at the 2014 HRI conference, this second edition of the workshop
focusses specifically on applications to social interaction. The
full-day workshop is centred on participant contributions, and
structured around a set of questions to provide a common
basis of comparison between different assumptions, approaches,
mechanisms, and architectures. These contributions will be used
to support extensive and structured discussions, with the aim
of facilitating the development and application of cognitive
architectures to social HRI systems. By attending, we envisage
that participants will gain insight into how the consideration
of cognitive architectures complements the development of au-
tonomous social robots.

Index Terms—Cognitive Architectures; Cognitive Robotics;
Social Human-Robot Interaction

I. INTRODUCTION

Achieving social interactions between humans and robots

is a complex task that has yet to be attained, but which is

necessary for the increasing range of real-world applications

for social robots. It requires an understanding of human

social behaviour, and it requires the robots to use appropriate,

adaptive and contingent behaviours to form and maintain these

social interactions. Given that pre-programmed approaches are

clearly insufficient for this problem, Cognitive Architectures

provide a good alternative as they propose general mechanisms

of ‘intelligence’ and behaviour generation.

Following the successful First Workshop on Cognitive Ar-

chitectures for HRI held at the HRI conference in 2014

(Bielefeld) [1], we we are running a second edition, in which

we focus specifically on cognitive architectures for social

human-robot interaction1. As previously, the intention is to

have the workshop be as inclusive as possible, catering both

for experienced researchers in the area, but also for those

for whom this may be a new topic. For all, we intend the

workshop to provide a forum for discussion and the exchange

of ideas. To facilitate this discussion and to provide a basis for

a concrete contribution to the research community, we request

short position paper contributions, and will organise a special

1https://sites.google.com/site/cogarch4socialhri2016/

Fig. 1. Workshop logo: cogs are typically used to represent cognition in an
individual agent, this has been adapted to acknowledge the central role that
interaction must play in social human-robot interactions in addition to the
‘internal’ cognition of the individuals.

issue (based on extended version of the position papers) after

the workshop to consolidate the progress made, and provide

a reference point for the community.

II. BACKGROUND

Cognitive Architectures are constructs (encompassing both

theory and models) that seek to account for cognition (over

multiple timescales) using a set of domain-general structures,

mechanisms and/or processes [2]. Typically (but not neces-

sarily) inspired by human cognition [3], the emphasis is on

deriving a set of general principles of operation not constrained

to a specific task or context. Despite the multitude of im-

plementations used [4], they encourage the system designer

to initially take a broader perspective than the computational

mechanisms to be used and consider what sort of functionality

needs to be present for the type of application, and how this

relates to other cognitive competencies that are required.

For HRI, such an approach to building autonomous systems

based on Cognitive Architecture would emphasise first those

aspects of behaviour that are common across domains, before

applying these to specific interaction contexts for evaluation.

In the case of social interaction, the problems are numerous,

encompassing the coordination of multiple sensory and motor

modalities for the robot, the timing of proactive and reactive

actions, and the recognition of interacting human states (cogni-

tive, affective, physical, etc). Indeed, recent theoretical devel-

opments have emphasised the complex temporal coordination

dynamics of human social behaviour, rather than the internal

state of any individual agent [5]. This leads to questions



regarding how the human should be taken into account in the

action preparation/selection for the robot: explicit and individ-

ual models of performance, theory-of-mind, and/or generalised

statistical models of human behaviour? It also gives rise to

the question of whether and how the robot ‘cognition’ and

actions should be directly informed by (or indeed constrained

by) human psychology and physiology, with the complexity

and ‘non-optimal’ behaviours that may result, e.g. [6]. Should

our cognitive architectures for social robots be based directly

on models of human behaviour, or is there no need for this?

These, and related, questions are outstanding in the field and

require addressing if the utility and efficacy of social robots

in the real world is to be realised.

Up to now, there have only been limited and relatively

isolated attempts to addressing these questions, particularly

within the HRI community, with few examples of direct

applications, e.g. [7]. Building on the first iteration of this

workshop [1], we seek to bring together researchers who

are attempting to formalise knowledge of appropriate robot

behaviours for naturalistic interaction with people, typically

emphasising generally applicable, holistic perspectives (i.e.

striving to consider the full gamut of socially interactive

behaviour rather than only individual aspects).

III. OUTLINE OF THE WORKSHOP

This workshop is aimed at researchers from a wide range

of backgrounds who may be interested in applying concepts

from Cognitive Architectures to their work, specifically Social

HRI. Participation in this workshop is open to all interested

researchers.

Prospective participants are requested to submit a 2-4 page

position paper on (preferably) their work involving cognitive

architectures (including the development and/or application

thereof). In order to facilitate interactions and discussions at

the workshop (by providing a basis for comparison), we ask

that all authors additionally use their position papers to provide

an answer to six guiding questions. These are as follows:

1) Why should you use cognitive architectures - how would

they benefit your research as a theoretical framework, a

tool and/or a methodology?

2) Should cognitive architectures for social interaction be

inspired by and/or limited by models of human cogni-

tion?

3) What are the basic requirements for social interaction

for a cognitive architecture?

4) How the requirements for social interaction would in-

form your choice of the fundamental computational

structures of the architecture (e.g. symbolic, sub-

symbolic, hybrid, ...)?

5) What is the primary outstanding challenge in developing

and/or applying cognitive architectures to social HRI

systems?

6) Can you devise a social interaction scenario that current

cognitive architectures would likely fail, and why would

this be the case?

Submission of a position paper is not a pre-requisite for

attendance, and we encourage researchers to attend the work-

shop even if not willing/able to submit a position paper, in

order to maximise community engagement and the uptake

of these concepts within the field of HRI. By attending,

we envisage that participants will gain insight into how the

consideration of cognitive architectures complements the de-

velopment of autonomous social robots.

IV. ORGANISERS

Paul Baxter is a researcher at Plymouth University (UK) in

the Centre for Robotics and Neural Systems, and the Cognition

Institute. After obtaining a PhD in Developmental Cognitive

Robotics (University of Reading, UK), he worked on the EU

FP7 ALIZ-E project to apply and evaluate a memory-centred

perspective on cognition to social child-robot interaction. His

current research work involves the development of supervised

autonomous therapy robots for children with ASD (EU FP7

DREAM project), with a specific focus on cognitive robot

control.

Greg Trafton is a Cognitive Scientist at the Naval Research

Laboratory in Washington, DC, USA. He has degrees in

both Computer Science (Trinity University) and Psychology

(Princeton University) and works on Human-Robot Interaction

from a cognitive modeling / architectures perspective.

Séverin Lemaignan is a researcher at Plymouth University

(UK) in the Centre for Robotics and Neural Systems, and the

Cognition Institute, focusing on the cognitive pre-requisites of

social interaction between humans and robots. He conducts
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technical realisations on interactive robots.
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Abstract—The Memory-Centred Cognition perspective places
an active association substrate at the heart of cognition, rather
than as a passive adjunct. Consequently, it places prediction and
priming on the basis of prior experience to be inherent and
fundamental aspects of processing. Social interaction is taken
here to minimally require contingent and co-adaptive behaviours
from the interacting parties. In this contribution, I seek to
show how the memory-centred cognition approach to cognitive
architectures can provide an means of addressing these functions.
A number of example implementations are briefly reviewed,
particularly focusing on multi-modal alignment as a function
of experience-based priming. While there is further refinement
required to the theory, and implementations based thereon, this
approach provides an interesting alternative perspective on the
foundations of cognitive architectures to support robots engage
in social interactions with humans.

I. INTRODUCTION

The representation and handling of memory is an important

feature of cognitive architectures, with a variety of symbolic

and sub-symbolic representation schemes used (generally as

passive storage), typically based on assumptions of modularity

[1]. As such, memory is generally considered to be structurally

separable from the cognitive processing mechanisms, and

functions to provide these ‘cognitions’ with the required data.

In the memory-centred cognition perspective, memory is

instead considered to be a fundamentally active process that

underlies cognitive processing itself rather than being a passive

adjunct [2], [3]. Based on evidence and models in neuropsy-

chology, e.g. [4], this approach necessitates a re-examination

of the organisation and functions of cognitive architectures, as

outlined below (section III).

Previously, I put forward the case for the greater consid-

eration of memory in HRI developments [5]. I argued that

memory is pervasive: fundamentally involved in all aspects of

social behaviour, beyond mere passive storage of information

in data structures. In this brief (and relatively introspective)

contribution, I expand on this point, exploring specifically the

requirements of social interaction for robots, and consequently

what cognitive architectures need to encompass.

II. FACETS OF SOCIAL INTERACTION

Social interaction is a complex phenomena that entails a

range of abilities on the part of the interactants; indeed, there

are facets of human-human social interaction that are as yet

not fully understood, with the neural substrates supporting

these in the individual yet to be characterised. One aspect that

is commonly emphasised is the requirement for social signal

processing for the individual, where behavioural cues (such as

gaze, intonation, gesture, etc) should be interpreted to inform

the behaviour of the observer.

One central idea emerging in the behavioural sciences

is the notion of ’social contingency’: the coupling and co-

dependency of behaviours between interacting individuals [6].

This explicitly acknowledges the necessary role that the ’other’

plays to set up the contingent behaviours, and moves away

from the emphasis on social signal processing (though not dis-

counting it). Minimal interaction paradigms provide intriguing

illustrations of this: even given a low bandwidth interaction

environment, there are non-trivial dynamics set up that cannot

be explained by observations of an individual [7].

For social interaction generally, and in particular for this

latter interacting systems perspective, there is an important role

for prediction [8]. When interacting, there is an expectation

that the interaction partner is also a social agent, and thus

predicable in that context. Infants, for example, can use the

gaze behaviour of a robot to infer that the robot is a psy-

chological agent with which they can interact [9]. A previous

study has further lent support to the idea that the imposition

of expectations of social behaviour (and therefore the arising

of socially contingent behaviours, in this case turn-taking) will

come about if the interactants view each other as (potentially)

social agents [10].

If the interaction partner (whether it is human or robot) is

attributed with social agency, initially as a result of anthropo-

morphism for example [11], then one fundamental character-

istic of social interaction between humans that will be seen is

the ‘chameleon effect’ [12], or imitation/alignment, e.g. [13],

[14], [15]. The presence of this within an interaction, as a type

of contingency between the interactants (see above), could be

seen as an indicator of sociality.

These phenomena, from attribution of social agency to

alignment, illustrate a necessity for social robots (to a certain

extent at least) to conform to human cognitive and behavioural

features, as well as to their constraints, to enable predictability,

consistency and contingency of robot behaviour with respect

to the human(s) in the interaction.



III. MEMORY-CENTRED COGNITIVE ARCHITECTURE

From neurospychology, the Network Memory framework

[4] emphasises the central role that distributed associative

cortical networks play in the organisation and implementation

of cognitive processing in humans. The role of associative

networks serves not only as a learning system (through

Hebbian-like learning), but also as a substrate for activation

dynamics. The reactivation and adaptation of existing networks

combine to generate behaviour that is inherently based on prior

experience.

The Memory-Centred Cognition perspective, as applied to

the domain of cognitive robotics [2], seeks to extend these

principles of operation: associative networks supporting acti-

vation dynamics that bring prior experience to bear on the

current situation. A developmental perspective is necessary in

order to do so [16]: the creation (and subsequent updating) of

the associative networks must be done through the process of

experience in order to form the appropriate associations be-

tween information in the present sensory and motor modalities

of the robot (or system, in the case of a simulation).

Once an associative structure has been acquired, the princi-

ple mechanism at play is priming [2]. Priming in a memory-

centred system occurs when some sub-set of the system is

stimulated (from incoming sensory information for example),

which causes activation to flow around the network, in turn

causing parts of the network with no external stimulation to

become active. Priming in this way fulfils a number of im-

portant functions. Firstly, it sets up cross-modal expectations,

or the prediction of currently absent stimuli. Secondly, the

priming process facilitates an integration of information across

different modalities in a way that is explicitly based on prior

experience (biased by the weights of the associative network).

A computational implementation of this has been applied

to an account of the developmental acquisition of concepts

[17]: not only was the system able to complete the task with

a high success rate, but also the errors it made were con-

sistent with those made by humans. A similar computational

implementation has also been used to demonstrate how word

labels for real-world objects can facilitate further cognitive

processing [18]. These examples provide a glimpse of the

range of cognitive processing (relevant to human cognitive

processing) that can be accounted for using the memory-

centred perspective.

Regarding social human-robot interaction, and in particular

the notion that alignment is a fundamental feature of it (section

II), the memory-centred perspective provides an intuitive, and

indeed effective, account. Using exactly the same mechanism

as for the concept learning study, the structure of an associative

network was learned based on human behaviour (across a

number of different modalities), which could then be directly

used to determine the characteristics of the robot behaviour

[14]. Alignment is achieved as a by-product of the way the

memory-centred cognitive system operated: the associations

were learned through experience, and behaviour was generated

from priming (i.e. recall).

IV. ADDRESSING QUESTIONS

From the context outlined above, I now attempt to provide

answers to a set of six questions relevant to the notion of

social cognitive architectures. I particularly seek to emphasise

a principled-basis (as opposed to computational mechanism-

basis) for cognitive architectures and for the application to

social interaction.

A. Why should you use cognitive architectures - how would

they benefit your research as a theoretical framework, a tool

and/or a methodology?

The benefit would be in considering cognitive architectures

as a set of principles (a theoretical framework), a methodology

for assessing these principles, and as a tool for providing

robots with autonomous intelligent behaviour.

There are in my view three specific contributions related to

scientific development (as opposed to technical implementa-

tion) that cognitive architectures can make to HRI research and

development, which are centred around the idea of a cognitive

architecture being made up of a set of formalised hypotheses.

Firstly, in a principled manner, they allow data and theory

from empirical human studies to be integrated into artificial

systems. For example, if data from a psychology experiment

is to be integrated, a framework for doing so is required

(i.e. the architecture enables an interpretation of the data).

This first point promotes the idea of a directly human-

inspired/constrained architecture. Secondly, treating cognitive

architectures as a set of formalised (through implementation)

principles, they facilitate a comparison of different archi-

tectures at a level abstracted away from the computational

systems/algorithms used, enabling a focus on the assumptions.

In the presently considered case of social interaction, this is a

useful facet given the as yet uncertain nature of what exactly

constitutes social interaction (section II). Thirdly, the applica-

tion of cognitive architectures (in robotic systems for instance)

provides a means of evaluating its constituent assumptions and

principles. This is related to the first point, but is focused

more on the integration of empirical evidence obtained from

application/experimentation with the architecture itself.

B. Should cognitive architectures for social interaction be

inspired and/or limited by models of human cognition?

Following from the principles of social interaction outlined

above, essentially, yes.

Taking the view that social interaction between humans is

founded on the intrinsic tendency of humans to expect certain

types of behaviour from their interaction partners (see section

II), it becomes important to ensure that the robot will not

violate expectations. In order not to violate expectation, there

must necessarily be some understanding (either on the part of

the system designer or learned by the system itself) of what

expected human behaviour would be.

In the memory-centred cognition perspective, prior inter-

action history of the robot with humans would constrain its

future behaviour by this experienced behaviour.



C. What are the functional requirements for a cognitive ar-

chitecture to support social interaction?

The discussion of social interaction (section II) emphasised

the importance of contingent behaviour, anticipation/prediction

to support this, and adaptation/personalisation. In addition, it

is necessary to specify appropriate timing, and embodiment-

appropriate responses.

If socially-appropriate behaviour is in the eye of the (human)

beholder, then the Keepon robot for example demonstrates the

importance of coherence of behaviour and timing [19]. The

minimally complex embodiment is convincingly responsive in

a social manner, to the extent that it is seen as a communicative

partner [20]. Even though it doesn’t use language, only uses

few degrees of freedom (in contrast to many other robots used

in HRI), and is only minimally humanoid in appearance, the

effect of apparent sociality is strong.

Integration of sensory and motor modalities in a temporally

consistent and responsive manner (i.e. contingency), based on

principles of prediction from prior experience (i.e. memory),

and coherency with the robot embodiment used (c.f. Keepon

example) are therefore fundamental functional requirements

for a social cognitive architecture.

D. How would the requirements for social interaction inform

your choice of the fundamental computational structures of

the architecture (e.g. symbolic, sub-symbolic, hybrid, ...)?

Given the commitment to the memory-centred cognition

perspective in this work, there is a natural fit with sub-

symbolic computational structures. This provides a number

of inherent advantages (section III), such as the integration

of predictive behaviour from prior experience, and priming

effects (within and between modalities).

However, the nature of applications in human-robot inter-

action (relying on language for example) means that it is

not yet possible to dispense with symbol-processing systems.

Nevertheless, there is in principle an effort to push the limits

of sub-symbolic processing mechanisms up the processing and

representation hierarchy, as revisited below (section V).

E. What is the primary outstanding challenge in developing

and/or applying cognitive architectures to social HRI systems?

One of the primary challenges in the application of cognitive

architectures to social interaction lies in the general lack of

understanding of what is precisely involved in human-human

social interaction. To a certain extent it is an attempt to find a

solution to a problem that is as yet not fully characterised. This

reflects on the requirements for the cognitive architectures that

should engage in social interaction: if a commitment to human-

like cognition/behaviour is made (see section IV-B), then what

precisely are the constraints that need to be incorporated?

A more practical concern that requires further development

is the provision of sensory systems for robots that can provide

sufficiently complex characterisations of the (social) environ-

ment for effective decision making. There is however, in my

opinion, no clear distinction between sensory systems and

cognitive processing, given the necessity for interpretation of

raw sensory signals (e.g. camera images) at various levels of

abstraction.

F. Can you devise a social interaction scenario that current

cognitive architectures would likely fail, and why?

The question is whether the application to a single domain

can be generalised to other domains, which is where the

benefits of cognitive architectures should come (section IV-A).

As such, rather than a specific interaction scenario, I would

suggest instead that autonomous sociality over variable time-

scales poses challenges to current approaches and implemen-

tations.

In the short term, the challenge for social robots is to pro-

duce behaviour appropriate to the interaction context, informed

by prior interaction experience, in a manner consistent with

the expectations of the interacting humans. Furthermore, this

socially interactive behaviour should adapt to the interaction

partner over time, in terms of verbal and non-verbal behaviours

for example. The technical challenges to support this in terms

of sensory processing are outstanding, but there are also clear

challenges in terms of the mechanisms of adaptation required

(i.e. the ‘cognitive’ aspect). The memory-centred approach has

ventured an implementation towards this problem, although the

account is as yet incomplete.

Over extended periods of time, the challenges are com-

pounded by requirements for stability. This is not just stability

in terms of ensuring the system doesn’t fail, but also in

resolving the apparent trade-off between adaptability to new

situations and robustness of the cognitive system. From the

perspective of the memory-centred cognition account, the res-

olution to this question lies in how the formation, maintenance

and manipulation of memory is handled in the system in terms

of parameters and structures.

V. OUTLOOK

The nature of the discussion above is primarily principled

and theoretical rather than focused on specific computational

mechanisms. Naturally I believe memory-centred cognition

perspective to have a consistency and coherence that merits

consideration and further development. However, it is not in

its current state able to practically support all aspects of real

social interactions with real people.

This is a limitation shared with many ‘emergent’ cog-

nitive architecture approaches [21]: theoretically interesting

and coherent perhaps, but practically limited in terms of

what can be done on real systems (use of language and

dialogue being good examples of this). This is partly due to

an implication of the theoretical perspective: by committing

to a holistic approach that emphasises the integration and

interplay of many different factors (including, for example,

cognition, embodiment, culture, etc), the problem is made

more difficult before a computational implementation is even

begun. On a practical level, the types of dynamical system (be

they neural network-based or other) used are typically not fully

understood, or are at least highly complex [22], e.g. in terms of

conditions for stability (particularly when adaptation/learning



is incorporated), which does not bode well for social robots

that have to be reliable in real interactions with real people.

For these reasons, I do not believe that symbol-based

approaches should (or can) be discarded, at least not for

the foreseeable future. They provide the means of getting

closer to actually achieving the desired behaviours in reality.

Having said this, and as noted above (sec. IV-D), I remain

intent on pushing the boundary between symbolic and sub-

symbolic implementations ‘up’ the abstraction hierarchy, in

a manner common with a range of other developmentally-

oriented researchers [23], [24].

So, what does a memory-centred cognitive architecture look

like if it is to be effectively applied to social interaction? And

what does the memory-centred cognitive architecture enable in

terms of social robots that would be difficult to achieve with

an alternative approach? The functionality of developmental

learning of cross-modal associations for prediction and action

generation outlined above (section III) provides a technically

difficult but in principle effective solution to the issue of

learning from a vast array of potential multi-modal information

in a way that is useful for action generation. This is not to say

that this is the only approach (theoretical or computational)

that would be capable of a similar functionality. However,

this is where the second aspect, the requirement to fulfill

social interaction with humans through conformity with human

cognition (section II), becomes a distinguishing characteristic

of the memory-centred approach.

In developing the theory, I have applied it to a range of

practical systems and applications, as reviewed above (sec-

tion III). For example using the same mechanism, accounts

have been made of concept acquisition [17] and multi-modal

robot behaviour alignment to an interaction partner [14].

Other systems using the same principles have been used

to demonstrate the development of low-level sensory-motor

coordination through experience [16], and the role of words

in supporting new cognitive capabilities [18].

Whereas my commitment to the memory-centred cognition

perspective for robotics is strong, my commitment to the

specific mechanisms used is weak. I must acknowledge that

there are a number of weaknesses with the various systems

used, notably related to hierarchical structure/representation,

and an incomplete account of temporal processing. However,

in my view, this does not invalidate the theoretical approach,

and merely serves to provide motivation to either find or

develop a more appropriate computational implementation that

fulfils all of the principles and constraints of the memory-

centred cognition perspective.
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A Guide to Using systemGUI

Summary

The purpose of this technical report is to provide a guide for all technical partners and the end users

of the systemGUI developed as part of WP6. Technical partners may need this information in order

to perform tests with an expanded subset of the integrated DREAM system. Therapists will need to

understand how the systemGUI interface is used in order to run planned experiments effectively. This

report is based on the current systemGUI at the production date; details may change to align with the

GUI changes in the future.

Principal Contributors

The main authors of this document are as follows (in alphabetical order).

Hoang-Long Cao, VUB

Pablo Gomez, VUB

James Kennedy, Plymouth University

Emmanuel Senft, Plymouth University

Revision History

Version 1.0 (J.K. 18-01-2017)

Outline of first draft.

Version 1.1 (J.K. 18-01-2017)

First version complete.
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A Guide to Using systemGUI

1 Overall Vision

The GUI is split into four sections:

1. Actions to be performed between scripts (Section 2)

2. Actions to be performed when running a script (Section 3)

3. Child history information (Section 4)

4. Developer console (not covered in this document)

To switch between these sections, use the tabs as highlighted in Figure 1. Some buttons will remain

greyed-out until certain elements have been loaded - see the relevant section of this report for further

details.

Figure 1: View of systemGUI on launch. Tabs to move between the main interaction views are

highlighted by the orange box.
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A Guide to Using systemGUI

2 Off-Script Actions

Figure 2 shows the off-script actions pane. The robot must be connected correctly to the system in

order to perform these actions. Clicking a button will trigger the corresponding robot behaviour. This

tab is not available while a script is running, but can be used when a script is stopped, or when a script

step is manually stopped by the therapist using the ’I will choose’ button (more details in Section 3).

These buttons are to be used by the therapist between scripts for maintaining the child’s engagement,

or in scripts to regain the child’s focus if they are not engaging.

Figure 2: View of off-script actions tab.
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3 Running Scripts

The script pane, as shown in Figure 3 is where most of the therapy will be conducted from. The

interaction model is based on supervised autonomy, as described in DREAM deliverable D6.3.3. To

start an intervention:

1. Select a child from the ’Name’ drop-down

2. Type a name for the session in the ’Session Name’ field

3. Select the ’Session Partner’: either Therapist or Robot

4. Click ’Create Session’

From this point, the child details are loaded - they can now be viewed in the ’Child History’ tab, and

the ’Load script’ option is now available. After a script is selected in the ’Load script’ drop-down, the

’Start script’ button can be used to begin the script. It can be paused at any time using the ’I will choose’

red button at the right of the pane. It can be completely stopped to restart, or select a new script using

the ’Stop script’ button (same location as the ’Start script’ button was). The robot will autonomously

follow the script steps loaded on the left. If the proposed action is incorrect or sensory information is

missed then the therapist can override the robot behaviour using the ’I will choose’ button on the right.

This pauses the script and enables the ’Between Scripts’ tab and the lower part of the script buttons.

These can now be used to execute robot behaviours until the ’Back to script’ button is pressed (same

location as ’I will choose’). The buttons available will depend on the script loaded - this is so the right

subset of the robot behaviours is displayed to keep things simple (choosing from 6 or 7 options is easier

than from 40+). The ’Do it now’ button can be used to instantly execute the current proposed robot

behaviour.

Figure 3: View of on-script actions tab after a script has been loaded.
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4 Child History/Data Storage

This view provides details for the child in the current session; see Figure 4. The details will not be

loaded here until a child is selected from the ’Name’ drop-down and ’Create Session’ has been clicked.

In the left pane are the details stored in the user model by the therapists for each child (these details

are pre-entered by the therapists using the userModelCreator.exe tool available in the DREAM SVN

/release/tools directory produced by J.K., PLYM). In the right pane are historical intervention details.

All of these pieces of information are read from the user model file, stored in the DREAM SVN

/release/components/userModel/config/userdata directory. Each user has their own .user file with the

pre-entered and intervention data stored. These files therefore hold a primary means of evaluating the

interventions and should never be manually modified while experiments are ongoing, they should be

regularly backed up, and also be treated as confidential.

Before running an experiment, it is important that the intervention history is cleared for any users

that have been used as part of testing (this should be done manually).

Figure 4: View of child history tab after a session has been loaded.
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Towards “Machine-Learnable” Child-Robot Interactions:

the PInSoRo Dataset

Séverin Lemaignan1, James Kennedy1, Paul Baxter2 and Tony Belpaeme1

Abstract— Child-robot interactions are increasingly being
explored in domains which require longer-term application,
such as healthcare and education. In order for a robot to behave
in an appropriate manner over longer timescales, its behaviours
should be coterminous with that of the interacting children.
Generating such sustained and engaging social behaviours is an
on-going research challenge, and we argue here that the recent
progress of deep machine learning opens new perspectives that
the HRI community should embrace. As an initial step in that
direction, we propose the creation of a large open dataset
of child-robot social interactions. We detail our proposed
methodology for data acquisition: children interact with a robot
puppeted by an expert adult during a range of playful face-to-
face social tasks. By doing so, we seek to capture a rich set of
human-like behaviours occurring in natural social interactions,
that are explicitly mapped to the robot’s embodiment and
affordances.

I. MACHINE LEARNING: THE NEXT HORIZON FOR

SOCIAL ROBOTS?

While the family of recurrent neural networks have re-

peatedly made the headlines over the last few years with

impressive results, notably in image classification, image

labelling and automatic translation, they have been largely

ignored in many other fields so far as they are perceived to

require very large datasets (hundreds of thousands to millions

of observations) to actually build up useful capabilities.

Even though neural networks have demonstrated compelling

results in open-ended, under-defined tasks like image la-

belling, they did not stand out as attractive approaches to

problems involving high dimensions with relatively small

datasets available – like human-robot social interactions.

Besides, if one considers “social interactions” to also

entail joint behavioural dynamics, and therefore, some sort of

temporal modeling, neural networks look even less enticing

as time is notably absent from most of the tasks which neural

networks have been successful at.

In 2015, the Google DeepMind team demonstrated how a

convolutional recurrent neural network could learn to play

the game Break-Out (amongst 48 other Atari games) by

only looking at the gaming console screen [1]. This result

represents a major milestone: they show that a relatively

This work has been partially supported by the EU H2020 Marie
Sklodowska-Curie Actions project DoRoThy (grant 657227), the EU FP7
DREAM project (grant 611391), and the EU H2020 L2TOR project (grant
688014).

1Séverin Lemaignan, James Kennedy and Tony Belpaeme are with
the Centre for Robotics and Neural Systems, Plymouth University, U.K.
firstname.surname@plymouth.ac.uk

2Paul Baxter is with the Lincoln Centre for Autonomous Sys-
tems, School of Computer Science, University of Lincoln, U.K.
pbaxter@lincoln.ac.uk

small sample size (about 500 games) is sufficient for an

artificial agent to not only learn how to play (which requires

an implicit model of time to adequately move the Break-

Out paddle), but to also create gaming strategies that look

like they would necessitate planning (the system first breaks

bricks on one side to eventually get the ball to break-out and

reach the area above the remaining bricks, therefore ensuring

rapid progress in the game). We argue that the complexity

of mechanisms that such a neural network has been able to

quickly uncover and model should invite our community to

question its applicability to human-robot interactions (HRI)

in general, and sustained, natural child-robot interactions in

particular.

However, the lack of a widespread HRI dataset suitable

for the training of neural networks is a critical obstacle to

this initial exploration. Therefore, as a first step, we propose

a design for such a dataset, as well as a procedure to acquire

it. We hope that discussions during the workshop may help

in further refining this proposal.

II. MACHINE LEARNING AND SOCIAL BEHAVIOUR

Using interaction datasets to teach robots how to socially

behave has been previously explored, and can be considered

as an extension of the traditional learning from demonstration

(LfD) paradigms to social interactions (for instance [2],

[3]). Previous examples have generally focused on low-level

recognition or generation of short, self-standing behaviours,

including social gestures [4] and gazing behaviours [5].

Based on a human-human interaction dataset, Liu et

al. [6] have investigated machine learning approaches to

learn longer interaction sequences. Using unsupervised learn-

ing, they train a robot to act as a shop-keeper, generating

both speech and socially acceptable motions. Their approach

remains task-specific, and while they report only limited

success, they emphasise the “life-likeness” of the generated

behaviours.

Kim et al. [7] highlight that applying deep learning to

visual scene information in an HRI scenario was successful,

but that generating behaviours for the robot to be able to act

in a dynamic and uncertain environment remains a challenge.

These examples show the burgeoning interest of our

community for the automatic learning of social interactions,

but also highlight the lack of structure of these research

efforts, as further illustrated by the quasi-absence of public

and large datasets of human-robot interactions. To our best

knowledge, only the H3R Explanation Corpus [8] and the

Vernissage Corpus [9] have been published to date. The H3R

Explanation Corpus is a human-human and human-robot



Fig. 1. The acquisition setup: a child interacts with a robot in a range
of interactive tasks. The robot is physically guided by an adult expert. We
record, in a synchronised manner, the full joint-states of the robots, the RGB
and depth video stream from three perspectives (global scene and each of the
participant faces), and the sounds (notably, the verbal interactions between
the participants).

dataset focusing on a “assembly/disassembly explanation”

task and includes physiological signals (22 human-robot

interactions), but is not publicly available. the Vernissage

Corpus includes one museum guide robot interacting with

two people (13 interactions in total), with recordings and

annotations of poses and speech audio (stated to be publicly

available). Both these corpora are however too small for

machine-learning applications.

III. THE PLYMOUTH INTERACTING SOCIAL ROBOTS

DATASET (PINSORO)

A. High-Level Aims

The Plymouth Interacting Social Robots (PInSoRo)

Dataset is intended to be a novel dataset of human-guided

social interactions between children and robots. Once cre-

ated, we plan to make it freely available to any interested

researcher.

This dataset aims to provide a large record of social child-

robot interactions that are natural: we aim to acquire robot

behaviours through corresponding human social behaviour.

To this end, we propose that an expert adult will puppet

a passive robot (Fig. 1). As such, the gestures, expressions

and dynamics of the interaction are defined and acted by a

human, but as he/she uses the robot body to actually perform

the actions, the motions are implicitly constrained by (and

thus reflect) the robot embodiment and affordances.

The interactions are supported by a range of short social

tasks (described in Section III-B). Critically we propose to

limit these tasks to face-to-face social interactions, either

dyadic or triadic. This constrains the dataset to a more

tractable domain, and should ensure technical feasibility. The

tasks have to fulfil several key requirements:

• be fundamentally social, i.e. these tasks would make

little or no sense for an agent alone;

• foster rich multi-modal interaction: simultaneous

speech, gesture, and gaze behaviours are to be observed;

• exhibit non-trivial dynamics, such as implicit turn-

taking;

• should cover a broad range of interaction contexts and

situations.

While the tasks will initially be short (in order to acquire

a diverse enough dataset), we believe that the captured

social behaviours could also be used to inform long-term

child-robot interaction. Indeed, naturalistic, rich and socially-

oriented multimodal behaviour (beyond simple stereotyped

and reactive behaviour) sets the expectation in the human

that long-term interactions and social presence [10] can

be supported by the robot. Furthermore, we expect such

a dataset to allow researchers to uncover several implicit

and/or micro-behaviours that, while essential for long-term

natural interactions, are difficult to explicitly characterise,

and therefore difficult to implement.

B. Tasks

We suggest an initial set of four tasks, lasting about

10 minutes each. They involve collaborative manipulation

of simple objects (such as toy cubes), (acted) storytelling,

and dialogue-based social gaming. The tasks are intended

to be sufficiently different from one another in order to

collect a variety of different behaviours, and to minimise

task-dependency of the behaviours eventually learnt from the

dataset. Physical manipulation of objects across the tasks is

limited by the Aldebaran Nao grasping capabilities; the tasks

are designed with this in mind, e.g. pushing objects away or

to the side is possible, whereas pulling them is more difficult.

The tasks are also designed to be playful and engaging,

and are derived from classic childrens’ games and activities

(they are directly inspired by tasks used in other child-robot

interaction work, such as [11]). They are thus expected to

elicit social interactions that are particularly relevant to child-

robot interaction.

a) Task 1: Spatial reasoning: In this task, one part-

ner (child or robot) has a “completed” model made from

shapes. Their role is to explain to the other partner how to

arrange an identical set of shapes in order to re-create the

completed model. The partner with the completed model is

not allowed to directly touch the shapes. This task is intended

to encourage verbal communication and deictic as well as

iconic gestures. It is possible to tune the difficulty of the

task through, for example, providing multiple pieces with

the same colour, or shape. Similar spatial tasks have been

used in other HRI experiments both with adults [12] and

children [13].

b) Task 2: Storytelling: The second task revolves

around storytelling. To provide a context and collaborative

element to the storytelling, “Story Cubes” are incorporated

into the task. These cubes are like dice, but with pictures

in place of numbers; the pictures serve to guide the story.

The two partners are asked to invent a story together, and

they take turns in throwing one (large, custom-made) die,

arranging the new picture into the story line, and proceeding

to tell, and act out, the unfolding story. This task is expected

to primarily generate verbal interaction, accompanied by

iconic gestures.



Fig. 2. A sokoban-inspired task requiring collaboration to complete given
limitations in robot manual dexterity: the robots face each other across the
long edge of each puzzle. Each object (red/blue square) must be pushed
to its own goal (red/blue G), in three example levels of difficulty: (A) red
and blue objects each simply pushed by one individual, both interactants
required, but no explicit collaboration; (B) again a single object requires
only a single interactant to manipulate, but some coordination is required
due to shared path; (C) each object requires both interactants to manipulate,
as well as coordination due to joint path.

c) Task 3: Collaborative strategising: The third pro-

posed task is inspired by the Sokoban game (Fig. 2): the

two partners must correctly move a set of cubes to locations

within a 2D playground by only pushing the cubes. Due to

the physical setup of the interaction (Fig. 1), the robots are

essentially limited to pushing away the cubes, transforming

the game into a necessarily collaborative activity.

d) Task 4: Party game “Taboo”: The fourth proposed

task involves triads in a social party game chosen not to

require specific gesturing. One such game is “Taboo”, a game

where one must get others to guess a word without using the

word itself. As the game relies only on verbal interaction,

we expect all the gestures and gaze behaviour performed

by the players to be social backchannel communication, and

therefore of direct relevance for the dataset. Using triads is

also expected to elicit a richer set of social situations. We

expect it to prevent the overfitting of the model to the specific

features of dyadic social interactions.

C. Methodology

The envisioned dataset would be comprised of a large

number (> 50) of about 30 minutes long recordings of

interactions between one child and one puppet-robot, guided

by an experimenter (Fig. 1). The pair would be invited to

play one or several of the proposed tasks (to be defined after

initial pilots). The children would be between 8 and 14 years

old. A possibly narrower age range is to be specified once the

tasks are precisely defined to ensure the tasks are suitable and

engaging for the target age group. Children would typically

be recruited from local schools.

We propose to use a Nao robot, and to record the full joint-

state of the robot over time. The robot is mostly passive:

the feet are firmly fixed on the support table, and all other

degrees of freedom, except for the head, are free. The head

is externally controlled so that the robot gaze follows the

gaze of its human puppeteer in real-time.

The choice of the Nao robot is guided by its small size,

making it suitable for puppeting, and its prevalence in the

HRI community, resulting in a dataset relevant for a broader

academic audience. Also, since Nao is a relatively high

degrees-of-freedom (DoF) robot (25 DoFs in total, 5 DoFs

per arm), it mimics human kinematics reasonably well. As

the motions are recorded in joint space, the dataset can

be mapped to other robotic embodiments with similarly

configured degrees-of-freedom.

D. Recorded Data

The dataset would comprise the following raw data:

• full 30Hz 25 DoF joint-state of the Nao robot,

• RGB + depth video stream of the scene (see Fig. 1),

• RGB + depth video stream from the child, as seen by

the robot,

• speech recording.

Recorded in a fully synchronised manner, these data

streams are intended to represent a useful input for many

machine-learning techniques. They provide a rich dataset for

a range of domains related to social child-robot interaction:

from analysis of behavioural alignment between partners

(via metrics like the recently proposed Individual Motor

Signature [14]), to modeling of the dynamics of turn-taking,

to the uncovering of implicit in-the-moment synchronisation

mechanisms.

This would be complemented by higher-level, post-

processed data:

• 68 face landmarks on the child’s face, providing options

for further facial analysis (like emotion recognition),

• child’s skeleton extraction,

• the gaze localisation of each of the participants,

• the 3D localisation of all physical actors (child, all robot

parts, cameras, table, manipulated objects),

• the verbal interaction transcripts (automatic transcript

with manual verification and correction).

All these sources would be acquired via the ROS mid-

dleware (which provides the required mechanism for time

synchronisation between the sources) and stored as ROS bag

files, making it simple to replay the interactions.

As this dataset would contain sensitive data involving

children, strict and specific guidelines to ensure the ethical

handling of the dataset will be issued before effectively

sharing any data.

IV. DISCUSSION

A. Envisioned Applications

The recent advances in machine-learning described in the

introduction raise the question of its applicability to the key

challenges of artificial intelligence for robotics. Social HRI is

a particularly difficult field as it encompasses a large range of

cognitive skills in an intricate manner. Application domains

of social HRI are typically under-defined, highly dynamic

and difficult to predict.

From the data collected, a starting point for machine

learning could entail a probabilistic model for reactive be-

haviours in a given task, i.e. finding for each “social cue” the

possible set of responses and their probabilities. This could

be made generative by using the probability distribution to



seed a roulette-wheel action selection mechanism, effectively

creating a probabilistic reactive controller. Whilst simplistic,

this is an illustrative example of how the data may be used.

As suggested in the introduction, we also believe that such

a dataset could be used to train deep neural networks. While

the proposed dataset is very likely not comprehensive enough

to train a neural network into an autonomous interactive

system, it may be sufficiently rich to train interesting hidden

units whose activations would be conditional on specific

social situations. For instance, one could imagine that an

adequately configured network would generate hidden units

able to activate on joint gaze, or on deictic gestures. It must

be emphasised that such findings are entirely hypothetical,

and we only conjecture them here.

B. Possible Methodological Alternative

Several methodological issues that may impact on the

quality of the interaction, the data collection, and the gener-

alisability of results have been anticipated. As the puppeteer

behaviours are bound to the embodiment of the robot, it may

be that this manipulation inhibits the production of natural

behaviours. A small-scale pilot will be used to explore

whether or not the puppetted behaviours of the robot inhibit

natural interactions with the children.

Besides, one drawback of the proposed acquisition

methodology is that the puppeteer remains partially visible

to the child (the hands, legs, torso are visible), which may

impact the clarity of the interaction (is the child interacting

with the robot or with the human behind it?). An alternative

acquisition procedure is considered where the puppeteer

would remotely control the robot from a different room,

using Kinect-based skeleton tracking for the posture control,

a head-mounted device for immersive remote vision, and

a headset for remote audio. While this adds significant

complexity to the acquisition procedure and increases the

level of dexterity a task may require, it would provide a

cleaner interaction context.

While the tasks have been designed to collect a variety

of social behaviours and interaction dynamics, it may be

that they are still too similar for any subsequent machine

learning to acquire adequately general (i.e. not task-specific)

behaviours for broader use. Similarly, the use of a single

robot may prevent generalisation to other robotic platforms.

However, it is not possible to know until algorithms have

been applied and tested.

C. Long-Term Considerations

If useful social behaviours can be learnt from the initial

dataset collected, then this would warrant further collection

and exploration of the technique. Transfer to adult-adult

pairs could be conducted (possibly with modification of the

tasks). Child pairs performing the tasks without the robot

could be used to further update behavioural models, as could

human behaviours in response to learned robot models, thus

providing longer-term adaptivity of behaviour.

Whilst we must acknowledge that the task-centred in-

teractions we propose as part of the PInSoRo dataset are

relatively short-term, we do argue that they are capable of

simultaneously capturing a range of subtle and complex

naturalistic behaviours across a range of different modali-

ties. This type of rich behaviour (by going beyond simple

stereotyped and reactive behaviour) supports the expectation

in the human that they are interacting with a truly socially

competent agent, thus providing the conditions in which

long-term child-robot interactions could take place. The ap-

plication of machine learning algorithms (particularly “deep”

methods) provide an opportunity to automatically datamine

the solutions to this vastly complex problem that may not be

possible with hand-coded systems. Whilst this methodology

may yet prove to not be sufficient for a complete solution,

we propose that the PInSoRo dataset (and others that may

follow) establishes a necessary foundation for the creation

of socially-competent robots over long-term interactions.
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Summary
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WP6 Full Port Descriptions

1 Overview

This Technical Report outlines the design of WP6 components and their connections to one another

and components from other work packages, down to the communication port level. It is intended to

be used as a guide for the developers within WP6, and also the other technical partners to understand

the information that WP6 components expose for their use. The components described are as follows

(with the DREAM deliverable number detailing their purpose/implementation):

• attentionReactionSubsystem (D6.1, D6.2)

• scriptManager (D6.3.1+)

• deliberativeSubsystem (D6.3.1+)

• userModel (D6.3.3+)

• systemGUI (D6.3.3+)

• sandtrayServer (D6.3.3+)

• sandtrayEvent (D6.3.3+)

• actuationSubsystem (D6.4.1+)

• naoInterface (D6.4.3+)

• selfMonitoringSubsystem (D6.5; due M54)
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WP6 Full Port Descriptions

2 Primitive Implementations

Below are definitions of the two previously undefined (at the port level) primitives that WP6 exposes to

other components.
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getInterventionStatus(VectorOf<int>) (Agreed in principle with WP5; ST). The complete set of new 

definitions are required to complete the script_id parameter. The structure may need to change if 

there are any situations in which we can expect two behaviours in the same script step; this is not 

the case in D1.1.). 

getInterventionStatus(script_id, script_step, expected_behaviour_id, 

expected_behaviour_parameter, expected_behaviour_time_window, on_script, script_type_id) 

Index Description 
Possible 

Values 
Value Translation 

0 script_id 0 between scripts/script not started 

  1 joint attention 1 

  2 joint attention 2 

  3 joint attention 3 

  .. more tbc 

1 script_step >=0 script step indicator 

2 expected_behaviour_id 0 no child behaviour expected for script step 

  1 child perform good sandtray move 

  2 child touch sandtray image 

  3 child does not touch sandtray 

  4 child touch robot-owned sandtray image 

  5 look right 

  6 look left 

  7 point left 

  8 point right 

  9 no movement 

  10 child speaks 

  11 hand wave 

  12 hands covering eyes 

  13 hands on head 

  14 fly 

  15 drive car 

  16 drink/smell 

  17 new complex traj 1 

  18 new complex traj 2 

  19 new complex traj 3 

  20 new complex traj 4 

  21 Knocking 

3 expected_behaviour_parameter -1 no parameter 

  >=0 sandtray image id 

4 expected_behaviour_time_window >=0 
time in ms for behaviour to occur within (-1 means 

infinity) 

5 on_script 0 off script 

  1 on script 

6 script_type_id 0 turn taking 

  1 imitation 

  2 joint attention 

  3 pattern 

  4 sharing information 

 

 



interactionEvent(VectorOf<int>) (Agreed in principle with WP5; ST). The primary intention of this 

primitive is to transmit relevant sandtray events for calculation of child performance from WP6 to 

WP5, however it has designed to be flexible for other purposes if required at a later date). 

interactionEvent(type_of_event_id, event_parameter) 

Index Description Possible Values Value Translation 

0 type_of_event_id 0 good sandtray move 

  1 bad sandtray move 

  2 touch on sandtray image 

  3 touch off sandtray image 

  4 child touch robot-owned sandtray image 

1 event_parameter -1 no parameter 

  >=0 sandtray image id 

 



WP6 Full Port Descriptions

3 Component and Port Descriptions

This section includes a graphical representation of all connections with WP6 specified to the port level.

Below this are tables for each of the components in WP6, describing the component, the ports, the port

directions, and the data formatting.

Date: 27/01/2017
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Component Name

Functionality

Primitives implemented

moveHand(handDescriptor, x, y, z, roll)

moveHead (x, y, z)

moveSequence(sequenceDescriptor)

moveTorso (x, y, z)

release()

say(text, tone)

enableRobot();

disableRobot();

System architecture ports used Port Port Type Comm's with

/actuationSubsystem/disableRobot:i BufferedPort<VectorOf<int>> Actuate i

/actuationSubsystem/enableRobot:i BufferedPort<VectorOf<int>> Actuate i

/actuationSubsystem/grip:i BufferedPort<VectorOf<int>> Actuate i

/actuationSubsystem/moveHand:i BufferedPort<VectorOf<double>> Actuate i

/actuationSubsystem/moveTorso:i BufferedPort<VectorOf<double>> Actuate i

/actuationSubsystem/release:i BufferedPort<VectorOf<int>> Actuate i

/actuationSubsystem/say:i BufferedPort<Bottle> Actuate i

/actuationSubsystem/moveSequence:i BufferedPort<VectorOf<int>> Actuate i

/actuationSubsystem/moveHead:i BufferedPort<VectorOf<double>> Actuate i

Other ports used Port Port Type Comm's with

/naoInterface/pointAt:i BufferedPort<VectorOf<float>> Actuate i

/naoInterface/sensorFeedback:o BufferedPort<Bottle> Actuate o

/naoInterface/robotMotorFeedback:o BufferedPort<Bottle> Actuate o

Date of submission core

Date of submission extended

ins 10

outs 2

18/11/2016

extended delivery only

/naoInterface

Translates action primitives into robot-specific commands

grip()



Component Name

Functionality

Primitives implemented

System architecture ports used Port Port Type Comm's with

/selfMonitoringSubsystem/getChildBehaviour:i BufferedPort<VectorOf<double>> CBS (WP5) i

/selfMonitoringSubsystem/engagementFlag:i BufferedPort<VectorOf<double>> CBS (WP5) i

/selfMonitoringSubsystem/getChildPerformance:i BufferedPort<VectorOf<double>> CBS (WP5) i

Other ports used Port Port Type Comm's with

/selfMonitoringSubsystem/actionFeedback:i BufferedPort<Bottle> Actuate i

/selfMonitoringSubsystem/fallingInterruption:i BufferedPort<VectorOf<int>> ARS i

/selfMonitoringSubsystem/getInterventionStatus:i BufferedPort<VectorOf<int>> CC (Delib) i

/selfMonitoringSubsystem/deliberativeFeedback:i BufferedPort<Bottle> Delib i

/selfMonitoringSubsystem/sensorySummary:i BufferedPort<Bottle> Delib i

/selfMonitoringSubsystem/suggestedAction:i BufferedPort<Bottle> Delib i

/selfMonitoringSubsystem/selectedBySupervisor:i BufferedPort<Bottle> GUI i

/selfMonitoringSubsystem/therapistCommand:i BufferedPort<Bottle> GUI i

/selfMonitoringSubsystem/userData:i BufferedPort<Bottle> UM i

/selfMonitoringSubsystem/affectiveState:o BufferedPort<Bottle> ARS o

/selfMonitoringSubsystem/attentionSwitchOff:o BufferedPort<VectorOf<int>> ARS o

/selfMonitoringSubsystem/reactionSwitchOff:o BufferedPort<VectorOf<int>> ARS o

/selfMonitoringSubsystem/therapistGazeCommand:o BufferedPort<VectorOf<double>> ARS o

/selfMonitoringSubsystem/selectedAction:o BufferedPort<Bottle> Delib, Actuate o

/selfMonitoringSubsystem/userDelib:o BufferedPort<Bottle> Delib o

/selfMonitoringSubsystem/proposedToSupervisor:o BufferedPort<Bottle> GUI o

/selfMonitoringSubsystem/smsSummary:o BufferedPort<Bottle> GUI o

/selfMonitoringSubsystem/startStop:o BufferedPort<VectorOf<int>> Script o

/selfMonitoringSubsystem/updatedData:o BufferedPort<Bottle> UM o

Date of submission core

Date of submission extended

ins 12

outs 10

/selfMonitoringSubsystem

Monitors activity during the intervention and the intended behaviour of the robot. It checks ethical limitations. Communicates with the 

therapist through a GUI.

18/11/2016

31/01/2018

None



Component Name

Functionality

Primitives implemented

System architecture ports used Port Port Type Comm's with

/attentionReactionSubsystem/checkMutualGaze:i BufferedPort<VectorOf<int>> SI (WP4) i

/attentionReactionSubsystem/getFaces:i BufferedPort<VectorOf<double>> SI (WP4) i

/attentionReactionSubsystem/getSoundDirection:i BufferedPort<VectorOf<double>> SI (WP4) i

/attentionReactionSubsystem/identifyFaceExpression:i BufferedPort<VectorOf<double>> SI (WP4) i

/attentionReactionSubsystem/recognizeSpeech:i BufferedPort<Bottle> SI (WP4) i

Other ports used Port Port Type Comm's with

/attentionReactionSubsystem/actionFeedback:i BufferedPort<Bottle> Actuate i

/attentionReactionSubsystem/robotSensors:i BufferedPort<Bottle> Actuate i

/attentionReactionSubsystem/attentionBias:i BufferedPort<VectorOf<double>> Delib i

/attentionReactionSubsystem/affectiveState:i BufferedPort<Bottle> SMS i

/attentionReactionSubsystem/attentionSwitchOff:i BufferedPort<VectorOf<int>> SMS i

/attentionReactionSubsystem/reactionSwitchOff:i BufferedPort<VectorOf<int>> SMS i

/attentionReactionSubsystem/therapistGazeCommand:i BufferedPort<VectorOf<double>> SMS i

/attentionReactionSubsystem/elicitedAttention:o BufferedPort<VectorOf<double>> Actuate o

/attentionReactionSubsystem/eyeBlinking:o BufferedPort<Bottle> Actuate o

/attentionReactionSubsystem/fallingReaction:o BufferedPort<VectorOf<int>> Actuate o

/attentionReactionSubsystem/fallingReactionSpeech:o BufferedPort<VectorOf<int>> Actuate o

/attentionReactionSubsystem/socialFacialExpression:o BufferedPort<VectorOf<int>> Actuate o

/attentionReactionSubsystem/socialReaction:o BufferedPort<VectorOf<int>> Actuate o

/attentionReactionSubsystem/socialReactionSpeech:o BufferedPort<VectorOf<int>> Actuate o

/attentionReactionSubsystem/fallingInterruption:o BufferedPort<VectorOf<int>> SMS, Actuate o

Date of submission core

Date of submission extended

ins 12

outs 8

/attentionReactionSubsystem

Given inputs from sensoryInterpretation component and other cognitive controller subsystems, it outputs attention data for the Actuation 

subsystem (where the moveHead( ) primitive is implemented). Additionally, it ensures that the robot can handle the real time challenges of its 

environment appropriately taking care of small motions, appropriate eye blinking, whole body motion during gesturing and head motion, 

recovering from falls, and appropriately reacting to affective displays by young users.

None

extended delivery only

18/11/2016



Component Name

Functionality

Primitives implemented

System architecture ports used Port Port Type Comm's with

None

Other ports used Port Port Type Comm's with

/scriptManager/commandSuccess:i BufferedPort<Bottle> Delib i

/scriptManager/startStop:i BufferedPort<VectorOf<int>> SMS, Delib i

/scriptManager/interventionCommand:o BufferedPort<VectorOf<int>> Delib o

Date of submission core

Date of submission extended

ins 2

outs 1

/scriptManager

Contains and manages the logic for stepping through the scripts as defined in D1.1

None

18/11/2016

31/01/2018



Component Name

Functionality

Primitives implemented

System architecture ports used Port Port Type Comm's with

/deliberativeSubsystem/getChildBehaviour:i BufferedPort<VectorOf<double>> CBS (WP5) i

/deliberativeSubsystem/getChildPerformance:i BufferedPort<VectorOf<double>> CBS (WP5) i

/deliberativeSubsystem/checkMutualGaze:i BufferedPort<VectorOf<int>> SI (WP4) i

/deliberativeSubsystem/getArmAngle:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getBody:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getBodyPose:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getEyeGaze:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getEyes:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getFaces:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getGripLocation:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getHands:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getHead:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getHeadGaze:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getObjects:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getObjectTableDistance:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getSoundDirection:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/identifyFace:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/identifyFaceExpression:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/identifyObject:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/identifyTrajectory:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/identifyVoice:i BufferedPort<VectorOf<int>> SI (WP4) i

/deliberativeSubsystem/recognizeSpeech:i BufferedPort<Bottle> SI (WP4) i

/deliberativeSubsystem/trackFace:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/trackObject:i BufferedPort<VectorOf<double>> SI (WP4) i

/deliberativeSubsystem/getEyeGaze:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/getGripLocation:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/getHeadGaze:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/getObjects:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/getObjectTableDistance:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/getSoundDirection:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/identifyFace:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/identifyFaceExpression:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/identifyObject:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/identifyTrajectory:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/trackFace:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/trackHand:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/trackObject:o BufferedPort<VectorOf<double>> SI (WP4) o

/deliberativeSubsystem/interactionEvent:o BufferedPort<VectorOf<int>> CBS (WP5) o

/deliberativeSubsystem/getInterventionStatus:o BufferedPort<VectorOf<double>>
SI (WP4) - SMS 

- CBS (WP5)
o

Other ports used Port Port Type Comm's with

/deliberativeSubsystem/actionFeedback:i BufferedPort<Bottle> Actuate i

/deliberativeSubsystem/interventionCommand:i BufferedPort<VectorOf<int>> Script i

/deliberativeSubsystem/selectedAction:i BufferedPort<Bottle> SMS i

/deliberativeSubsystem/userDelib:i BufferedPort<Bottle> SMS i

/deliberativeSubsystem/sandtrayEvent:i BufferedPort<Bottle> sandtray i

/deliberativeSubsystem/sandtrayReturn:i BufferedPort<Bottle> sandtray i

/deliberativeSubsystem/robotSensors:i BufferedPort<Bottle> Actuate i

/deliberativeSubsystem/attentionBias:o BufferedPort<VectorOf<double>> ARS o

/deliberativeSubsystem/commandSuccess:o BufferedPort<VectorOf<int>> Script o

/deliberativeSubsystem/startStop:o BufferedPort<VectorOf<int>> Script o

/deliberativeSubsystem/deliberativeFeedback:o BufferedPort<Bottle> SMS o

/deliberativeSubsystem/sensorySummary:o BufferedPort<Bottle> SMS o

/deliberativeSubsystem/sandtrayCommand:o BufferedPort<Bottle> sandtray o

/deliberativeSubsystem/suggestedAction:o BufferedPort<Bottle> SMS o

Date of submission core

Date of submission extended

ins 31

outs 22

31/01/2018

18/11/2016

/deliberativeSubsystem

Takes input from the environment (including sensory information, and the therapist via the GUI) and uses the script manager to 

propose a robot action to the self-monitoring subsystem (which in turn passes this via the therapist using the GUI when using 

SPARC).

getInterventionStatus(interventionDescriptor, stateDescriptor, cognitiveModeDescriptor)



Component Name

Functionality

Primitives implemented

System architecture ports used Port Port Type Comm's with

None

Other ports used Port Port Type Comm's with

/userModel/userID:i BufferedPort<VectorOf<int>> GUI i

/userModel/updatedData:i BufferedPort<Bottle> SMS i

/userModel/userData:o BufferedPort<Bottle> SMS o

Date of submission core

Date of submission extended

ins 2

outs 1

/userModel

Loads and updates the user model file for each child

None

18/11/2016

31/01/2018



Component Name

Functionality

Primitives implemented

System architecture ports used Port Port Type Comm's with

/systemGUI/getChildBehaviour:i BufferedPort<VectorOf<double>> CBS (WP5) i

/systemGUI/getChildPerformance:i BufferedPort<VectorOf<double>> CBS (WP5) i

Other ports used Port Port Type Comm's with

/systemGUI/proposedToSupervisor:i BufferedPort<Bottle> SMS i

/systemGUI/smsSummary:i BufferedPort<Bottle> SMS i

/systemGUI/selectedBySupervisor:o BufferedPort<Bottle> SMS o

/systemGUI/therapistCommand:o BufferedPort<VectorOf<double>> SMS o

/systemGUI/userID:o BufferedPort<VectorOf<int>> UM o

Date of submission core

Date of submission extended

ins 4

outs 3

/systemGUI

Wizard GUI for the therapist to control the intervention and the robot

None

18/11/2016

31/01/2018



Component Name

Functionality

Primitives implemented None

System architecture ports used Port Port Type Comm's with

None

Other ports used Port Port Type Comm's with

/actuationSubsystem/elicitedAttention:i BufferedPort<VectorOf<double>> ARS i

/actuationSubsystem/eyeBlinking:i BufferedPort<Bottle> CC/ARS i

/actuationSubsystem/fallingInterruption:i BufferedPort<VectorOf<int>> CC/ARS i

/actuationSubsystem/fallingReaction:i BufferedPort<VectorOf<int>> CC/ARS i

/actuationSubsystem/fallingReactionSpeech:i BufferedPort<VectorOf<int>> CC/ARS i

/actuationSubsystem/socialFacialExpression:i BufferedPort<VectorOf<int>> CC/ARS i

/actuationSubsystem/socialReaction:i BufferedPort<VectorOf<int>> CC/ARS i

/actuationSubsystem/socialReactionSpeech:i BufferedPort<VectorOf<int>> CC/ARS i

/actuationSubsystem/sensorFeedback:i BufferedPort<Bottle> NI i

/actuationSubsystem/robotMotorFeedback:i BufferedPort<Bottle> NI – PI i

/actuationSubsystem/sandtrayReturn:i BufferedPort<Bottle> sandtray i

/actuationSubsystem/selectedAction:i BufferedPort<Bottle> SMS i

/actuationSubsystem/robotSensors:o BufferedPort<Bottle> Delib, ARS o

/actuationSubsystem/disableRobot:o BufferedPort<VectorOf<int>> NI – PI o

/actuationSubsystem/enableRobot:o BufferedPort<VectorOf<int>> NI – PI o

/actuationSubsystem/grip:o BufferedPort<VectorOf<int>> NI – PI o

/actuationSubsystem/moveHand:o BufferedPort<VectorOf<double>> NI – PI o

/actuationSubsystem/moveHead:o BufferedPort<VectorOf<double>> NI – PI o

/actuationSubsystem/moveSequence:o BufferedPort<VectorOf<int>> NI – PI o

/actuationSubsystem/moveTorso:o BufferedPort<VectorOf<double>> NI – PI o

/actuationSubsystem/pointAt:o BufferedPort<VectorOf<float>> NI – PI o

/actuationSubsystem/release:o BufferedPort<VectorOf<int>> NI – PI o

/actuationSubsystem/say:o BufferedPort<Bottle> NI – PI o

/actuationSubsystem/sandtrayCommand:o BufferedPort<Bottle> sandtray o

/actuationSubsystem/actionFeedback:o BufferedPort<Bottle> SMS, ARS, Delib, GUI o

Date of submission core

Date of submission extended

ins 12

outs 13

/actuationSubsystem

Receives inputs from other subsystems and produces outputs to the robot interface. It combines actions from the subsystems and sends the next 

action to perform by the robot.

18/11/2016

31/01/2018



Component Name

Functionality

Primitives implemented

System architecture ports used Port Port Type Comm's with

None

Other ports used Port Port Type Comm's with

/sandtrayEvent/sandtrayEvent:o BufferedPort<Bottle> Delib o

Date of submission core

Date of submission extended

ins 0

outs 1

/sandtrayEvent

Manages data communication with the sandtray game engine

None

extended delivery only

18/11/2016



Component Name

Functionality

Primitives implemented

System architecture ports used Port Port Type Comm's with

None

Other ports used Port Port Type Comm's with

/sandtrayServer/sandtrayCommand:i BufferedPort<Bottle> Delib, Actuate i

/sandtrayServer/sandtrayReturn:o BufferedPort<Bottle> Delib, Actuate o

Date of submission core

Date of submission extended

ins 1

outs 1

/sandtrayServer

Manages data communication with the sandtray game engine

None

extended delivery only

18/11/2016
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Abstract

Shortcomings of reinforcement learning for robot control include the sparsity of the
environmental reward function, the high number of trials required before reaching
an efficient action policy and the reliance on exploration to gather information about
the environment, potentially resulting in undesired actions. These limits can be
overcome by adding a human in the loop to provide additional information during
the learning phase. In this paper, we propose a novel way to combine human inputs
and reinforcement by following the Supervised Progressively Autonomous Robot
Competencies (SPARC) approach. We compare this method to the principles of
Interactive Reinforcement Learning as proposed by Thomaz and Breazeal. Results
from a study involving 40 participants show that using SPARC increases the
performance of the learning, reduces the time and number of inputs required for
teaching and faces fewer errors during the learning process. These results support
the use of SPARC as an efficient method to teach a robot to interact with humans.

1 Introduction

To be widely used by non-technical people, robots have to be able to learn, in order to adapt their
behaviour to new challenges and tasks. These robots have to acquire knowledge whilst interacting in
an environment which possibly includes other people. Reinforcement Learning [14] is a machine
learning algorithm specifically designed to address the issue of learning how to interact efficiently
based on feedback from the environment. This learning method has already been widely applied to
robots [10], however, as pointed by Knox and Stone in [9], the reward function from the environment
can either not be defined for certain tasks or at least be sparse in its assignation of reward. A solution
is to include a human in the learning process, moving from classical machine learning to interactive
machine learning. In this framework, a human supervisor is fully integrated in the learning process
and can provide additional information to the algorithm to improve the learning [4]. Furthermore,
this approach also provides end users with the ability to steer the learning in the direction they desire,
which can improve the robot’s usability [1].
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Multiple approaches have been proposed to combine human feedback and reinforcement learning. In
[8], Knox et al. present the TAMER framework, designed to teach an action policy in the absence of
any environmental feedback using a human to provide the missing rewards used for the reinforcement
learning. Thomaz and Breazeal [16] propose to combine human and environmental rewards and use
them directly as input for a Q-Learner. During their experiments, they observed that participants
tried to use rewards as a way to guide the robot’s actions. Consequently, they introduced a second
guidance channel to guide the robot action in follow-up studies and observed better learning.

However, we argue that the lack of control over the robot’s action in these methods limits the impact
of the human in the learning loop. By taking inspiration from Learning from Demonstration [2, 3], the
human can provide demonstration of the desired action policy, and at the same time interactively teach
the robot. Following this approach, we have proposed the Supervised Progressively Autonomous
Robot Competencies – SPARC [13]. This is based on the supervised autonomy framework [15]: the
robot can act autonomously, but a human is supervising it to prevent undesirable actions from being
executed if necessary. By adding machine learning (reinforcement learning in this case), in which
the robot can learn from the human corrections and improve its action policy over time whilst only
executing actions deemed appropriate by the supervisor.

This paper presents the combination of SPARC and reinforcement learning and compares it with
a previously applied approach following the principles of Interactive Reinforcement Learning [16]
using four metrics: performance, teaching time, number of inputs and risks taken while teaching.
We show that in each of these metrics, SPARC leads to a significant improvement over Interactive
Reinforcement Learning, supporting its use as a framework to teach robots in an interactive fashion in
sensitive environments, such as those typically encountered in human robot interaction.

2 Methodology

Problem specifications In this paper, we tackle the action selection problem in an environment
modelled as a deterministic Markov Decision Process. An agent can execute actions changing the
current state to a new one according to a fixed deterministic transition function. A limited number of
states provide rewards (positive or negative), and the agent has to maximise the rewards obtained
over time. Additionally, a human supervisor is present and can provide additional information to the
robot to improve the learning (rewards and guidance for IRL or commands for SPARC).

Interactive Reinforcement Learning Due to its clarity, simplicity and aim to be used for human-
robot interaction, the method used as a benchmark in this paper is Interactive Reinforcement Learning
(IRL) following principles proposed in [16]. Thomaz and Breazeal proposed a first example of incor-
porating a human in the learning process by directly combining the reward from the environment with
human rewards: a human supervisor can provide rewards which are combined to the environmental
ones and used with Q-Learning. Following early studies, authors enriched the interaction with three
mechanisms to improve the teaching: a guidance mechanism to direct the robot’s attention to some
actions (without covering the entire action space), a communication of uncertainty and an undo
behaviour executing an action cancelling the previous one after a negative reward. This study uses an
algorithm inspired from the one proposed by Thomaz and Breazeal and implementing these additions.

Supervised Progressively Autonomous Robot Competencies In [12] and [13], we proposed the
Supervised Progressively Autonomous Robot Competencies (SPARC) as an interaction framework
allowing a supervisor (human or other) to teach a robot an action policy. SPARC is centred around
a suggestion/correction mechanism whereby the agent suggests actions to its supervisor which can
either correct the action by selecting another one or let the action be executed after a short delay
by not reacting to the suggestion. This system allows the supervisor to be totally in control of the
actions being executed by the robot. A learning algorithm, here reinforcement learning, learns from
the supervisor decision to improve the suggestions over time, decreasing the necessity of correcting
actions and thus reducing the workload on the supervisor.

As the supervisor only provides commands and no reward to the robot, this approach is initially not
designed to be used with reinforcement learning. However the constant control of the supervisor
on the robot’s action implies that every action executed by the robot has been implicitly or actively
validated by the supervisor, so all these executed actions can receive a positive reward: we reward 0.5
for actions actively selected by the supervisor, and 0.25 for the actions passively accepted.

2



Evaluation task To evaluate the efficiency of combining SPARC with reinforcement learning and
to compare the results with IRL, we run a study using Sophie’s kitchen, the initial setup used by
Thomaz and Breazeal in [16]. Participants have to teach a virtual robot how to bake a cake in the
environment presented in Figure 1. The robot can pick-up, drop or use objects and can move left or
right between three locations: the shelf, the table and the oven. Six main steps have to be completed
to bake the cake: placing the bowl on the table, putting a first ingredient in the bowl (flour or eggs),
then the other one, mixing with the spoon, emptying the bowl in the tray and finally putting the tray in
the oven. As shown later, we used these six steps to evaluate participants’ performance. As argued by
Thomaz and Breazeal, this environment is interesting for interactive learning due to the large number
of states (more than 10,000), multiple non-trivial successful action policies (minimum of 28 actions to
achieve the goal) and success and failure states used to provide environmental rewards: for example,
if the spoon is put in the oven, a failure state is reached, providing a negative reward, ending the
current teaching episode and returning the environment to the initial state. More detailed information
can be found in [16]. This environment has been reimplemented to be used in this study, and the two
interaction methods are using strictly the same learning algorithm, only the way to interact changes.

(a) Step 0: Initial state. (b) Step 3: ingredients in the bowl. (c) Step 6: Success.

Figure 1: Sophie’s kitchen, the environment used in the study in three different states.

Study setup The study involves 40 participants (age M=25.6, SD=10.09; 24F/16M) divided into
two groups. The first group interacts with IRL and the second one with SPARC. Participants first
teach the robot how to complete the task and then a testing phase, where participants’ inputs are
disabled, evaluates the robot behaving on its own to assess participants performance in teaching. To
limit the study time, a hard limit of 25 minutes for the teaching phase has been set for both systems,
but participants could move on to the testing whenever they desired.

This paper presents a subset of the results of a larger study having each participant interacting three
times with each system. The full results are currently being analysed.

3 Results

As not all participants reached the goal state (i.e., a cake in the oven) during training, the performance
is expressed on a scale from 0 to 6 representing how many of the 6 main steps presented in section
2 (putting the bowl on table, adding an ingredient...) are autonomously completed by the robot in
the testing phase. Results on four metrics (performance, interaction time, number of failure during
teaching and number of inputs given by the teacher) are presented in Table 1 and Figure 2.
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Figure 2: Comparison of the performance, interaction time, number of failures and number of inputs
for the two conditions. Black horizontal bars represent medians and grey circles raw data points.
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Table 1: Results of evaluation metrics for the two systems (n = 20). Using Wilcoxon rank sum test
(results being non-normal), SPARC is significantly more efficient than IRL on all four metrics.

Metric Median IRL Median SPARC Z-value p-value Effect size

Performance 0 6 −4.2 < .001 −0.67
Time (min) 16.3 8.97 2.53 0.011 0.4
Number of failure 9 3 4.06 < .001 0.641
Number of inputs 248 141 1.98 0.048 0.312

In this study, most of the participants using IRL did not reach a single step toward success (median of
0). This does not mean that this method cannot be used to teach an action policy: some participants
reached the goal state with IRL and an expert would consistently achieve the goal state in this task.
However, due to the more complex reward scheme and other challenges to interpret the trainers’
rewards [5, 6, 11] not tackled by this method, participants need to have more in-depth understanding
of how to interact with the algorithm to achieve success. These results support our thesis that relying
only on feedback and guidance is a suboptimal method to teach a robot: even in this simple scenario,
non-expert participants perform poorly. On the other hand, the median performance of 6 for SPARC
shows that at least half of the participants reached the goal when interacting with SPARC and this in
a shorter time, facing fewer failures during teaching and using fewer input. As such the combination
of reinforcement learning and SPARC seems a more efficient teaching method.

4 Discussion

This study used a relatively simple environment: it has discrete states and a deterministic transition
function. Realistic environments will be more complex and challenging. Furthermore, this simulation
did not contain human interactants, but interacting with people adds two major constraints; unlike
simulation we cannot train the agent for a long time before obtaining a correct action policy. In
addition, as soon as the robot is used with people its behaviour has to be appropriate: suboptimal
actions might have negative consequences. For this reason, the presence of a human supervisor
having control over the robot’s action has many advantages: it ensures that the behaviour expressed is
appropriate and provides robustness against probabilistic environments, sensory errors and imperfect
action policies. Whilst it is being controlled, the robot can progressively learn from the supervisor,
and smoothly become more autonomous over time, reducing the workload on the supervisor. As the
robot is acting in the real world and is executing a correct action policy, the need for exploration is
reduced thus accelerating the learning process.

By relying on human commands and corrections, SPARC changes the teaching paradigm compared
to classical interactive reinforcement learning methods. The human control over the robot’s actions
allows to bypass the need for users to manually assign rewards or evaluations to actions. It also
uses only one-way feedbacks (selection) compared to two-way feedback in classical approaches
(positive or negative reinforcement), thus preventing SPARC to face some of the challenges of human
rewarding practices as described in [5, 11]. For example, a lack of feedback (absence of correction of
an action) can either be direct passive support of the proposed action or if the action should have been
corrected, it can be due to a slow reaction time or a desire not to interact. However, the control over
the robot actions can allow supervisors to correct the trajectory when required and thus assuming a
passive support in all cases where feedback is missing can still lead to efficient learning. SPARC
could be combined with more classical Learning from Demonstration approaches [3] to teach lower
level action policies, such as direct motor control where correct actions cannot be easily selected.

In this study, Interactive Reinforcement Learning achieved a poor performance with only a limited
number of participants succeeding to use it to teach the robot how to bake the cake. On the other
hand, SPARC achieved a high success rate in a shorter time and with fewer failures and lower
teaching effort. This is consistent with [7], where authors argue that feedback channels are not an
efficient method to teach an action policy from scratch, they recommend to start with Learning from
Demonstration and then move to feedbacks for fine tuning. By relying on human intervention to
prevent poor performance before it occurs, this paper has shown how SPARC can be usefully applied
to teach an action policy while maintaining high performance, avoiding dangerous situations, and yet
without overloading the human supervisor.
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aPlymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
bLincoln Centre for Autonomous Systems, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom
cGhent University, imec – IDLab, Department of Electronics and Information Systems, Ghent, Belgium

ABSTRACT

When a robot is learning it needs to explore its environment and how its environment responds on its

actions. When the environment is large and there are a large number of possible actions the robot can

take, this exploration phase can take prohibitively long. However, exploration can often be optimised

by letting a human expert guide the robot during its learning. Interactive machine learning, in which a

human user interactively guides the robot as it learns, has been shown to be an effective way to teach a

robot. It requires an intuitive control mechanism to allow the human expert to provide feedback on

the robot’s progress. This paper presents a novel method which combines Reinforcement Learning

and Supervised Progressively Autonomous Robot Competencies (SPARC). By allowing the user to

fully control the robot and by treating rewards as implicit, SPARC aims to learn an action policy

while maintaining human supervisory oversight of the robot’s behaviour. This method is evaluated and

compared to Interactive Reinforcement Learning in a robot teaching task. Qualitative and quantitative

results indicate that SPARC allows for safer and faster learning by the robot, whilst not placing a high

workload on the human teacher.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the not too distant future robots will be expected to have

social skills, leaving the factory to interact with people in envi-

ronments designed exclusively for use by humans (Fong et al.,

2003). Their users will not be academics or engineers but the

elderly, therapists, children or simply non-experts in technology

and science. Each user will have specific needs that cannot be

totally anticipated at the robot’s design stage. Many researchers

have argued that this issue can be best addressed by having the

user involved in generating the behaviour (e.g. Gorostiza and

Salichs, 2011; Hoffman, 2016). However, we cannot assume

that users will have the technical knowledge required to make

changes to the code controlling the robot. Therefore, we believe

that robots need to have a mechanism allowing a human to teach

the robot in an easy, natural and efficient manner.

One way to provide a robot with such learning capability

is to use machine learning. Classic machine learning is often

designed by experts to be used by experts, its interface being

∗∗Corresponding author:

e-mail: emmanuel.senft@plymouth.ac.uk (Emmanuel Senft)

often too complex for people not involved in the design process

(Amershi et al., 2014). Many methods also suffer from practical

issues: Deep Learning (LeCun et al., 2015) relies on having

large datasets to train networks, while Reinforcement Learning

(Sutton and Barto, 1998) uses extensive and costly exploration to

gather data points used for learning. As we aim at allowing a non-

expert end-user to personalise the robot’s behaviour, complex

interfaces are not desirable, large dataset are not available and

random exploration can lead to undesired actions by the robot.

This suggests two main challenges: how to empower the user

with the ability to teach the robot and how to gather safe training

experiences for the robot. A solution aiming to solve these two

challenges is interactive machine learning (Amershi et al., 2014;

Fails and Olsen Jr, 2003; Olsen, 2009). In this framework, the

human is part of the machine learning process. By providing

ground truth labelling or guiding the agent during exploration to

the interesting parts of the environment, the human can bootstrap

and guide the learning. Furthermore, the human can provide

more information than simply labelling the samples, bringing

further improvements to the learning (Holzinger, 2016; Stumpf

et al., 2007) and if enough control is provided, the human teacher

can also prevent the robot from making undesirable or potentially
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dangerous errors.

In this paper, we present a novel approach to combine rein-

forcement learning with interactive machine learning following

the Supervised Progressively Autonomous Robot Competencies

(SPARC) method proposed in Senft et al. (2015b). By giving

control of the robot’s actions to a teacher, we aim to maximally

use the human’s knowledge and transfer it to a robot in a quick,

safe and efficient manner. This method is compared to Interac-

tive Reinforcement Learning (IRL), described in Thomaz and

Breazeal (2008), using a study involving 40 participants interact-

ing with both approaches in Sophie’s Kitchen, the environment

used to demonstrate IRL.

The reminder of the paper is organised as follows. Section 2

presents different approaches used to teach robots in an interac-

tive fashion. We then describe the scope of the study, including

our hypotheses (Section 3) and methodology (Section 4). Re-

sults are presented in Section 5 and are discussed in Section 6.

We also propose guidelines for designing robots which interac-

tively learn from people. Finally, we conclude by summarising

the main results and the guidelines in Section 7.

2. Related Work

In human-robot interaction, the expected behaviour of the

robot is often solely known by the users: for therapies, thera-

pists are the experts and they know how the robot is supposed

to behave when interacting with patients. For assistive robots

in homes, each user has his own desires and preferences con-

cerning the robot’s behaviour. Consequently, these users have

to be able to adapt the behaviour of the robot in a way which

suits them without requiring technical skills. One approach to

allow non-technical persons to teach a robot an action policy

is Learning from Demonstration (Billard et al., 2008; Argall

et al., 2009). In this framework, a human provides a robot with

demonstrations of the expected behaviour and the robot learns

the correct action policy. This methods is often used for teaching

motor trajectories to a robot, but is also applicable to high level

action policy learning in robotics (Taylor et al., 2011). The con-

ventional approach consists of a set of demonstrations from the

teacher followed by additional learning without supervision until

reaching an appropriate action policy. However, human-robot

interactions are not a static process, the learning should happen

during all interactions and be interactive: the user should at all

times be able to correct the robot when it selects a suboptimal

action.

In interactive machine learning a human is included in the

learning loop, allowing him to provide input during the learning

process, this approach has received increased attention over

the last decade. One of the main domains being extensively

researched is active learning (Settles, 2010). Active learning has

been used in a range of fields: from medical image classification

(Chyzhyk et al., 2013) to robotics (Chernova and Veloso, 2009).

In this framework, an agent has to classify points in a dataset and

an ‘oracle’ is present and available. The oracle, often a human,

can provide ground truth labelling, but its use has a cost (time

or money for example) and consequently should be minimised.

As such, the conventional challenge of active learning is to find

how to optimise the use of the oracle to improve the learning.

Multiple approaches have been tested, such as requiring labels

for the points with the higher uncertainty or which categorisation

would provide the best improvement of the learning.

However, as pointed out by Cakmak and Thomaz (2012), one

of the main limits of active learning is that the robot is in control

of the interaction: the robot takes initiative to request training

data from the user, regardless of what the human wants the robot

to do, potentially leading to frustration or incomprehension on

the human side. For this reason, methods have been developed

to give the initiative back to the human, placing the human

in a teaching role. For example, when set in a reinforcement

learning framework, the human teacher can provide additional

feedback (Knox and Stone, 2010; Thomaz and Breazeal, 2008)

and actively decides to reward or not to reward a specific action.

In human robot interactions, the robot’s actions can have a

real impact on the world and some actions, if executed at an

incorrect moment, can create discomfort for the user or even

cause physical or psychological harm. These errors can be the

result of an incorrect action policy or a sensor failure for example,

but they have to be prevented. When using a robot in real human-

robot interaction applications, a safeguard should therefore be

present to prevent the robot from executing undesirable actions,

especially when working with vulnerable users, where some

actions would have severely negative effects. It is on this basis

that the concept of supervised autonomy was introduced (Thill

et al., 2012): a safeguard is provided by a human supervising

the robot in a semi-autonomous setup. The robot is mainly

autonomous, but a human teacher has enough control over the

interaction to step in at any time to correct the action about

to be executed by the robot. This approach ensures that only

desired actions will be executed by the robot whilst not relying

completely on a human to control the robot as with Wizard of Oz

(Riek, 2012). The challenge is then the incorporation of robot

learning into this scheme to facilitate progressive performance

improvement: this approach can be combined with interactive

machine learning to let the robot learn from its errors without

requiring the robot to actually make them. At the same time, the

human is used to bootstrap the learning with their knowledge,

but also to ensure that the robot behaviour is always appropriate.

This would allow the robot to improve its behaviour over time,

while reducing the frequency of human interventions, having the

robot learning without needing to face the consequence of its

actions.

An analogous system is predictive texting on mobile phones:

as a user types a message, possible words are suggested, but the

user has full control over which word to select. All the while,

the algorithm learns: it adopts new words, spellings and tunes its

predictive models to suit the user’s particular language use and

preferences. We propose a similar mechanism for Human-Robot

Interaction, and in this context we introduce the Supervised

Progressive Autonomous Robot Competencies (SPARC) (Senft

et al., 2015a,b).

By combining interactive machine learning and supervised

autonomy, SPARC provides an agent with online learning whilst

keeping the control of the agent’s actions in the user’s hand. This

method based on a suggestion/correction mechanism allows the
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robot to adapt its behaviour to the user whilst ensuring, due

to the presence of the human teacher, that the actual actions

executed by the robot are suited to the current interaction. This

approach is especially useful in context where the cost of having

the robot making errors is high, such as when interacting with

vulnerable population.

3. Scope of the study

Following on from our earlier research on using people to

teach an action policy to a robot during interaction (Senft et al.,

2015b), we seek to evaluate SPARC when combined with the

widely used learning paradigm of Reinforcement Learning (RL)

(Sutton and Barto, 1998). We compare this approach to an

alternative method combining interactive machine learning and

reinforcement learning: IRL (Thomaz and Breazeal, 2008). To

this end we tested both learning methods in the environment

initially used by Thomaz and Breazeal and described in Section

4.

3.1. Interactive Reinforcement Learning

IRL implements the principles presented in Thomaz and

Breazeal (2008). In IRL the human teacher can provide positive

or negative feedback on the last action executed by the robot.

The robot combines this with environmental feedback into a re-

ward which is used to update a Q-table: a table with a Q-values

(the expected discounted reward) assigned to every state-action

pair and used to select the next action. Three additions to the

standard algorithm have been proposed and implemented by

Thomaz and Breazeal and are used here as well: guidance, com-

munication by the robot and an undo option.

The guidance emerged from the results of a pilot study where

participants assigned rewards to objects to indicate that the robot

should do something with these objects. With the guidance,

teachers can direct the attention of the robot toward certain item

in the environment to indicate the robot that it should interact

with them.

The robot can communicate its uncertainty by directing its

gaze toward different items in the environment with equally high

probability of being used next. The aim of this communication

of uncertainty is to provide transparency about the robot’s in-

ternal state, for example indicating when a guidance should be

provided.

Finally, after a negative reward, the robot tries to cancel the

effect of the previous action (if possible), resulting in a undo

behaviour. As shown in the original paper, these three additions

improve the performance on the task.

3.2. SPARC

SPARC (Supervised Progressively Autonomous Robot Com-

petencies) uses a single type of input similar to the guidance

present in IRL. However with SPARC, it is used to control the

actions of the robot. The robot communicates every of its in-

tentions (i.e the action it plans to execute next) to its teacher.

The teacher can either not intervene and let the robot execute

the suggested action or he can step in and force the robot to

execute an alternative action. This combination of suggestions

and corrections gives the teacher full control over the actions

executed by the robot. This also makes the rewards redundant:

rather than requiring the human to explicitly provide rewards a

positive reward can directly be assigned to each action executed

by the robot as it has been either forced or passively approved

by the teacher.

3.3. Differences of approaches

Unlike IRL, SPARC offers full control over the actions exe-

cuted by the robot. SPARC changes the learning paradigm from

learning from the environment’s response to learning from the

users preferences. We use an expert in the task domain to evalu-

ate the appropriateness of actions before their execution and we

use this evaluation and control provided to the expert not to rely

on observing negative effect of an action to learn that this action

should be avoided, but rather what the best action is for each

state. Even in a non-deterministic environment such as HRI,

some actions can be expected to have a negative consequence.

The human teacher can stop the robot from ever executing these

actions, preventing the robot from causing harm to itself or its

social or physical environment.

Another noticeable difference is the way in which the robot

communicates with the user: in IRL, the robot communicates

its uncertainty about an action and with SPARC its intention of

executing an action.

It should also be noted that the quantity of information pro-

vided by the user to the robot is similar for both IRL and SPARC:

in SPARC the user can offer the whole action space as commands

to the robot, but removes the need for explicit rewards. While

in IRL, the teacher can guide the robot toward a subset of the

action space but has to manually provide feedbacks to evaluate

the robot’s decisions.

3.4. Hypotheses

Three hypotheses are tested in this study:

• H1: Effectiveness and efficiency with non-experts. Com-

pared to IRL, SPARC can lead to higher performance,

whilst being faster, requiring fewer inputs and less mental

effort from the teacher and minimising the number of errors

during the teaching when used by non-experts.

• H2: Safety with experts. SPARC can be used by experts to

teach an action policy safely, quickly and efficiently.

• H3: Control. Teachers prefer a method in which they can

have more control over the robot’s actions.

4. Methodology

4.1. Task

The task used in this study is the same as Thomaz and

Breazeal (2008): Sophie’s kitchen, a simulated environment

on a computer where a virtual robot has to learn how to bake a

cake in a kitchen. As the source code was not available, the task
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(a) Initial state (b) Step 1 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Fig. 1: Presentation of different steps in the environment. 1a initial state, 1b

step 1: the bowl on the table, 1c step 3: both ingredients in the bowl, 1d step

4: ingredients mixed to obtain batter, 1e step 5: batter poured in the tray and 1f

step 6 (success): tray with batter put in the oven. (Step 2: one ingredient in the

bowl has been omitted for clarity)

was reimplemented to stay as close as possible to the description

in the paper and the online version of the task1.

The scenario is the following: a robot, Sophie, is in a kitchen

with three different locations (shelf, table and oven) and five

objects (flour, tray, eggs, spoon and bowl) as shown in Figure

1a. Sophie has to learn how to bake a cake and the user has to

guide the robot through a sequence of steps while giving enough

feedback so the robot can learn a correct series of actions. As

presented in Figure 1, there are six crucial steps to achieve a

successful result:

1. Put the bowl on the table.

2. Add one ingredient to the bowl (flour or eggs).

3. Add the second ingredient.

4. Mix the ingredients with the spoon to obtain batter.

5. Pour the batter in the tray.

6. Put the tray in the oven.

The environment is a deterministic Markov Decision Process,

defined by a state, a set of actions (move left, move right, pick

up, drop and use), a deterministic transition function, absorbing

states (success or failure) after which the simulation is restarted

in its initial state and an environmental reward function (+1

for success and -1 for failure and -0.04 for every other step to

penalise long sequences). Different action policies can lead to

success, but many actions end in a failure state, for example

putting the spoon in the oven results in a failure. As argued by

Thomaz and Breazeal, this environment provides a good setup

to evaluate teaching methods to a robot due to the large number

of possible states (more than 10,000), the presence of success

and failure states and the sparse nature of the environmental

reward function which increases the need for a teacher to aid the

learning. More details on the environment are available in the

original paper.

1http://www.cc.gatech.edu/~athomaz/sophie/

WebsiteDeployment/

4.2. Implementation

In this experiment two systems are tested: IRL and SPARC.

The underlying learning algorithm is strictly identical for both

system, only the way of interacting with it is different: partic-

ipants have more control in SPARC, implicitly reward action

rather than explicitly and evaluate the intention of the action

rather than its results. The learning algorithm (see algorithm

1) is a variation on Q-learning, without reward propagating2.

This guarantees that any learning by the robot is only due to the

teaching by the human, and as such provides a lower bound for

the robot’s performance. By using Q-learning, the performance

of the robot would be higher.

4.2.1. Interactive Reinforcement Learning

We have implemented IRL following the principles presented

in Thomaz and Breazeal (2008). The user can use the left click

to display a slider in order to provide rewards. The guidance is

implemented by right-clicking on objects: it directs the robot’s

attention to the object if facing it (a click on objects in different

locations has no effect). Following the guidance, the robot will

execute the candidate action involving the object. The action

space is not entirely covered by this guidance mechanism: for

example, it does not cover moving from a location to another.

This guidance if used correctly, limits the exploration for the

current step to the part of the environment evaluated as more

interesting by the user without preventing the robot to explore

in further steps. The robot can communicate its uncertainty by

looking at multiple objects having similarly high probability of

being used.

Some modifications were required to the original study due

to the lack of implementation details in the original paper, one

of them being the use of a purely greedy action selection instead

of using softmax, due to the absence of parameters descrip-

tions. The reliance on human rewards and guidance limits the

importance of autonomous exploration, and thus, the greediness

of the algorithm should assist the learning by preventing the

robot to explore outside of the guided policy. Additionally, as

the environment is deterministic and the algorithm is greedy,

the concept of convergence is altered: once a trajectory has Q-

Values high enough on all state-action pairs, it will be reinforced

automatically.

4.2.2. SPARC

SPARC uses the gaze of the robot toward objects or locations

to indicate which action the robot is suggesting to the teacher.

Similarly to the guidance in IRL, the teacher can use the right

click of the mouse on objects to have the robot execute the action

associated to this object in the current state and this has been

extended to also cover locations. With SPARC, the command

covers all the action space: at every time step, the teacher can

specify, if desired, the next action executed by the robot. If an

action is not corrected, a positive reward of 0.25 is automatically

received (as it has the implicit approval from the teacher) and

2In Q-learning the update function is Q(st , at) ← Q(st , at) + α(rt+1 +

γ(max
a

Q(st+1, a)) − Q(st , at))
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while learning do
a = action with the highest Q[s, a] value

look at object or location used with a

while waiting for correction (2 seconds) do

if received command then
a = received command

reward, r = 0.5
else

reward, r = 0.25

end

end

execute a, and transition to s′

Q(st, at)← Q(st, at)+α(rt+1+γ(max
a

Q(st, a))−Q(st, at))

end
Algorithm 1: Algorithm used in SPARC.

if the teacher selects another action, a reward of 0.5 is given

to the correcting action (the corrected action is not rewarded).

That way, actions actively selected are more reinforced and

participants can still have give higher rewards when using IRL.

This system allows for the use of reinforcement learning with

implicit reward assignation, which simplifies the Human-Robot

Interaction.

4.3. Experimental design

Participants are divided into 2 groups and interact first either

with IRL or SPARC as shown in Figure 2. Before interact-

ing, participants receive a information sheet explaining the task

(describing the environment and how to bake a cake) and one ex-

plaining the system they are interacting with. Then they interact

for three sessions with the assigned system. Each session is com-

posed of a training phase and a testing phase. The training phase

is composed of as many teaching episodes as the participant

desires, a teaching episode ends when a success or failure state

has been reached which returns the environment to the initial

state. In the same way as in the initial experiment by Thomaz

and Breazeal, participants can decide to terminate the training

phase whenever they desire by clicking on a button labelled

‘Sophie is ready’, however it is also terminated after 25 minutes

to impose an upper time limit to the study. After the end of a

training phase, the robot will run a testing phase where the par-

ticipant’s inputs are disabled and which stops as soon as a ending

state is reached or the participants decide to stop it (for example

if the robot is stuck in a loop). This testing phase is used to

evaluate the performance of the participants for this session. The

interaction with a system consists of three repeated independent

sessions with their own independent training and testing phases

to observe how the interactions evolve as participants are getting

used to the system.

After participants completed their three sessions with the first

system, they are asked to interact for three more sessions with the

other system. This way, every participant interacts three times

with each system (IRL and SPARC) and the order of interaction

is balanced. Additionally, a demographic questionnaire is given

before the first interaction, a first post-interaction questionnaire

after the interaction with the first system, a second identical

one after the interaction with the second system and a final

post-experiment questionnaire at the end of the experiment. All

information sheets and questionnaires can be found online 3.

This experimental design prevents the risk of having an or-

dering effect by having a symmetry between conditions. Both

conditions having a identical experimental procedure only with

the order of interaction varying.

4.4. Participants

A total of 40 participants have been recruited using a tool pro-

vided by the university to reach a mixed population of students

and non-student members of the local community. All partici-

pants gave written informed consent, and were told of the option

to withdraw at any point. All participants received remuneration

at the standard U.K. living wage rate, pro rata. Participants were

distributed randomly between the groups whilst balancing gen-

der and age (age M=25.6, SD=10.09; 24F/16M). Participants

were mostly not knowledgeable in machine learning and robotics

(average familiarity with machine learning M=1.8, SD=1.14;

familiarity with social robots M=1.45, SD=0.75 - Likert scale

ranging from 1 to 5).

In addition to naive non-expert users, an expert user (one of

the authors) interacted five times with each system following a

strictly optimal strategy in both cases. These results from the

expert are used to evaluate hypothesis 2 and show the optimal

characteristics of each system (IRL and SPARC) when used by

trained experts such as therapist in a context of assistive robotics.

4.5. Metrics

4.5.1. Objective Metrics

We collected three metrics during the training phase: the num-

ber of times a participant reached a failure state while teaching,

which can be related to the risks taken during the training and

the teaching time (from 0 to 25 minutes) and the number of

inputs provided during the training, which can be seen as the

efforts invested in the teaching. The testing phase being only a

single run of the taught action policy ending as soon as the robot

reaches an ending state (failure or success) or if stopped by the

participants. We only use the performance achieved during this

single test as evaluation of the success of training. As not all

participants reached a success during the testing phase, we used

the six key steps defined in Section 4.1 as a way to evaluate the

performance ranging from 0 (no step has been completed) to 6

(the task was successfully completed) during this testing run: for

example a testing where the robot puts both ingredients in the

bowl but reaches a failure state before mixing them would have

a performance of 3.

4.5.2. Subjective Metrics

The post-interaction and post-experiment questionnaires pro-

vide additional subjective information to compare with the ob-

jective results from the interaction logs. Two principal metrics

are gathered: the workload on participants and the perception of

the robot.

3http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/esenft/

experiment2.html
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Fig. 2: Participants are divided into two groups. They first complete a demographic questionnaire, then interact for three independent sessions (with a training and a

testing phase each) with a system (IRL or SPARC). After a first post-interaction questionnaire, participants interact for another three sessions with the other system

before completing the second post-interaction questionnaire and a final post-experiment questionnaire.

Workload is an important factor when teaching robots. As

roboticists, our task is to make the teaching of the robot as unde-

manding as possible, meaning that the workload for user should

be minimal. Multiple definitions for workload exist and various

measures can be found in the literature. Due to its widespread

use in human factors research and clear definition and evaluation

criteria, we decided to use the NASA-Task Load Index (TLX)

(Hart and Staveland, 1988). We averaged the values from the

6 scales (mental, physical and temporal demand, performance,

effort and frustration) to obtain a single workload value per

participant for each interaction. So we have two measures for

each participant, after interaction with the first system (IRL or

SPARC) and after the interaction using the other system.

Finally, the perception of the robot has been evaluated in the

post-interaction and post-experiment questionnaires using sub-

jective questions (measured on a Likert scale), binary questions

(which robot did you prefer interacting with) and open questions

on preference and naturalness of the interaction.

5. Results

Most of the results are non-normally distributed. Both ceiling

and floor effects can be observed depending on the conditions

and the metrics. For the teaching time, some participants pre-

ferred to interact much longer than others, resulting in skewed

data. Likewise for the performance: often participants either

reached a successful end state or did not hit any of the sub-

goals of the task ending often in two clusters of participants:

one at a performance of 6 and one at 0. Similarly, some par-

ticipants who interacted a long time with the system did not

complete any step, while others could achieve good results in

a limited time. Due to the data being not normally distributed,

non-parametric statistical tests have been used. We use a combi-

nation of Friedman test for one way comparison with repeated

measures, Wilcoxon rank sum test for between subject com-

parisons and the Wilcoxon signed rank test for within subject

pairwise comparisons. Additionally, as each interaction consists

of three sessions, a Bonferroni correction has been applied to

pairwise comparison between sessions. A similar correction

was used when comparing between systems to account of the

two different groups. To apply the Bonferroni correction, we

multiply the p-values by the correcting factors, which allows us

to keep a global significance level at p = .05.

Initial results of the first interaction of the participants have

been reported in Senft et al. (2016).

5.1. Effectiveness and Efficiency with non-experts

Four objective metrics (performance, teaching time, number

of inputs used and number of failures) and one subjective metric

(workload) have been used to evaluate the efficiency of IRL and

SPARC.

5.1.1. Performance

Figure 3 presents the performance of participants during the

interaction. In the first three sessions participants interacted with

either IRL or SPARC, and swapped for the remaining three ses-

sions. There is a significant difference of performance between

systems; a Friedman test shows a significant difference between

systems during the first three sessions (χ2 = 50.8, p < .001) and

during the next three sessions (χ2 = 36, p < .001). Similarly, a

significant difference in performance is noted within participants

(Group 1: χ2 = 37.9, p < .001 - Group 2: χ2 = 55.3, p < .001).

So in all the cases, participants interacting with SPARC achieved

a significantly higher performance than those interacting with

IRL, regardless of the order in which they interacted (p < .05

for all pairwise comparison). No difference of performance has

been observed when using Wilcoxon signed rank test on the

three repetitions between participants when interacting with the

same system, so interacting for a second or third session with the

same system does not have a significant impact on participants’

performance.

It must be noted that in our study, only a limited number of

participants managed to teach the robot to complete the task

using IRL, this observation will be discussed in more details in

Section 6.
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Fig. 3: Comparison of the performance for the six sessions (three with each

system, IRL and SPARC, with interaction order balanced between groups). A

6 in performance shows that the taught policy leads to a success. The circles

represent all the data points (n=20 participants per group), the black horizontal

line the median and the top and bottom of the boxes the first and third quartiles.

The learning is consistently better when using SPARC.
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5.1.2. Teaching Time

The teaching times for all the interactions are shown in Figure

4. Regardless of the order in which they used SPARC or IRL,

participants needed significantly less time to teach the robot

when using SPARC than with IRL (Friedman test between par-

ticipants for the first three sessions: χ2 = 9.77, p = .0018 - next

three sessions: χ2 = 20.2, p < .001). Pairwise comparison also

show significance (p < .05) except for sessions 3 and 5 which

can be explained by the floor effect observed when teaching with

SPARC and a potential loss of motivation when using IRL.

Additionally, when interacting multiple times with the same

system, participants interacted significantly less in the second

interaction with a system than during the first one (cf. Table 1)

and only for SPARC the teaching time significantly decreases

again between the second and the third session.

Table 1: Medians of the teaching time. In the first three sessions, group 1

interacted with IRL and group 2 with SPARC and participants interacted with

the other system for the next three sessions.

X̃1 X̃2 X̃3 X̃4 X̃5 X̃6

Group 1 16.3 7.44 6.17 3.97 2.45 1.53

Group 2 8.97 3.57 2.49 9.36 5.18 3.01
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Fig. 4: Comparison of the teaching time (in minutes) for all the interactions.

Participants spent less time teaching the robot when using SPARC than IRL.

5.1.3. Number of Inputs

The number of inputs used in both system is presented in Fig-

ure 5. For IRL, this represents every time a participant provided

guidance or a reward to the robot, and for SPARC every time

a participant provided a command. The number of inputs used

is lower when teaching with SPARC than with IRL (Friedman

test between participants for the first three sessions: χ2 = 11.7,

p < .001 - next three sessions: χ2 = 11, p < .001). However

with pairwise comparisons only session 2 (p = .008) and session

4 (p < .001) present a significantly different number of inputs

used.

5.1.4. Number of failures

Figure 6 shows the number of failures observed with both

systems for every session. In all the interactions, participants

interacting with SPARC faced fewer failures during the training

of the robot than those interacting with IRL (Friedman test

between participants for the first three sessions: χ2 = 47.8,

p < .001- next three sessions: χ2 = 41.8, p < .001 - within

Group1 Group2 Group1 Group2 Group1 Group2 Group1 Group2 Group1 Group2 Group1 Group2

0

100

200

300

400

500

600

N
um

be
r 

of
 in

pu
ts

 Session 1  Session 2  Session 3  Session 4  Session 5  Session 6

 IRL
 SPARC

Fig. 5: Comparison of the number of inputs used during the teaching phases.

participants in group 1: χ2 = 56.6, p < .001 - group 2: χ2 =

20.7, p < .001 - all pairwise comparison: p < .002).
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Fig. 6: Comparison of the number of failure states reached during the teaching

process. Due to the ability to stop the robot from executing a suggested action,

there are fewer failure states when using SPARC.

5.1.5. Workload

The average workload felt by participants after each interac-

tion with a system is shown in Figure 7. As the workload data

is normally distributed, a student t-test has been used. Partici-

pants interacting with IRL first reported an average workload

of 12.9 (S D=2.33), with SPARC first this was 8.95 (S D=3.02).

With SPARC after having interacted with IRL the reported work-

load was 7.44 (S D=3.33) and with IRL after SPARC it was

13.9 (S D=2.85). We found a significant difference between

the reported workload when interacting with IRL or SPARC

regardless of the order of interaction. This was also observed

between participants (interaction with system 1, independent

t-test: t(38) = 4.63, p < .001 - system 2, independent t-test:

t(38) = −6.5, p < .001 - Group 1, paired t-test: t(19) = 9.82,

p < .001 - Group 2, paired t-test: t(19) = −6.8, p < .001).

Regardless of the interaction order, participants rated SPARC as

having a lower workload than IRL.

5.1.6. Validation of the hypothesis

The objective data (performance, teaching time, number of

inputs and number of failures) show that despite spending a

shorter time interacting with SPARC and using less inputs, par-

ticipants reached a higher performance than with IRL whilst

facing fewer failures during the teaching. Additionally, when

interacting with SPARC, participants’ time required to teach

the robot decreased with successive sessions, without affecting

the performance. This indicates that after the first session, par-

ticipants understood the interaction mechanism behind SPARC
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Fig. 7: Comparison of the workload experienced by participants. SPARC was

perceived as having a lower workload. Results being normal, student t-test has

been used for the comparisons.

and consistently managed to achieve a high performance whilst

requiring less time to teach the robot the task. On the other hand,

when interacting with IRL, participants’ performance remains

low over the session, and their teaching time decreases between

session 1 and 2 but not between session 2 and 3. This might be

due to a loss of motivation after session 1 where often partici-

pants did not succeed to teach the robot, reducing the desire to

further interact in successive sessions.

The results suggest that teaching the robot using SPARC

allows the robot to achieve a higher performance than with IRL,

in a shorter time, without requiring more inputs, while making

fewer errors when teaching. These objective results are also

supported by subjective measures: the workload on the teacher

is lower when using SPARC than when using IRL. For these

reasons, H1 ( ‘Compared to IRL, SPARC can lead to higher

performance, whilst being faster, requiring fewer inputs and

less mental effort from the teacher and minimising the number

of errors during the teaching when used by non-experts.’) is

supported.

5.2. Safety with experts

To evaluate the safety offered by SPARC and IRL, an expert

(one of the authors) interacted five times with each systems. In

both cases, the expert followed a strictly optimal strategy. This

shows the expected behaviours in optimal conditions, the best

metrics achievable. Results of the interactions are presented in

Table 2. In both cases, the expert successfully taught the robot

(as indicated by a performance of 6), which indicates that both

systems can be used to teach a robot an action policy. However

the time required to teach the robot with IRL is significantly

higher than with SPARC.

Additionally, when using IRL, even an expert cannot prevent

the robot from reaching failure states during the training due

to the lack of control over the robot’s action. This is prevented

when interacting with SPARC, due to the full control and clear

communication, the teacher can ensure that only desired actions

are executed. So with sufficient knowledge, an expert can teach

the robot to behave safely without having to explore undesired

states. This has real world applications, as random exploration

is often impossible or undesirable, SPARC offers a way for the

teacher to stop the robot from executing actions with negative

consequences.

Similar results have been observed with the non-expert partic-

ipants: in their last interaction with SPARC, both groups had a

median of 0 failures for a performance of 6, meaning that more

than half of the participants taught the robot the task without

ever hitting a failure state. These results support H2 (‘SPARC

can be used by experts to teach an action policy safely, quickly

and efficiently’).

Table 2: Results of an expert interacting 5 times with each system following

an optimal strategy. Both IRL and SPARC reached a success during all the

testing phase, but the time required to teach SPARC was significantly shorter,

and unlike IRL, not a single failure was reached during the training with SPARC.

Data following a normal distribution, student t-test has been used.

IRL

M(SD)

SPARC

M(SD)
t(8) p

Perf. 6 (0) 6 (0) NA NA

Time (mn) 4.5 (0.67) 0.60 (0.03) 13.1 < .001

# of Fail. 3.2 (0.84) 0 (0) 8.55 < .001

5.3. Control

One of the main differences between the two methods is the

way in which the concept of teaching is approached. With IRL

an exploratory individual learning approach is followed: the

robot has freedom to explore, and it can receive feedback on its

actions and hints about actions to pursue next from a teacher.

This is to some extent inspired by how children are taught, where

the learning process can be more important than the achieved

results. This is supported by the behaviours observed by Thomaz

and Breazeal: their participants gave motivational rewards to

the robot, just as one would to do to keep children motivated

during learning, despite the absence of effect or use in classical

reinforcement learning.

The post-experiment questionnaire included the open ques-

tion: ‘which robot did you prefer interacting with and why?’.

Almost all the participants (38 out of 40) replied that they pre-

ferred interacting with SPARC. Half of all the participants used

vocabulary related to the control over the robot actions (‘con-

trol’, ‘instruction’, ‘command’, ‘what to do’ or ‘what I want’)

to justify their preferences without these words being used in

the question. Furthermore, multiple participants reported being

frustrated to have only partial control over the robot’s actions

with IRL, they would have preferred being able to control each

action of the robot.

To the question ‘which interaction was more natural?’, 10

participants rated IRL as being more natural, using justifications

such as: ‘The robots thinks for itself’, ‘Some confusion in the

[IRL] robot was obvious making it more natural’, ‘More like real

learning’, ‘Because it was hard to control the robot’ or ‘People

learn from their mistakes faster’. But despite acknowledging

that IRL is more natural, closer to human teaching, participants

still preferred teaching using SPARC. This suggests that when

humans teach robots, they are focused on the results of the

teaching: can the robot do the new task requested. This relates to

the role of robots, they often interact in human-centred scenario

where they have to complete a task for their users. And due

to the absence of life-long learning for robots today, it is not
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worth investing time and energy to allow the robot to improve its

learning process or explore on its own. These comments from

the participants show support for H3 (‘Teachers prefer a method

providing more control over the robot’s actions.’).

6. Discussion

Despite not being originally designed to be used in combina-

tion with Reinforcement Learning, SPARC does achieve good

results. This shows that principles covered by SPARC (control

over the robot’s actions, communication and evaluation of inten-

tions and automatic execution of proposed actions) are agnostic

to the learning algorithm and promote efficient teaching. Further-

more, SPARC achieves a higher performance, in a shorter time

and facing less failures than IRL, whilst requiring a lower work-

load from the human teacher (supporting H1). Finally, when

used by experts, SPARC demonstrates that teaching can be safe

and quick: the full control over robot’s action in the teacher’s

hands ensures that only desired actions will be executed (validat-

ing H2). These results show an interesting feature of teaching;

as robots mainly interact in task oriented, human-centred en-

vironments, human teachers seem to prefer direct approaches

focused on commands rather than letting the robot explore on

its own (partial support for H3).

6.1. Comparison with original Interactive Reinforcement Learn-

ing study

Unlike in the original experiments evaluating IRL (Thomaz

and Breazeal, 2008), in the study presented in this paper most

of the participants did not succeed in teaching the robot the

full cake baking sequence using feedback and guidance. In the

Thomaz and Breazeal (2008) study, the participants were knowl-

edgeable in machine learning (M=3.7, SD=2.3 - range: 1 to 7),

but the population in the current study was drawn from a more

general public having little to no knowledge of machine learning

(M=1.8, SD=1.13 - range: 1 to 5). This can explain why a

much larger number of participants did not achieve success with

IRL in this study whereas Thomaz and Breazeal only reported 1

participant out of 13 failing the task. In our study, 12.5% of the

participants and the expert did manage to train the robot using

IRL. This seems to be largely due to participants not consistently

rewarding correct actions, preventing the reinforcement learning

algorithm from learning. This is why implicit rewards –every

action allowed by the teacher is positively rewarded– tend to

work better than explicit ones. This is consistent with Kaochar

et al. (2011) who note that feedback is not well suited for teach-

ing an action policy from scratch, but better for fine tuning. For

teaching the basis of the action policy, they recommend using

demonstrations, the method used by SPARC.

6.2. Advantages and limitations of SPARC

In the SPARC implementation for this study, SPARC repro-

duces actions selected by the teacher. So one can argue that no

learning algorithm is required, instead the actions could just be

blindly reproduced by the robot. However SPARC combined

with reinforcement learning does provide advantages: due to

the Q-Table, all the loops in the demonstration are removed

when the robot interacts on its own and it provides a way to deal

with variations in teaching. It also allows the robot to continue

from any state in the trajectory. And finally, due to the sugges-

tion/correction mechanism, the teacher can leave the robot to act

on its own as long as it attempts correct actions, and the human

to intervene only when the robot is about to execute an incorrect

action.

Over the 79 successful trials using SPARC, participants used

47 different strategies to teach the robot the task of baking a

cake. This shows how SPARC, as a single control mechanism,

allows for different action policies to be learnt depending on the

person teaching the robot. With SPARC the robot can adapt its

behaviour to the human it is interacting with, profiling the user

to find the desired way of behaving.

However SPARC also has limitations in the current implemen-

tation, related to the quality of the human supervised guidance. If

the teacher allows an action to be executed by mistake (through

inattention or by not responding in time), this action will be re-

inforced and will have to be corrected later on. This might lead

to loops when successive actions are cancelling each other (such

as move left, then right). In that case, the teacher has to step in

and manually guide the robot to break this cycle. Furthermore,

due to the automatic execution of actions, the teacher has to be

attentive at all times and ready to step in when a wrong action is

suggested by the robot.

In this version, SPARC has been applied to a scenario where

a clear strategy with optimal actions is present. The interaction

also takes place in a virtual environment with a discrete time.

Real HRI are stochastic, happen in real time and often there is

no clear strategy known in advance. However, we argue that

human experts in the application domain can know what type

of actions should be executed when, and which features of the

environment they used for their decision. As this knowledge

can not be available to the robot’s designers, robots should be

able to learn from a domain user in an interactive fashion. In

the current implementation, SPARC mainly receives inputs from

a teacher at predefined discrete times and still does not use the

human knowledge to it’s fullest: the learning algorithm is still

simple and with limited inputs, but as described in Section 6.4,

we are working on improving SPARC to suit real-world HRI.

Nevertheless, we argue that SPARC allows for easy and safe

teaching due to the presence and control by the teacher. And the

suggestion/correction mechanism with automatic execution of

actions allows for a smooth teaching process where the workload

on the teacher can decrease over time as shown in Senft et al.

(2015b). The workload of the teacher when starting is relatively

high, when the robot has no information on which actions to take

yet, and decreases over time requiring only limited intervention

by the teacher.

6.3. Recommendations for designing interactive machine learn-

ing for human-robot interactions

From observing the participants interacting with both sys-

tems, we derived four recommendations for future designs of

interactive learning robot. Although the study here used a simu-

lated robot, we believe these to be also relevant for real-world,

physical installations.
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6.3.1. Clarity of the interface

Algorithms used in machine learning often need precisely

specified inputs and outputs and require an internal represen-

tation of the world and policies. These variables are often not

accessible to a non expert: the weights of a neural network or

the values in a Q-table are not easily interpreted, if at all. The

inner workings of the machine learning algorithms are opaque,

and people only have access to input and output of the black

box that is machine learning. As such, care needs to go into

making the input and output intuitive and readable. For example,

in this study (following Thomaz and Breazeal’s original study),

the communication between the robot and the teacher occurred

through the environment: using clicks on objects rather than

buttons on a graphical user interface. This design decision has

important consequences as participants first have to familiarise

themselves with the interface: how to interpret the robot’s be-

haviour, what actions are available for each state and what is the

exact impact of the actions? This lack of clarity leads to a high

number of failures and high teaching time during the first session

in our study. So we argue that to avoid this precarious discovery

phase for the teachers, roboticists have to design interfaces tak-

ing into account results from the Human Factors community as

advocated by Adams (2002).

6.3.2. Limits of human adaptability

Human-Robot Interaction today is facilitated by relying on

people adapting to the interaction, often making use of anthropo-

morphisation (Złotowski et al., 2015). Roboticists use people’s

imagination and creativity to fill the gaps in the robot’s behaviour.

However, human adaptivity has its limits: in our study, often

participants adopted one particular way of interacting with the

system and they hold on to it for a large part of the interaction.

For example, participants clicked on an object requiring two

actions to interact with, assuming that the robot had planning

capabilities which it did not. Or when the robot was blocked in

some cycles (due to constant negative reward in IRL or due to a

loop created and not stopped with SPARC), participants kept on

trying the same action to break the loop, without really exploring

alternatives. For these reasons, if robots are to be used with a

naive operator, they need a mechanism to detect these ‘incorrect’

uses and either adapt to these suboptimal human inputs or they

need to inform the user that this type of input is not supported

and clarify what human behaviour is appropriate instead.

6.3.3. Importance of keeping the human in the learning loop

Other methods have been used to provide a robot with an

action policy, for example Liu et al. (2016) argue that instead of

having a human teach the robot, interactive behaviours can be

extracted from observing human experts interacting and by using

big data machine learning techniques on these observations. This

approach has shown some promise (Liu et al., 2014), but we

argue that an action policy for human-robot interaction should

be able to be modified online by a human. Furthermore, the

presence of a human in the loop can allow the machine learning

to deal with sensor errors or imperfect action policies. An expert

supervising the robot should also be able to prevent the execution

of specific actions or force the execution of others. This was one

of the important points we considered when proposing SPARC:

there is no distinction between a teaching and a testing phase,

they are merged into a single phase. The teacher can correct

the robot when needed and let it act when it behaves correctly.

Participants used this feature of SPARC in this study: many

participants corrected SPARC only when required rather than

forcing every action, 37.5% of the participants even let the

robot complete the task without giving a single command before

starting the test to be sure that the robot is ready. So SPARC

has been used as a tool to provide online learning to a robot

whilst keeping the teacher in control, but reducing the need of

intervention over time.

6.3.4. Keeping people in control

Most of the scenario where a robot has to learn how to interact

with humans are human-centred: the robot has to complete a

task to help a human (such as in socially assistive robotics). In

these scenarios, the goal of the learning is to ensure that the

robot can complete the task assigned to it, not to provide the

robot with tools to learn more efficiently in further interactions.

Similarly, participants in our study did not desire to have the

robot exploring on its own and learn from its experience, they

wanted to be able to direct the robot. Furthermore, a lack of

control over the robot’s actions can lead to frustration and loss

of motivation for the teacher. This human control is especially

critical when the robot is designed to interact with other people

as undesired actions can have a dramatic impact, such as causing

harm for the interaction partners or bystanders. For these reasons,

we argue that when designing an interactively learning robot

for Human-Robot Interaction in human-centred scenario, it is

critical to keep the human in control.

However, this control does not mean that the robot cannot

learn and become autonomous. We take a stronger inspiration

from Learning from Demonstration, using human input more

efficiently to guide the learning, speeding it up and making it

safer, especially in the early stages of the learning. The human

is in control mainly when the robot is prone to make exploratory

mistakes, and can prevent them before they occur, but once the

action policy is appropriate enough, the teacher can leave the

robot learn mostly on its own and refine its action policy with

limited supervision from a human.

6.4. Future work

We are currently working on a new experiment in which

people interacting with a robot in a continuous time and non-

deterministic environment. In this experiment, the teacher is

able to send commands to the robot, provide rewards and iden-

tify features in the environment they consider important. The

learning algorithm will take these inputs into account and com-

bine them with interaction metrics to learn. An approach could

be to use the actor-critic paradigm: the critic being an objective

evaluation of the action results (environmental rewards), and

the actor using results from the critic and teacher’s guidance to

update the action policy.
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7. Conclusion

SPARC has been proposed to address the problem of provid-

ing a robot with adaptive behaviour whilst guaranteeing that the

behaviour expressed by the robot remains suitable for task at

hand. To achieve this, a suggestion and correction system has

been used to allow a teacher to be in control of the robot at all

times whilst not having to manually select every single action.

This approach has been combined with reinforcement learning

and was compared to IRL, where the operator manually provides

feedback and guidance to the learning agent. The results from

a user study involving 40 participants show that SPARC can be

used to let naive participants successfully teach an action policy.

While doing so SPARC requires less teaching time and limits

undesired actions during the teaching phase when compared to

IRL. Additionally, the workload on users was lower when using

SPARC. Based on these results and other observations, we pro-

pose four guidelines to design interactive learning robots: (1) the

interface to control the robot has to be intuitive, (2) the limits of

human adaptability have to be taken into account (robots should

detect deadlocks in human behaviours and adapt their way to

be controlled or inform the human about it), (3) the operator

should be kept in the learning loop and (4) teachers should stay

in control of the robot behaviour when interacting in sensitive

environment. The first two points can be seen to apply to all

robot teaching methods, and should be addressed at the time

of designing the interface. By definition, SPARC aims to ad-

dress these last two points: maintaining the performance of an

adaptive system by remaining under progressively decreasing

supervision.
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ABSTRACT

A key challenge of HRI is allowing robots to be adaptable,
especially as robots are expected to penetrate society at
large and to interact in unexpected environments with non-
technical users. One way of providing this adaptability is
to use Interactive Machine Learning, i.e. having a human
supervisor included in the learning process who can steer
the action selection and the learning in the desired direction.
We ran a study exploring how people use numeric rewards
to evaluate a robot’s behaviour and guide its learning. From
the results we derive a number of challenges when design-
ing learning robots: what kind of input should the human
provide? How should the robot communicate its state or its
intention? And how can the teaching process by made easier
for human supervisors?

Keywords

Interactive Machine Learning; Autonomy; HRI

1. INTRODUCTION
One important challenges in HRI is to allow users, who

often have no technical expertise, to personalise the behaviour
of the robot they are using. It seems infeasible to expect
either users to be satisfied by a robot with a static behaviour
or for the robot’s designers to be able to anticipate all the
needs of the users and all the different environments a robot
could interact in. For this reason, we argue that robot
behaviour should be adaptive at run-time, and especially
that non-experts in technology should be able to teach a
robot new action policies.
Interactive Machine Learning (IML) is a field of research

which aims to include end-users in the machine learning
process [1, 3]. The idea is to move away from robots as
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Figure 1: Examples of positive (left) and negative (right)
reward in the robot cake baking task.

complex black boxes with inaccessible input and output, to
systems that can be intuitively (re)programmed by the users.
One advantage of this approach is it empowers users with
the ability to personalise their robot according to their needs
and desires.

IML has principally been tested on virtual agents. A good
example of IML is the TAMER framework [4] which predicts
the reward a human would give and use this prediction to
select a next action maximising the predicted reward.

2. EXPERIMENT

Methodology.
IML has not often been applied to robotics. An application

using virtual robots was presented in [6], which presented
a study where we compared two different methods used to
teach robots an action policy. The first, Interactive Rein-
forcement Learning (IRL), is derived from Reinforcement
Learning (RL) [7], the difference being that user now pro-
vides rewards, rather than the environment (cf. Figure 1).
In our implementation, the participant could evaluate the
robot’s actionsby moving a slider on a graphical interface,
the value of the slider acted as the reinforcement learning
reward. The second method, inspired by [5], uses a more
direct control method in which the robot communicates its
intentions to the participant who can either passively accept
the suggestion or actively select an alternative action.

In the task, inspired by Thomaz and Breazeal [8], a virtual
robot is in a kitchen and has to learn how to bake a cake. The
users know what the robot should do to finish the cake, but
multiple strategies can lead to success. The IRL algorithm
is similar to that used by [8].
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Figure 2: Distribution of rewards according to their numeric
value.

Participants were divided into two groups of 20, each group
interacting with a different system.

Results.
This paper reports how participants used the rewards in

the IRL condition. Figure 2 presents the distribution of
rewards given to the robot. In our case, the distribution
was tri-modal, with only three types of rewards given to the
robot. Over a total of 7364 rewards, we observe 899 with a
value of −1, 1337 with a value of 0 and 2653 of a value of 1.

This indicates that even if participants had the opportunity
to provide fine grained numerical rewards, they decided to
evaluate the robot’s actions either as bad, neutral or good. We
identify three reasons potentially explaining this behaviour.
The first one is related to the unambiguity of the expected
behaviour: when a desired strategy is clear, humans might
only use extremes to give feedback to the robot. Alternatively,
the tri-modality of the reward distribution can be due to
the interface used, a slider makes the use of extremes easier.
And lastly, as participants were time constrained (they only
had 2 seconds to evaluate the robot’s action) they might not
have taken the time to use a fine grained rewarding strategy.

3. DISCUSSION
From these results, we derive three challenges that robot

designers will face when allowing humans to teach robots.

Type of inputs.
The first challenge is to make human input efficient and

generalisable over different tasks. RL seems like a reasonable
approach: the user can provide numerical rewards to evaluate
the action executed by the robot. However, as the task
becomes more complex, the algorithm converges only after a
long series of trials and errors which is undesirable. Another
limit of numerical rewards is that they generally are assigned
after the execution of an action, and so do not allow the
supervisor to prevent the robot from making an error, even if
the supervisor could have known beforehand that this action
was not appropriate. Reward-based learning is general, but
it does not make good use of human domain knowledge and
tutoring competency.
Other types of inputs could be used; in [6], we propose

using commands rather than feedback. Commands allow
the user to have more control of the robot, but limit the
actions to a predefined set of actions. A way to generalise
commands to a larger set would be to use natural language
and ability to teach new actions associated to new commands.
A robot could also combine different types of inputs from the
human: both explicit (rewards or commands for example)
and implicit (such as the reactions of other humans).

Clarity of robot’s communication.
The robot should also provide the human with feedback

about its internal state, including its intentions, uncertainty,
learning progress and confidence. In [6], we argue that in-
tention communication is especially important when robots
are interacting in the real world, so as not to fluxom people
or execute undesired actions. Furthermore, if the robot has
planning abilities, the robot can also explain its actions and
communicate what its next actions will be.
Similarly to the content of the robot’s communication,

the medium is important. Humans have evolved to use
social signals, and robots should use these too. Speech
could be a good way of communicating more complex states,
intentions and plans, but it would be interesting to modulate
the sentences expressed by the robot in a way which is
socially acceptable and which does not annoy the long-term
user, avoiding repetitions and bluntness often associated with
robots.

Reduce the workload on human teachers.
A last important challenge is maintaining the user’s com-

fort when teaching. As explained in [2], a robot using the
same mode of communication without considering the human
it is interacting with could annoy the user. In our study,
many participants also reported frustration due to them of-
ten knowing what the robot should do, but not being able to
have the robot execute the desired action. Robots learning
from humans should reduce the workload on the teacher, and
give the teacher enough control of the robot’s actions while
taking into account the human’s state when learning.
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