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Executive Summary

Deliverable D6.3 defines the specification, design, implementation and validation of the Deliberative
subsystem within the cognitive architecture in WP6. Specifically, this report presents the advances
in task T6.3. During the first year the cognitive architecture and the Deliberative subsystem were
designed. During the second year the focus was on the autonomous acquisition of action selection
through machine learning. In the third year, the design of the deliberative subsystem was improved and
implemented to enable the delivery of the core robot behaviour for use in interventions. During the
fourth year, the deliberative subsystem has been evaluated in interventions, successive improvements of
performance have been done iteratively. Finally, during the fifth year we have conducted some studies
to explore how the functionality of the system could be extended in further developments.

The subsystem is fully deployed and running with the cognitive architecture developed by WP6 for
use in interventions.
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1 Overview of WP6 Architecture

In DREAM we are moving away from Wizard of Oz-controlled (WoZ) behaviour for the robot, which
too often is the de facto mode of interaction in Robot Assisted Therapy [1, 2]. Therefore, work package
WP6 aims to progress the theoretical and methodological understanding of how an embodied system
can interact autonomously with young users in a learning task, specifically developed for atypically
developing children. WP6 is concerned with the development of the robot behaviour subsystems
to provide social robots with a behaviour underlying social interaction, which permits the robot to
be used in Robot Enhanced Therapy (RET) autonomously with supervision. This involves both
autonomous behaviour and behaviour created in supervised autonomy, whereby an operator requests
certain interventions, which are then autonomously executed by the robot.

A general high level description of the robot control system is shown in Figure 1 (also see Annex
5.2). This describes how the autonomous controller is informed by three external sources: the child
behaviour description, sensory information, and current intervention script state. Input from a therapist,
e.g., emergency stop, is also present, but not shown in the diagram. Combining these sources, the
autonomous controller should trigger an appropriate sequence of action primitives to be performed (as
well as some feedback via a graphical user interface), which then gets executed on the robot.

Figure 1: High level description of the robot control system. Child behaviour interpretation (WP5)
and sensory information (WP4) provide the context for the autonomous action selection (as well as
feedback from motor command execution), in combination with the particular intervention script being
applied. The intervention script provides context for child behaviour interpretation.

The autonomous controller is composed of a number of subsystems, as described in the DoW:
Reactive, Attention, Deliberative, Self-Monitoring, and Expression and Actuation. In the Reactive
subsystem, sensory inputs are immediately acted upon with appropriate actuator outputs. The Attention
subsystem determines the robot’s focus of attention. In the Deliberative subsystem, the necessary
interventions are implemented in a general approach so it is not scenario-specific. The Self-Monitoring
subsystem acts as an alarm system in two specifications. An internal one when the robot detects that it
cannot act because of a technical limitation or an ethical issue. An external alarm is one where the
therapist overrules the robot behaviour selection. Finally, the Expression and Actuation subsystem is
responsible for generating believable human/animal-like smooth and natural motions and sounds that
are platform independent. These subsystems interact, and must combine their suggested courses of
actions to produce a coherent robot behaviour, in the context of constraints laid down by the therapist
(for example, the script to be followed, types of behaviour not permissible for this particular child
because of individual sensitivities, etc). As a result, we have formulated the following architecture
describing how cognitive control informed by the therapy scripts is to be achieved (Figure 2). This
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design is an iterative improvement on earlier plans laid out in Annex 5.2; the fundamental principles
remain the same, but the design required modification to ensure logical information flow when specified
to a lower level. Additional components were also added due to the inclusion of the Sandtray as a core
aspect for many of the interventions.

A detailed description of the cognitive architecture was provided in deliverable D6.1 at month 18.
Within this report we describe the functionality of the Deliberative subsystem.

scriptManager

selfMonitoring
Subsystem

deliberativeSubsystem

attentionReaction
Subsystem

actuation
Subsystem

userModel

systemGUI

naoInterface

other robot
morphologies

sandtrayServer

sandtrayEvent

Figure 2: Diagram of the cognitive controller subsystem. The overall WP6 architecture decomposes into
10 components for delivery as part of the DREAM integrated system for use in therapeutic evaluations.
This deliverable is concerned with the deliberative aspects of the controller; this includes the following
components: deliberativeSubsystem, scriptManager, userModel, systemGUI, sandtrayServer, and
sandtrayEvent. The remaining components are discussed in other WP6 deliverables.

2 The Deliberative Subsystem

The main goal for this subsystem is to make decisions on which behaviour has to be selected based
on the requirements of the therapy; what the Attention subsystem is capturing from the surroundings;
whether or not the child is motivated enough and how he or she is performing in each of the scenarios;
and finally, the on-line feedback that the therapist could be providing through the Graphical User
Interface (systemGUI component). Such behaviour is sent to the Expression and Actuation subsystem.

2.1 Overview

A central aspect of the cognitive controller is its ability to follow intervention scripts as defined by the
clinicians for both diagnosis and therapy. These scripts describe the high-level desired behaviour of the
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robot1, and the expected reactions and behaviours of the child, in a defined order.
The decision was made to separate the script manager from the Deliberative subsystem itself (Figure

3). This decision was taken for a number of reasons. Firstly, it enables the cognitive control of the
robot to be independent of the precise application domain - with the intention that the developments
made would be more generally applicable within the field of social robotics, although the script-based
behaviours remain a central part of the behaviour generation of the system. Secondly, it ensures that
it would be possible to change the scripts to alter their relative difficulty, by for example including
further steps in the intervention, changing the type of intervention, or creating different activities,
due to a modular design2. As a consequence of this, the Deliberative subsystem is now focussed on
action selection considerations, making use of a range of algorithms and methodologies under research
(more details will follow later in this document). Thirdly, this division of the script manager from the
Deliberative subsystem enables the system to generate coherent behaviour even if there is not a script
active at a given moment. This could be useful for periods between the explicit intervention sessions for
example, where the robot would then still be able to respond appropriately to environmental stimuli, if
so desired by the therapists. These are consistent with the aims expressed within the WP6 Description
of Work.

Figure 3: Overview of the script manager subsystem. The scripts are defined independently of the
script manager, which is responsible for stepping through the script as appropriate and communicating
with the other subsystems as required.

The script manager itself separates the logic necessary to manage progression through the script
(by taking into account the available sensory feedback after actions for example) from the script itself.
This makes it straightforward to add new scripts or modify existing scripts as required. This logic
management is achieved by using a Finite State Machine (FSM). Defining each step in the script as a
3-tuple of the form: [existing state, proposed action, consequent state] was found to be insufficient

1These predefined robot behaviours differ from the the low-level motor control of the robot, as these may be mixed
with other aspects of behaviour not specified explicitly in the high-level intervention script; e.g., the addition of attention to
unexpected events in the environment.

2As noted above, these high-level scripts do not necessarily completely define the behaviour of the robot, and are distinct
from any predefined robot motor control sequences that may be used, such as waving or nodding.
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when the details of the intervention scripts were finalised. Some script steps also need to define a series
of parameters, such as an expected action for the child to make (to be used in autonomously evaluating
their performance) and the time in which this action should be performed. As a consequence, scripts
are defined in an XML format, with each step consisting of a series of comma separated values. These
values take the form: [step id, script step, (comma separated parameters)], where values in parenthesis
are optional depending on the proposed action.

As all of the script steps are encoded in unique identifiers, they are not easily read or modified
by a human. To address this, a graphical tool was developed so that the therapists can create and
modify scripts in a straightforward manner. This tool is not delivered as part of the core YARP system
functionality, but is committed to the project repository as an auxiliary tool. A screenshot of the
application can be seen in Figure 4, with the associated output in Figure 5.

Figure 4: Screenshots from the scriptGenerator tool developed for therapists to create scripts for the
system. The left pane shows all current scripts. The right pane shows all possible intervention actions
as defined by the therapists and the current steps for the script being created. Where parameters are
required for a script step, the GUI will automatically request them where necessary.

Figure 5: Example output from the scriptGenerator tool. The scripts are stored as XML, which can
then be read in code with ease.

The Deliberative subsystem is the primary locus of autonomous action selection in the cognitive
controller (Figure 2). This subsystem takes as input sensory data, child behaviour information,
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information on what step should be next executed from the therapy script, and higher-level direction
from the Self-Monitoring subsystem. It then proposes what action should be taken next by the robot
(this proposal is sent to the Expression and Actuation subsystem). In a normal script execution context,
the Deliberative subsystem is the primary driver of behaviour, which would typically propose the next
script step. Details of the deliberative subsystem implementation are found below in Section 2.2.

There are however a number of circumstances in which this may not the most appropriate action to
perform. For example, if the child is detected to have very low engagement with the task (as determined
from the WP5 component/s, and/or information from WP4 sensory system saying the child is looking
away for example), then it would be appropriate to attempt to re-engage the child with the robot/task
prior to executing the next stage in the therapy script. In this case, the Deliberative subsystem can
choose to depart from the behaviour defined in the script. For the current implementation in the
core robot functionality, it the therapist who suggest this corrective behaviour. but it is part of the
development in the Deliberative subsystem for the robot to autonomously learn the correct course of
action and be able to suggest the corrective behaviour (see Section 2.3 for further details about research
in this direction).

2.2 Core Deliberative Components

Based on the functional description of the cognitive controller system of the DREAM architecture (see
section above, and Annex 5.2), core implementations of all WP6 components have been formulated.
This section will discuss the Deliberative subsystem component. For full context, the sandtrayServer,
sandtrayEvent, systemGUI and scriptManager component descriptions are also described here as they
tightly interact with the deliberative subsystem.

The components are defined in terms of the input and output ports, following the guidelines estab-
lished in the software engineering standards (WP3). These are directly informed by the development of
the WP6 control architecture in Y1, where each subsystem was defined in terms of the interactions
with other subsystems, and their functions as outlined in the DREAM DoW. Please refer to Figure 1 to
provide this context. In the Y3 of the project, the components were more tightly specified (down to the
port level) for functional implementation; please see the diagram in Annex 7.3 for full details of port
names, port types, and message structures for primitives.

2.2.1 Script Manager

The functions of the script manager are described above: the main point is that the script manager is
separated from the rest of the Deliberative subsystem, which is instead focussed on autonomous action
selection. The ports for this component are described in Figure 6.

scriptManager

[02] /scriptManager/commandSuccess:i

[01] /scriptManager/startStop:i [01] /scriptManager/interventionCommand:o

Figure 6: Script Manager component YARP ports. This component handles the script state and provides
this information to other components.
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2.2.2 Deliberative Subsystem

An overview of the ports for this component are shown in Figure 7. Further to the definition of
this version of the YARP component to fit into the DREAM architecture according to the established
software engineering framework (see D3.1), a range of work has been conducted on the theoretical basis
of autonomous action selection mechanisms for social robots. In addition to the technical principles
described below (Section 2.3), this development work has also included the principled examination of
what sort of functionality should be undertaken by this component, and what the limitations of this
should be with respect to the supervisory oversight provided by the ever-present therapist (as defined
by the supervised autonomy objective of DREAM). Our work in this regard is summarised in Annexes
5, 6, and 7.

deliberativeSubsystem

[29] /deliberativeSubsystem/sandtrayEvent:i

[22] /deliberativeSubsystem/sandtrayCommand:o

[30] /deliberativeSubsystem/sandtrayReturn:i

[05] /deliberativeSubsystem/selectedAction:i

[07] /deliberativeSubsystem/attentionBias:o

[03] /deliberativeSubsystem/sensorySummary:o

[04] /deliberativeSubsystem/interventionCommand:i

[01] /deliberativeSubsystem/commandSuccess:o

[02] /deliberativeSubsystem/getChildBehaviour:i

[07-28] /deliberativeSubsystem/WP4Inputs:i

[05] /deliberativeSubsystem/suggestedAction:o

[02] /deliberativeSubsystem/deliberativeFeedback:o

[01] /deliberativeSubsystem/actionFeedback:i

[21] /deliberativeSubsystem/interactionEvent:o

[06] /deliberativeSubsystem/getInterventionStatus:o

[08-20] /deliberativeSubsystem/WP4Outputs:o

[06] /deliberativeSubsystem/userDelib:i

[31] /deliberativeSubsystem/robotSensors:i

[03] /deliberativeSubsystem/getChildPerformance:i

[04] /deliberativeSubsystem/startStop:o

Figure 7: Deliberative subsystem component YARP ports: the prefix for the port names is listed in the
main text. This component is responsible for the autonomous action selection in cases of deviation
from the script, etc. Ports to/from the sensory systems (WP4) have been condensed for clarity.

2.2.3 Sandtray Server and Event

Following earlier studies, the therapists conducting the evaluations as part of the DREAM project
(partner UBB) found that children responded well to the use of the Sandtray in interventions. The
Sandtray is a large horizontal touch screen that can be used to display various media and games, and for
both children and the robot to interact with (such as selecting or moving images); the Sandtray can be
seen in Figure 14. As the use of the Sandtray in the interventions increased, it required incorporating
into the WP6 system design. This was done in two components: sandtrayServer and sandtrayEvent.
sandtrayServer communicates tightly with the Deliberative subsystem component: the Deliberative
subsystem can modify what is shown on the screen and can access information from the screen to
transmit to the robot. sandtrayEvent raises events when the child interacts with the screen, such as when
they select an image, which can be forwarded to as sensory input to WP5 (to be used, for example, in
calculating the child performance). The description of these components can be seen in Figure 8. As an
additional part of this work, the Sandtray tasks for use in interventions were also developed (PLYM),
with images provided by the therapists (UBB). The Sandtray components and code do not rely on any
specific hardware, so these components and the Sandtray software can flexibly be re-used should other
scenarios or hardware require them.
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sandtrayEvent

[01] /sandtrayEvent/sandtrayEvent:o

sandtrayServer

[01] /sandtrayServer/sandtrayCommand:i
[01] /sandtrayServer/sandtrayReturn:o

Figure 8: Sandtray event and sandtray server components. Sandtray event notifies the DREAM system
of child actions on screen, whereas sandtray server is used for managing robot interaction with the
screen.

2.2.4 User Model

The core user model component was developed in period 3. The aim of this component is to store
prior diagnosis information about each child, as well as their ongoing intervention session performance
with both the robot and the therapist. This information can then be used as part of analysis of the
system, and is displayed in the DREAM system GUI as it is useful information for the therapists
to view when interventions are being conducted. Each user has a file storing their information, this
is accessed through the user model component, which has the function of reading the information,
transmitting it, and saving any updates. The user model files are implemented using XML so that they
can be extended in the future. It is anticipated that subsequent versions of the user model files may
store data required by the SPARC action selection mechanism, so the file format and port pathways
for this data to be transmitted to and from the Deliberative subsystem component have been designed
in the current version, but without passing the data. The user model port descriptions can be seen
in Figure 9. Figure 10 shows a GUI tool created for therapists to input initial user model data from
pre-existing diagnosis data.

userModel

[01] /userModel/userData:o

[02] /userModel/updatedData:i

[01] /userModel/userID:i

Figure 9: User model component YARP ports. This component is responsible for reading and writing
data about the intervention outcomes and child preferences.

Figure 10: GUI tool for generating user models (which are saved as XML documents).
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2.2.5 System GUI

The system GUI is based on requirements of supervised autonomy, prototyping with end users, and
research into appropriate interface mechanisms [3]. The final design from a port description perspective
can be seen in Figure 11. The deliberative subsystem suggests an action for the therapist through the
self monitoring subsystem, which is displayed on the GUI. The action will automatically execute after
some period of time, or the therapist can speed up the selection, or select an alternative action if the
robot needs to go off-script. These corrections are communicated back to the deliberative and self
monitoring subsystems. This provides the opportunity to learn from the therapist corrections (as per
the SPARC principle; Section 4) to improve the autonomy of the robot in the future. A screenshot of
the GUI can be seen in Figure 12, and a technical report for partners using the software can be seen in
Annex 7.1.

systemGUI

[01] /systemGUI/selectedBySupervisor:o

[04] /systemGUI/smsSummary:i

[02] /systemGUI/therapistCommand:o

[03] /systemGUI/userID:o[03] /systemGUI/proposedToSupervisor:i

[02] /systemGUI/getChildPerformance:i

[01] /systemGUI/getChildBehaviour:i

Figure 11: System GUI component YARP ports. This component acts as the interface between the
therapist and the DREAM system.

Figure 12: System GUI screenshot. The layout is based on prototyping with end-users and research
into appropriate interface methods. Script steps can be seen to the left, with supervised autonomy
options to the right, with possible corrective actions loaded depending on the requirements of the script.
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2.3 Action Selection Mechanism

2.3.1 Context

The intervention script provides a series of actions that the robot should execute and that are expected
to be followed by a child-specific reaction. However, the actual reaction from the young user can be
different to the one expected. To be able to follow the script, the robot needs to find a way to execute
the appropriate behaviour in order to obtain the desired reaction from the child. To succeed in such a
challenging task, a social Action Selection Mechanism (ASM) is required.

This social ASM has to fulfil multiple specifications: the first one is to allow the robot to detect
a state where the execution of an action not planned in the script is required. This can be done by
comparing the child’s current state to the expected one. Then, once the need to act outside of the script
is detected, the ASM has to select an action that would obtain the expected reaction from the child and
thus allow continuation of the script.

Having to select an action in a Robot Assisted Therapy (RAT) scenario gives rise to several concerns.
First of all, at every moment of the interaction, the action executed by the robot needs to be the correct
one, i.e. the one desired to maximise the positive effect of the therapy. Furthermore, as we are working
with children, the environment is highly unpredictable and there is probably not a unique general
solution for every child and a solution for one child might not be appropriate later in the interaction:
the robot needs to be able to adapt to different interaction partners and also to the same partner at
different times in the interaction. Lastly, with RAT, we have access to experts with good knowledge
of the environment (both the children and the task to be accomplished): the therapists. The therapists
can be use to obtain some knowledge, but we can not rely totally on them as this would impose a high
workload on them and this is not scalable.

Consequently, the ASM has to follow three principles:

1. The action selected has to be therapeutically correct at every stage of the interaction.

2. The ASM has to be adaptive, i.e. be able to change the action policy over time.

3. The workload on the therapist should be as low as possible.

2.3.2 State of the Art

When having to design an ASM, the simplest possibility is to use a static predefined behaviour, such as
a reactive system or a finite state machine, as has been used in some experiments of the Aurora project
[4]. This has the advantage of not relying at all on the therapist, but as we are working in the real world,
the sensors are represented in a high-dimensional and continuous space. This means that either the
behaviour expressed would be simple, or that a more complex controller would probably not be able
to be designed manually; there is no way to know in advance what the best action to perform in each
state is. Similarly, as it is not possible to have a precise enough model of the child, pure planning is not
suitable in our case.

The other main approach used in RAT is the Wizard of Oz (WoZ) paradigm [5, 6]. The robot is
not autonomous, but is instead fully teleoperated by a therapist. This can fulfil principles 1 and 2 as
the action is always the one that the therapist would desire and the human also provides adaptivity.
However, as explained by Thill et al. in [1], there are many reasons which motivate us to move away
from WoZ, such as the reliance on the humans violating principle 3 through the imposition of a heavy
workload.
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A way to fulfil principles 2 and 3 is to provide a robot with learning capabilities. If the robot can
learn from successes and errors, it becomes adaptive and does not rely on a human to select its actions.
A classical technique used to allow an agent to learn by itself when interacting with an environment
is Reinforcement Learning (RL) [7]. With this approach, the robot explores its environment by
interacting with it. Through receiving positive or negative rewards from its environment, it optimises
an action policy after a learning phase, which can achieve high task performance. This technique could
asymptotically also fulfil principle 1, but at the start of the interaction the robot relies on exploration
to create its action policy. As such, random actions can be executed to obtain knowledge, and this
has the potential to violate principle 1, with possible negative therapeutic outcomes. Furthermore,
without external help, this method can take a long time to converge, and depends on rewards from the
environment to learn, which might be hard to define explicitly for RAT.

Some researchers have worked on ways to improve RL, for example in [8], authors assume that the
environment is not giving rewards, and that a human can give them. This could be suitable for our case
as the therapist possesses the adequate knowledge to evaluate the robot actions. A similar approach has
been followed by Thomaz et al. in [9] where they combined rewards from the environment, reward
from a user and guidance from a user. This allows faster convergence toward an efficient policy and
reduces the number of potentially incorrect actions. However in all of these methods, the evaluation
is done a posteriori, so if an action is not correct, it will not be executed again, but it has still been
executed once. In RAT, this is something we have to avoid as even one incorrect action could have
negative consequences.

To cope with this exploration problem, some authors proposed Safe RL [10], in this case, an
additional mechanism is combined with the RL policy to prevent dangerous actions from being
executed. They present two main ways to make RL safer: using initial knowledge to prevent the
execution of actions in specific cases, or to bootstrap the learning with safe demonstration, and to
only explore around them. But even these methods can not guarantee that only correct actions will be
executed as there is still a reliance on exploration and all of the potentially dangerous state-action pairs
can not be defined in advance.

Another method proposed to achieve autonomy in RAT without having the robot to explore
environment by itself is inspired by Learning from Demonstration and the WoZ paradigm. In [11],
authors propose that the interaction is begun in a classical WoZ setup. The robot is only controlled
by the therapist initially, then when enough data has been gathered, batch learning is applied and an
action policy is derived. As only correct actions have been given to the robot, and if we assume that
enough data points are obtained to cover the environment space, the action policy derived is correct.
Only therapeutically valid actions will be executed, and this is achieved without further reliance on
the therapist to control the robot. However, as no further learning is used, the ASM is not adaptive, so
it can not cope with additional changes in the child behaviour. As such, even if principle 1 and 3 are
fulfilled, principle 2 is still missing.

2.3.3 Proposed Solution

As shown previously, there is currently no solution in the literature fulfilling all of the desiderata for
our Action Selection Mechanism. Methods either require important knowledge to be hard-coded inside
the software, rely on exploration involving randomness, impose a heavy workload on the therapists, or
are not adaptive once the learning is finished.

To be able to fulfil principles 2 and 3, the ASM has to include a machine learning component. This
is the only way to provide the required adaptivity without relying on a human. However, the majority
of the algorithms used for learning face a trade-off between exploitation and exploration: the agent
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Figure 13: Comparison of SPARC with WoZ and Reinforcement Learning in terms of autonomy,
supervisor workload, and performance. The aim is for workload to be low, whilst autonomy and
performance are high.

first needs to explore its environment to be able to select the best action to perform later, and generally
there is an element of randomness in the exploration. As encompassed by principle 1, in RAT there is
no place for randomness. We need to find an ASM allowing the robot to become autonomous, to learn
the best action to execute in a highly unpredictable, continuous and complex space without relying on
random exploration.

As developers, we have limited knowledge of the best action to execute in an unexpected state; this
knowledge is the expertise of the therapist. This expertise can be used to provide the initial knowledge
for our learning mechanism. Furthermore, this knowledge can also prevent incorrect actions from
being executed during the learning phase, or indeed in any part of the interaction.

This is the reason why we propose Supervised Progressively Autonomous Robot Competencies as a
solution (SPARC; see Section 4). This technique relies on a system of suggestion/correction: the robot
selects an action according to the ASM and suggests it to the supervisor (in this case, the therapist).
In response, the therapist can either do nothing and thus the suggested action is executed, or select a
different action for the robot to execute. This concept ensures that the right action is always executed:
fulfilling principle 1. Simultaneous learning on the robot side allows the suggested action to be more
appropriate with more interactions, reducing the workload on the therapist over time and fulfilling
principles 2 and 3 (behavioural adaptivity and low therapist workload), whilst maintaining principle 1
(correct therapeutic action). This method is described in more detail in [12] and Section 4 presents the
work done in evaluating this approach.

Figure 13 presents the concept of SPARC compared to WoZ or RL in terms of workload on the
supervisor, autonomy and performance. With WoZ, at all times, there is no autonomy and a high
workload on the supervisor providing a high performance. With RL, the human is not involved, so
the autonomy is high and the workload is low. At the start, the robot is exploring the environment
resulting in low task performance in the learning phase, and this performance rises until reaching an
asymptotically high value once the robot knows how to act. SPARC imposes a high workload on
the therapist at the start, when the robot is still learning. This provides faster learning, which allows
the robot to be more autonomous with time and decreases the workload on the supervisor, whilst
maintaining good task performance throughout the interaction.
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2.4 Planned Work

In Period 1, the WP6 and Deliberative subsystem architectures were established from a theoretical basis,
leading to the development of preliminary Deliberative subsystem and script manager components
(see Sections 2.1 and 2.2). During this period, WP6 also supported manually controlled evaluation of
the diagnosis/intervention scripts (defined in deliverable D1.1), further detail can be seen in Section 3
below. This provided guidance for further development within Period 2, which gave increased focus on
how machine learning can be utilised to improve the autonomy of the robot in interactions (see Section
4 for details).

During Period 3, the Deliberative subsystem was developed in accordance with milestone MS4
specified within the WP6 Description of Work (“core functionality in robot behaviour”). Specifically,
this included completed versions of the script manager, sandtray event, and sandtray server components,
alongside core versions of the user model, GUI and deliberative subsystem components, as described in
Sections 2.1 and 2.2. This provides the software for autonomous progression through the intervention
scripts as defined in deliverable D1.1.

Section 2.3 described the approach to machine learning (SPARC) adopted within the context of the
Deliberative subsystem that will strive to increase the autonomy of the robot behaviour. Successful
evaluation of this approach in non-therapeutic environments in Period 2 (discussed in Annex 6.3 and
Section 4) provided a solid platform for further exploration in Period 3.

The SPARC model had already been tested with a Neural Network and Reinforcement Learning,
with preliminary results suggesting promising performance when compared to WoZ or classical
Interactive Reinforcement Learning (Section 4). Period 3 has seen a comparison with another method
from the field of Interactive Machine Learning. Results from a study with 40 participants [3] show that
the principles advocated by SPARC allow a safer, quicker and more efficient learning than Interactive
Reinforcement Learning as proposed in [9]. The current SPARC implementation exists outside of the
core Deliberative subsystem component, but the inclusion of the SPARC approach was allowed for in
the design adopted in Period 3. It is planned for the approach to be evaluated in settings more closely
resembling the therapeutic environment of the DREAM project to provide additional validation prior
to potential integration into the cognitive controller moving forwards.

Period 4 has seen the continuation of the evaluation of the SPARC approach, and the exploration
of how SPARC and the ideas developed in DREAM could be applied to other fields of HRI. A new
algorithm has been proposed in 8.1, to learn quickly a complex action policy for teaching robots to
interact with humans, it extends SPARC to allow the supervisor to highlight features in the environment
relevant for the selected action. A study is currently being carried out to evaluate how human supervision
can teach a robot to support child learning during an educational game using an implementation of the
SPARC approach 8.2.

Within period 5, we have deepened into the role to be played by the therapist that are in control
of the robot during the intervention. In annex 9.1, we presented a definition of human control in the
context of Interactive Machine Learning (IML), as well as the advantages and challenges faced when
applying it to teach robots or agents to interact in an environment.

3 Script Following

A primary objective of the first year of work was the evaluation of manually controlled (‘wizarded’ or
tele-operated) versions of the diagnosis/intervention scripts defined in deliverable D1.1, as relevant to
T2.1. This evaluation provides guidance for the further development of the autonomous interpretation
and behaviour systems for the DREAM architecture.
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In Y1, WP6 provided substantial support to provide the systems necessary for these evaluations.
The robot behaviour capabilities to enable execution of each of the basic versions of the scripts has
been implemented: imitation task, joint attention task, and the turn-taking task. These systems have
been deployed and used at partner UBB.

Two methods were used to provide this functionality. For the imitation and joint attention tasks,
behaviours were constructed in the Aldebaran-produced Choregraphe suite, such that a therapist could
manually control the robot behaviours for each of the stages of the task. Details of this system can be
found in Annex 5.4 of this deliverable. For the turn-taking task, since the Sandtray device is used, a
standalone system using the software engineering standards defined in WP3 were used. Details of this
system can be found in Annex 5.3 of this deliverable.

This work provided the basis for further developments within WP6 in Y2. The development of the
behaviours for each of the intervention tasks was reused in the autonomous versions of these tasks,
along with further behaviours as required. Furthermore, the establishment of preliminary versions
of the various components using the software engineering framework, and the development of the
WP6 cognitive control architecture, facilitated the implementation of the autonomous versions of these
components, and their subsequent integration, in Y3, deployment and evaluation, in Y4, with the rest
of the DREAM architecture.

4 Increasing Robot Autonomy

In the second year of work there was an increased focus on studying how machine learning could be
used to gradually take over from the therapist, or in the broader sense of the word, the “Wizard”. For
this, a new method was developed, dubbed SPARC (Supervised Progressively Autonomous Robot
Competencies). SPARC proposes actions to the supervisor and observes which actions the Wizard
takes in which states; the states are comprised of internal states of the robot and external states in the
social and physical environment, including the child. SPARC gradually builds up a state-action model,
and as the interaction progresses, suggests more appropriate actions to the Wizard. The Wizard can
relinquish control to SPARC by accepting its proposed actions.

Figure 14: Setup used for the user study from the perspective of the human supervisor. The child-robot
(left) stands across the touchscreen (centre-left) from the wizarded-robot (centre-right). The supervisor
can oversee the actions of the wizarded-robot through the GUI and intervene if necessary (right).

Date: 29/03/2019
Version: No 1.8

Page 18



D6.3 Deliberative Subsystem

In Period 2, the architecture was further developed from the simulation model presented in Period 1.
The SPARC model was tested both with a Neural Network and Reinforcement Learning and developed
to suit the context of Robot Assisted Therapy [12, 13]. A main focus has been on evaluating how
human operators, or Wizards, perceive the gradually increasing autonomy of the robot and the impact
on the task performance.

To this end we used a novel method, in which the child in the interaction is substituted by a robot
running a “child” model (Figure 14). This allows experimenting without putting undue pressure
and stress on young participants, and provides a setup with high repeatability, which is required for
rigorously testing the SPARC architecture. A number of hypotheses were evaluated in a study [12].
Overall, the study showed that controlling a learning robot enables supervisors to achieve similar task
performance as with a non-learning robot, but with both fewer interventions and a reduced perception
of workload. These results demonstrate the utility of the SPARC concept and its potential effectiveness
to reduce the cognitive and workload on human operators.

SPARC has recently been implemented in a restricted (non-therapeutic) environment and compared
to previous work done in Interactive Reinforcement Learning (IRL): the environmental reward is
combined with reward given by the user after the action execution. Analysis of the results indicates
that SPARC is compatible with Reinforcement Learning, and it leads to faster and better results than
classical IRL with a lower workload on the supervisor. From these results, several limits of the current
proposition of SPARC have been highlighted, such as the limitation to a single type of inputs from
the user, assumption of a perfect supervisor and the current discretisation of time. To be useful in real
human-robot interactions, SPARC will have to tackle these challenges.

Year 4 saw the implementation of a more complete version of SPARC and this new implementation
is being tested in a human-robot interaction with children in the wild where the system faces challenges
not explored in previous studies. The context for the study is teaching children a food web by playing
an interactive game supported by the robot. The learning algorithm is a version of Nearest Neighbours
which has been adapted to be suitable to complex environments such as HRI and human supervision
during the teaching. The algorithm has been published in [14] and the study is currently being ran.
Expected results should show that SPARC can be applied to teach a robot a complex action policy for
interacting with humans.

During period 5, alternative functionalities were explored to increase the autonomy of the robot.
These new features were not expected to be implemented into the system but to serve as initial steps
for further developments. One on side, we explored the impact of empathic behaviours and how users
perceive such behaviours, see annex 9.4 for further details. On the other side, we aimed at exploring
how a socially interactive robot can get users’ attention back by employing different re-engagement
strategies, see annex 9.3 for further details.
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5 Period 1 Annexes

5.1 Senft, E. et al. (2015), When is it better to give up? Towards autonomous action
selection for robot assisted ASD therapy

Bibliography - Senft, E., Baxter, P., Kennedy, J., Belpaeme, T (2015), “When is it better to give up?
Towards autonomous action selection for robot assisted ASD therapy”, HRI‘15 Extended Abstracts,
doi: 10.1145/2701973.2702715

Abstract - Robot Assisted Therapy (RAT) for children with ASD has found promising applications.
In this paper, we outline an autonomous action selection mechanism to extend current RAT approaches.
This will include the ability to revert control of the therapeutic intervention to the supervising therapist.
We suggest that in order to maintain the goals of therapy, sometimes it is better if the robot gives up.

Relation to WP - This work directly contributes to Task T6.3.

5.2 Baxter, P. et al. (2015), Technical Report: Organisation of Cognitive Control and
Robot Behaviour

Abstract - The purpose of this technical report is to summarise the motivations and constraints
underlying the cognitive control structures, and to outline an organisation of these subsystems. This
is a proposal only; this document is intended to be a working one, to be updated as required during
development. This version of the report is based primarily on the discussions that took place in Brussels
(23/01/15).

Relation to WP - This work directly contributes to Task T6.3.

5.3 Baxter, P. et al. (2015), Technical Report: Sandtray Wizard-of-Oz System for
Turn-taking Intervention

Abstract - In this technical report we describe the software organisation of the Sandtray system
created for the turn-taking diagnosis/intervention interactions. This system is based on the organisation
defined by the WP3 software engineering standards, although at the moment does not fit into the rest
of the DREAM system: this was to facilitate ease of setup and launch for the end-user (i.e. minimal
installation, and no compilation required). The WoZ system provides a GUI from which the therapist
can control the robot behaviour in the turn-taking task, and logs of the interaction are automatically
stored for retrospective analysis.

Relation to WP - This work provides the basis of work in Task T6.3, and is relevant to T2.1.

5.4 Esteban, P.G. et al. (2015), Technical Report: Manual for the use of Choregraphe
boxes in Wizard of Oz experiments

Abstract - In this technical report we describe a manual to help UBB team in the development of the
Wizard of Oz experiments within Work Package 2. Both PLYM and VUB have collaborated to develop
the corresponding modules in Choregraphe. This manual aims at being a reference point to ease the
habituation of the therapists to the software.
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Relation to WP - This work provides the basis of work in Task T6.3, and is relevant to T2.1.
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6 Period 2 Annexes

6.1 Baxter, P. et al. (2015), Touchscreen-Mediated Child-Robot Interactions Applied
to ASD Therapy

Bibliography - Baxter, P., Matu, S., Senft, E., Costescu, C., Kennedy, J., David, D., and Belpaeme,
T. (2015) Touchscreen-Mediated Child-Robot Interactions Applied to ASD Therapy. New Friends
symposium, Almere, The Netherlands.

Abstract - Robots are finding increasing application in the domain of ASD therapy as they provide a
number of advantageous properties such as replicability and controllable expressivity. In this abstract
we introduce a role for touchscreens that act as mediating devices in therapeutic robot-child interactions.
Informed by extensive work with neurotypical children in educational contexts, an initial study using a
touchscreen mediator in support of robot assisted ASD therapy was conducted to examine the feasibility
of this approach, in so doing demonstrating how this application provides a number of technical and
potentially therapeutic advantages.

Relation to WP - This paper summarises our use of touchscreen devices as mediating devices in
child-robot interaction, and its specific use in diagnosing ASD.

6.2 Senft, E. et al. (2015) Human-Guided Learning of Social Action Selection for
Robot-Assisted Therapy

Bibliography - Senft, E., Baxter, P., and Belpaeme, T. (2015). Human-guided learning of social
action selection for robot-assisted therapy. In 4th Workshop on Machine Learning for Interactive
Systems.

Abstract - This paper presents a method for progressively increasing autonomous action selection
capabilities in sensitive environments, where random exploration-based learning is not desirable, using
guidance provided by a human supervisor. We describe the global framework and a simulation case
study based on a scenario in Robot Assisted Therapy for children with Autism Spectrum Disorder. This
simulation illustrates the functional features of our proposed approach, and demonstrates how a system
following these principles adapts to different interaction contexts while maintaining an appropriate
behaviour for the system at all times.

Relation to WP - This paper sketches the early ideas on progressively learning autonomous behaviour
from a human Wizard.

6.3 Senft, E. et al. (2015) SPARC: Supervised Progressively Autonomous Robot Com-
petencies

Bibliography - Senft, E., Baxter, P., Kennedy, J., and Belpaeme, T. (2015). SPARC: Supervised Pro-
gressively Autonomous Robot Competencies. In Social Robotics (pp. 603-612). Springer International
Publishing.
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Abstract - The Wizard-of-Oz robot control methodology is widely used and typically places a high
burden of effort and attention on the human supervisor to ensure appropriate robot behaviour, which
may distract from other aspects of the task engaged in. We propose that this load can be reduced
by enabling the robot to learn online from the guidance of the supervisor to become progressively
more autonomous: Supervised Progressively Autonomous Robot Competencies (SPARC). Applying
this concept to the domain of Robot Assisted Therapy (RAT) for children with Autistic Spectrum
Disorder, a novel methodology is employed to assess the effect of a learning robot on the workload
of the human supervisor. A user study shows that controlling a learning robot enables supervisors to
achieve similar task performance as with a non-learning robot, but with both fewer interventions and a
reduced perception of workload. These results demonstrate the utility of the SPARC concept and its
potential effectiveness to reduce load on human WoZ supervisors.

Relation to WP - This paper describes the SPARC architecture, which can learn which actions to
take in which states by observing a Wizard. The paper also presents a first user study which validates
the concept.

6.4 Senft, E. et al. (2016) Providing a Robot with Learning Abilities Improves its
Perception by Users

Bibliography - Senft, E., Baxter, P., Kennedy, J., Lemaignan, S. and Belpaeme, T. (2016) Providing
a Robot with Learning Abilities Improves its Perception by Users. In Proceedings of the 11th Annual
ACM/IEEE International Conference on Human-Robot Interaction, Christchurch, New Zealand.

Abstract - Subjective appreciation and performance evaluation of a robot by users are two important
dimensions for Human- Robot Interaction, especially as increasing numbers of people become involved
with robots. As roboticists we have to carefully design robots to make the interaction as smooth and
enjoyable as possible for the users, while maintaining good performance in the task assigned to the
robot. In this paper, we examine the impact of providing a robot with learning capabilities on how
users report the quality of the interaction in relation to objective performance. We show that humans
tend to prefer interacting with a learning robot and will rate its capabilities higher even if the actual
performance in the task was lower. We suggest that adding learning to a robot could reduce the apparent
load felt by a user for a new task and improve the users evaluation of the system, thus facilitating the
integration of such robots into existing work flows.

Relation to WP - This study looks into how an operator (a Wizard) subjectively experiences a robot
which gradually learns and takes over the operator’s task.

6.5 Baxter, P. et al. (2016) Cognitive Architectures for Social Human-Robot Interac-
tion

Bibliography - Baxter, P., Lemaignan, S. and Trafton, G. (2016) Cognitive Architectures for Social
Human-Robot Interaction. In Workshop on Cognitive Architectures in Human-Robot Interaction, at the
11th Annual ACM/IEEE International Conference on Human-Robot Interaction, Christchurch, New
Zealand.
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Abstract - Social HRI requires robots able to use appropriate, adaptive and contingent behaviours
to form and maintain engaging social interactions with people. Cognitive Architectures emphasise a
generality of mechanism and application, making them an ideal basis for such technical developments.
Following the successful first workshop on Cognitive Architectures for HRI at the 2014 HRI conference,
this second edition of the workshop focusses specifically on applications to social interaction. The
full-day workshop is centred on participant contributions, and structured around a set of questions to
provide a common basis of comparison between different assumptions, approaches, mechanisms, and
architectures. These contributions will be used to support extensive and structured discussions, with
the aim of facilitating the development and application of cognitive architectures to social HRI systems.
By attending, we envisage that participants will gain insight into how the consideration of cognitive
architectures complements the development of autonomous social robots

Relation to WP - A position paper framing the need and state-of-the-art in cognitive architectures
for social HRI, relevant to the deliberative subsystem in WP6.

6.6 Baxter, P. (2016) Memory-Centred Cognitive Architectures for Robots Interacting
Socially with Humans

Bibliography - Baxter, P. (2016) Memory-Centred Cognitive Architectures for Robots Interacting
Socially with Humans. In Workshop on Cognitive Architectures in Human-Robot Interaction, at the
11th Annual ACM/IEEE International Conference on Human-Robot Interaction, Christchurch, New
Zealand.

Abstract - The Memory-Centred Cognition perspective places an active association substrate at the
heart of cognition, rather than as a passive adjunct. Consequently, it places prediction and priming on
the basis of prior experience to be inherent and fundamental aspects of processing. Social interaction is
taken here to minimally require contingent and co-adaptive behaviours from the interacting parties. In
this contribution, I seek to show how the memory-centred cognition approach to cognitive architectures
can provide an means of addressing these functions. A number of example implementations are briefly
reviewed, particularly focusing on multi-modal alignment as a function of experience-based priming.
While there is further refinement required to the theory, and implementations based thereon, this
approach provides an interesting alternative perspective on the foundations of cognitive architectures to
support robots engage in social interactions with humans.

Relation to WP - A paper providing theoretical insights in how associative memories can serve as
the backbone of a cognitive architecture. This approach is at present not implemented in DREAM, but
is being explored in the context of the SPARC architecture.
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7 Period 3 Annexes

7.1 Kennedy, J. et al. (2017), Technical Report: A Guide to Using systemGUI

Abstract - The purpose of this technical report is to provide a guide for all technical partners and the
end users of the systemGUI developed as part of WP6. Technical partners may need this information in
order to perform tests with an expanded subset of the integrated DREAM system. Therapists will need
to understand how the systemGUI interface is used in order to run planned experiments effectively.
This report is based on the current systemGUI at the production date; details may change to align with
the GUI changes in the future.

Relation to WP - This work directly contributes to Task T6.3.

7.2 Lemaignan, S. et al. (2016), Towards “Machine-Learnable” Child-Robot Interac-
tions: the PInSoRo Dataset

Bibliography - Lemaignan, S., Kennedy, J., Baxter, P., Belpaeme, T (2015), Towards “Machine-
Learnable” Child-Robot Interactions: the PInSoRo Dataset, Workshop on Long-term Child-Robot
Interaction at RO-MAN 2016

Abstract - Child-robot interactions are increasingly being explored in domains which require longer-
term application, such as healthcare and education. In order for a robot to behave in an appropriate
manner over longer timescales, its behaviours should be coterminous with that of the interacting
children. Generating such sustained and engaging social behaviours is an on-going research challenge,
and we argue here that the recent progress of deep machine learning opens new perspectives that
the HRI community should embrace. As an initial step in that direction, we propose the creation
of a large open dataset of child-robot social interactions. We detail our proposed methodology for
data acquisition: children interact with a robot puppeted by an expert adult during a range of playful
face-to-face social tasks. By doing so, we seek to capture a rich set of human-like behaviours occurring
in natural social interactions, that are explicitly mapped to the robots embodiment and affordances.

Relation to WP - A paper providing theoretical insights in how current trends in deep neural
networks may assist in generating autonomous robot behaviours, specifically with a focus on child-
robot interactions. This approach is at present not implemented in DREAM, but forms part of the
ongoing research in developing deliberative cognitive controllers as per Task T6.3.

7.3 Kennedy, J. et al. (2017), Technical Report: WP6 Full Port Descriptions

Abstract - The purpose of this technical report is to provide a guide for all technical partners to
the port-level implementation of WP6. Port names and types are described for all WP6 components,
with additional detail for those ports which are exposed to components outside of WP6 (primitives).
This is useful for both developers of WP6 and other work packages to see the information flow and
decomposition of WP6.

Relation to WP - This work directly contributes to Task T6.3.
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7.4 Senft, E. et al. (2016), SPARC: an efficient way to combine reinforcement learning
and supervised autonomy.

Bibliography - E. Senft, S. Lemaignan, P. E. Baxter, and T. Belpaeme, Sparc: an efficient way
to combine reinforcement learning and supervised autonomy, at workshop on Future of Interactive
Learning Machine at NIPS 2016

Abstract - Shortcomings of reinforcement learning for robot control include the sparsity of the
environmental reward function, the high number of trials required before reaching an efficient action
policy and the reliance on exploration to gather information about the environment, potentially resulting
in undesired actions. These limits can be overcome by adding a human in the loop to provide additional
information during the learning phase. In this paper, we propose a novel way to combine human
inputs and reinforcement by following the Supervised Progressively Autonomous Robot Competencies
(SPARC) approach. We compare this method to the principles of Interactive Reinforcement Learning
as proposed by Thomaz and Breazeal. Results from a study involving 40 participants show that using
SPARC increases the performance of the learning, reduces the time and number of inputs required for
teaching and faces fewer errors during the learning process. These results support the use of SPARC as
an efficient method to teach a robot to interact with humans.

Relation to WP - Research on the combination of SPARC and Reinforcement Learning - initial
results of study.

7.5 Senft, E. et al. (2016), Supervised Autonomy for Online Learning in Human-Robot
Interaction

Submitted - Special issue on User Profiling and Behavior Adaptation for Human-Robot Interaction
(Letters in Pattern Recognition)

Abstract - When a robot is learning it needs to explore its environment and how its environment
responds on its actions. When the environment is large and there are a large number of possible actions
the robot can take, this exploration phase can take prohibitively long. However, exploration can often
be optimised by letting a human expert guide the robot during its learning. Interactive machine learning,
in which a human user interactively guides the robot as it learns, has been shown to be an effective
way to teach a robot. It requires an intuitive control mechanism to allow the human expert to provide
feedback on the robot’s progress. This paper presents a novel method which combines Reinforcement
Learning and Supervised Progressively Autonomous Robot Competencies (SPARC). By allowing the
user to fully control the robot and by treating rewards as implicit, SPARC aims to learn an action policy
while maintaining human supervisory oversight of the robot’s behaviour. This method is evaluated and
compared to Interactive Reinforcement Learning in a robot teaching task. Qualitative and quantitative
results indicate that SPARC allows for safer and faster learning by the robot, whilst not placing a high
workload on the human teacher.

Relation to WP - Research on the combination of SPARC and Reinforcement Learning - full results
of study.
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7.6 Senft, E. et al. (2017), Leveraging Human Inputs in Interactive Machine Learning
for Human Robot Interaction

Bibliography - E. Senft, S. Lemaignan, P. E. Baxter, and T. Belpaeme, Leveraging Human Inputs in
Interactive Machine Learning for Human Robot Interaction, HRI‘17 Extended Abstracts.

Abstract - A key challenge of HRI is allowing robots to be adaptable, especially as robots are
expected to penetrate society at large and to interact in unexpected environments with non-technical
users. One way of providing this adaptability is to use Interactive Machine Learning, i.e. having a
human supervisor included in the learning process who can steer the action selection and the learning
in the desired direction. We ran a study exploring how people use numeric rewards to evaluate a robot’s
behaviour and guide its learning. From the results we derive a number of challenges when designing
learning robots: what kind of input should the human provide? How should the robot communicate its
state or its intention? And how can the teaching process by made easier for human supervisors?

Relation to WP - Research on the combination of SPARC and Reinforcement Learning - Additional
results of the study, and challenges.

7.7 Esteban, Pablo G., et al. How to build a supervised autonomous system for robot-
enhanced therapy for children with autism spectrum disorder.

Bibliography - Esteban, Pablo G., et al. ”How to build a supervised autonomous system for robot-
enhanced therapy for children with autism spectrum disorder.” Paladyn, Journal of Behavioral Robotics
8.1 (2017): 18-38.

Abstract - Robot-Assisted Therapy (RAT) has successfully been used to improve social skills in
children with autism spectrum disorders (ASD) through remote control of the robot in so-called Wizard
of Oz (WoZ) paradigms. However,there is a need to increase the autonomy of the robot both to lighten
the burden on human therapists (who have to remain in control and, importantly, supervise the robot)
and to provide a consistent therapeutic experience. This paper seeks to provide insight into increasing
the autonomy level of social robots in therapy to move beyond WoZ. With the final aim of improved
human-human social interaction for the children, this multidisciplinary research seeks to facilitate
the use of social robots as tools in clinical situations by addressing the challenge of increasing robot
autonomy. We introduce the clinical framework in which the developments are tested, alongside initial
data obtained from patients in a first phase of the project using a WoZ set-up mimicking the targeted
supervised-autonomy behaviour. We further describe the implemented system architecture capable of
providing the robot with supervised autonomy.

Relation to WP - Research on homeostatic behavior controller. This approach forms part of the
ongoing research in developing deliberative cognitive controllers as per Task T6.3.
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8 Period 4 Annexes

8.1 Senft, E. et al. (2017), Toward Supervised Reinforcement Learning with Partial
States for Social HRI

Bibliography - E. Senft, S. Lemaignan, P. E. Baxter, and T. Belpaeme, Toward Supervised Rein-
forcement Learning with Partial States for Social HRI at 4th AAAI FSS on Artificial Intelligence for
Social Human-Robot Interaction (AI-HRI), USA, Arlington, November 2017.

Abstract - Social interacting is a complex task for which machine learning holds particular promise.
However, as no sufficiently accurate simulator of human interactions exists today, the learning of
social interaction strategies has to happen online in the real world. Actions executed by the robot
impact on humans, and as such have to be carefully selected, making it impossible to rely on random
exploration. Additionally, no clear reward function exists for social interactions. This implies that
traditional approaches used for Reinforcement Learning cannot be directly applied for learning how
to interact with the social world. As such we argue that robots will profit from human expertise and
guidance to learn social interactions. However, as the quantity of input a human can provide is limited,
new methods have to be designed to use human input more efficiently. In this paper we describe a setup
in which we combine a framework called Supervised Progressively Autonomous Robot Competencies
(SPARC), which allows safer online learning with Reinforcement Learning, with the use of partial
states rather than full states to accelerate generalisation and obtain a usable action policy more quickly.

Relation to WP - New algorithm to learn quickly a complex action policy for teaching robots to
interact with humans. Good combination with SPARC.

8.2 Senft, E. et al. (2018), Robots in the classroom: Learning to be a Good Tutor

Bibliography - E. Senft, S. Lemaignan, M. Bartlett, P. E. Baxter, and T. Belpaeme, Robots in the
classroom: Learning to be a Good Tutor at Robots for Learning R4L : Inclusive Learning Workshop at
HRI 2018, USA, Chicago, March 2018.

Abstract - To broaden the adoption and be more inclusive, robotic tutors need to tailor their be-
haviours to their audience. Traditional approaches, such as Bayesian Knowledge Tracing, try to adapt
the content of lessons or the difficulty of tasks to the current estimated knowledge of the student.
However, these variations only happen in a limited domain, predefined in advance, and are not able
to tackle unexpected variation in a student’s behaviours. We argue that robot adaptation needs to go
beyond variations in preprogrammed behaviours and that robots should in effect learn online how to
become better tutors. A study is currently being carried out to evaluate how human supervision can
teach a robot to support child learning during an educational game using one implementation of this
approach.

Relation to WP - Proposition of a new study to explore how SPARC and the ideas developed in
DREAM could be applied to other fields of HRI.
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8.3 Cao, Hoang-Long et al. (2018), An End-User Interface to Generate Homeostatic
Behavior for NAO Robot in Robot-Assisted Social Therapies

Bibliography - Cao, H. L., De Beir, A., Esteban, P. G., Simut, R., Van de Perre, G., Lefeber, D.,
and Vanderborght, B., An End-User Interface to Generate Homeostatic Behavior for NAO Robot in
Robot-Assisted Social Therapies. In: Rojas I., Joya G., Catala A. (eds) Advances in Computational
Intelligence. IWANN 2017. Lecture Notes in Computer Science, vol 10306. Springer, Cham.

Abstract - Homeostatic drive theory is a popular approach for decision making of robot behavior in
social robotic research. It is potentially to be used in social therapies. To increase the involvement of
end-users in the robot’s control, we present an end-user interface allowing the therapists to generate
homeostatic behavior for NAO robot in social skills training for children. We demonstrate the system by
two interactions in which the robot homeostatic behavior is adapted to children’s behavior. The result
shows that the system provides a practical solution for therapists to implement interaction scenarios to
robot behavior.

Relation to WP - Research on homeostatic behavior controller. This approach forms part of the
ongoing research in developing deliberative cognitive controllers as per Task T6.3.

8.4 Cao, Hoang-Long et al. (2018), A Collaborative Homeostatic-Based Behavior Con-
troller for Social Robots in HumanRobot Interaction Experiments

Bibliography - Cao, H. L., Esteban, P. G., De Beir, A., Simut, R., Van de Perre, G., Lefeber, D.,
and Vanderborght, B., A Collaborative Homeostatic-Based Behavior Controller for Social Robots in
HumanRobot Interaction Experiments in Int J of Soc Robotics (2017) 9: 675.

Abstract - Robots have been gradually leaving laboratory and factory environments and moving into
human populated environments. Various social robots have been developed with the ability to exhibit
social behaviors and collaborate with non-expert users in different situations. In order to increase the
degree of collaboration between humans and the robots in humanrobot joint action systems, these
robots need to achieve higher levels of interaction with humans. However, many social robots are
operated under teleoperation modes or pre-programmed scenarios. Based on homeostatic drive theory,
this paper presents the development of a novel collaborative behavior controller for social robots to
jointly perform tasks with users in humanrobot interaction (HRI) experiments. Manual work during
the experiments is reduced, and the experimenters can focus more on the interaction. We propose a
hybrid concept for the behavior decisionmaking process, which combines the hierarchical approach and
parallel-rooted, ordered, slip-stack hierarchical architecture. Emotions are associated with behaviors by
using the two-dimensional space model of valence and arousal. We validate the usage of the behavior
controller by a joint attention HRI scenario in which the NAO robot and a therapist jointly interact with
children.

Relation to WP - Research on homeostatic behavior controller. This approach forms part of the
ongoing research in developing deliberative cognitive controllers as per Task T6.3.
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8.5 Cao, Hoang-Long et al. (2018), A personalized and platform-independent behav-
ior control system for social robots in therapy: development and applications

Bibliography - Cao, H. L., Van de Perre, G., Kennedy, J., Senft, E., Esteban, P. G., De Beir, A.,
Simut, R., Belpaeme, T., Lefeber, D., and Vanderborght, B. A personalized and platform-independent
behavior control system for social robots in therapy: development and applications. To be published in
IEEE Transactions on Cognitive and Developmental Systems.

Abstract - Social robots have been proven beneficial in different types of health care interventions.
An ongoing trend is to develop (semi-)autonomous socially assistive robotic systems in health care
context to improve the level of autonomy and reduce human workload. This paper presents a behavior
control system for social robots in therapies with a focus on personalization and platform-independence.
This system architecture provides the robot an ability to behave as a personable character, which
behaviors are adapted to user profiles and responses during the human-robot interaction. Robot
behaviors are designed at abstract levels and can be transferred to different social robot platforms. We
adopt the component-based software engineering approach to implement our proposed architecture
to allow for the replaceability and reusability of the developed components. We introduce three
different experimental scenarios to validate the usability of our system. Results show that the system is
potentially applicable to different therapies and social robots. With the component-based approach, the
system can serve as a basic framework for researchers to customize and expand the system for their
targeted health care applications.

Relation to WP - This work directly contributes to Task T6.3, and the general organisation of the
other systems within WP6.
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9 Period 5 Annexes

9.1 Senft, E. et al. (2018), From Evaluating to Teaching: Rewards and Challenges of
Human Control for Learning Robots

Bibliography - E. Senft, S. Lemaignan, P. Baxter and T. Belpaeme. From Evaluating to Teaching:
Rewards and Challenges of Human Control for Learning Robots. Proceedings of the Human/Robot in
the loop Machine Learning Workshop at IROS (HRML), Spain, Madrid, October 2018.

Abstract - Keeping a human in a robot learning cycle can provide many advantages to improve the
learning process. However, most of these improvements are only available when the human teacher
is in complete control of the robot’s behaviour, and not just providing feedback. This human control
can make the learning process safer, allowing the robot to learn in high-stakes interaction scenarios
especially social ones. Furthermore, it allows faster learning as the human guides the robot to the
relevant parts of the state space and can provide additional information to the learner. This information
can also enable the learning algorithms to learn for wider world representations, thus increasing the
generalisability of a deployed system. Additionally, learning from end users improves the precision of
the final policy as it can be specifically tailored to many situations. Finally, this progressive teaching
might create trust between the learner and the teacher, easing the deployment of the autonomous robot.
However, with such control comes a range of challenges. Firstly, the rich communication between
the robot and the teacher needs to be handled by an interface, which may require complex features.
Secondly, the teacher needs to be embedded within the robot action selection cycle, imposing time
constraints, which increases the cognitive load on the teacher. Finally, given a cycle of interaction
between the robot and the teacher, any mistakes made by the teacher can be propagated to the robot’s
policy. Nevertheless, we are are able to show that empowering the teacher with ways to control a
robot’s behaviour has the potential to drastically improve both the learning process (allowing robots to
learn in a wider range of environments) and the experience of the teacher.

Relation to WP - This work directly contributes to Task T6.3, and the general organisation of the
other systems within WP6.

9.2 Cao, Hoang-Long and Esteban, Pablo G., et al. Robot-Enhanced Therapy Devel-
opment and Validation of a Supervised Autonomous Robotic System for Autism
Spectrum Disorders Therapy.

Bibliography - H.L. Cao and Esteban, Pablo G., et al. ”Robot-Enhanced Therapy Development and
Validation of a Supervised Autonomous Robotic System for Autism Spectrum Disorders Therapy.”
IEEE Robotics and Automation magazine (2019): Accepted for publication.

Abstract - Robot-Assisted Therapy (RAT) has shown potential advantages to improve social skills
for children with Autism Spectrum Disorders (ASD). This paper overviews the technology development
and clinical results of the EC-FP7 funded DREAM project that aims to develop the next level of RAT in
both clinical and technological perspectives which we term Robot-Enhanced Therapy (RET). Within
the project, a supervised autonomous robotic system is collaboratively developed by an interdisciplinary
consortium, including psychotherapists, cognitive scientists, roboticists, computer scientists and
ethicists, allowing the robot control to go beyond the classical remote control methods (Wizard of Oz
WoZ) while ensuring safe and ethical robot behavior. Rigorous clinical studies are conducted to validate
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the efficacy of RET. Current results indicate that RET can obtain equivalent performance compared
to human standard therapy for children with ASD. We also discuss the next steps of developing RET
robotic systems.

Relation to WP - Research on homeostatic behavior controller. This approach forms part of the
ongoing research in developing deliberative cognitive controllers as per Task T6.3.

9.3 Cao, Hoang-Long et al. (2019), Hmm, Did You Hear What I Just Said?: Develop-
ment of a Re-engagement System forSocially Interactive Robots

Bibliography - Cao, H. L., Torrico, P.C., Esteban, P.G., De Beir, A., Bagheri, E., Lefeber, D. and
Vanderborght, B. Hmm, Did You Hear What I Just Said?: Development of a Re-engagement System
forSocially Interactive Robots. Submitted to IEEE Transactions on Cognitive and Developmental
Systems.

Abstract - Although socially interactive robots are engaging, people can easily drop engagement
while interacting with robots. This paper presents a re-engagement system which applies different
strategies through (non-)verbal behaviors to regain user’s attention. We conducted an experiment to
demonstrate re-engagement ability of the system as well as to investigate people’s perception and
performance when interacting with a robot with re-engagement ability. The robot control software and
experiment data are accessible to avoid replication problems in human-robot interaction research. Our
experiment results show that the system is able to improve user’s engagement and performance in an
information-giving task. People participated in the experimental so rated the robot with re-engagement
ability higher on several dimensions i.e. animacy, likability, perceived intelligence.

Relation to WP - This work directly contributes to Task T6.3, and the general organisation of the
other systems within WP6.

9.4 Bagheri, Elahe et al. (2019), Robots that can increase your emotional energy: an
autonomous cognitive empathy model responsive to users’ facial expressions

Bibliography - Bagheri, E., Esteban, P.G., Cao, H. L., De Beir, A., Lefeber, D., and Vanderborght, B.
Robots that can increase your emotional energy: an autonomous cognitive empathy model responsive
to users’ facial expressions. Submitted to ACM Transactions on Interactive Intelligent Systems.

Abstract - Successful social robot services depend on how robots can interact with users. The
effective service is obtained through smooth, engaged and humanoid interactions in which robots react
properly to a user’s affective state. This paper proposes a novel empathy model for humanoid robots
in order to achieve longer and more engaged human-robot interactions (HRI) by considering human
emotions and replying to them appropriately. The proposed model continuously detects the affective
states of a user and generates desired,either parallel or reactive, empathic behavior that is already
adapted also to the user’s personality. Affective states are detected using stacked autoencoder network
that was trained and tested on RAVDESS dataset. The overall proposed empathic model is verified
throughout a scenario where different emotions are triggered in participants and then robot applied
empathy. The results provide support evidence about the effectiveness of the proposed model in terms
of participants’ perceived related social and friendly functionalities.
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Relation to WP - This work directly contributes to Task T6.3, and the general organisation of the
other systems within WP6.
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When is it better to give up?

Towards Autonomous Action Selection for Robot Assisted ASD Therapy

Emmanuel Senft, Paul Baxter, James Kennedy, Tony Belpaeme
Centre for Robotics and Neural Systems, Cognition Institute

Plymouth University, U.K.
{emmanuel.senft, paul.baxter, james.kennedy, tony.belpaeme}@plymouth.ac.uk

ABSTRACT
Robot Assisted Therapy (RAT) for children with ASD has
found promising applications. In this paper, we outline an
autonomous action selection mechanism to extend current
RAT approaches. This will include the ability to revert
control of the therapeutic intervention to the supervising
therapist. We suggest that in order to maintain the goals of
therapy, sometimes it is better if the robot gives up.

Categories and Subject Descriptors: H.1.2 [Models and
Principles]: User/Machine System

Keywords: Action selection, ASD, Cognitive Robotics,
RAT, Social Robotics.

1. INTRODUCTION
Recent studies estimate that around 1.1% of the population

in the UK and also in other European countries have Autism
Spectrum Disorders (ASD). These people typically lack social
skills normally expected in human interactions. Consequently,
therapies have been designed to help children with ASD to
improve their social abilities; these therapies can be enhanced
by using robots [5].

However, due to the complexity of social interactions in-
volving children, the majority of existing studies use the
Wizard of Oz (WoZ) technique, where the robot is not au-
tonomous but controlled by a human. Despite the clear
advantages of this method, there are a number of reasons for
researchers to move away from it, such as reducing the per-
sonnel required to use the robots, or improve the consistency
of therapy [3, 6].

The present work is conducted within the DREAM project:
a European project which aims to develop new Robot-Enhanced
Therapy. We seek to develop the therapy robot’s control
system to enable supervised autonomous operation. A clini-
cian will set the therapeutic goal for the session, from which
the robot should be able to decide by itself which actions to
execute, under explicit supervision. Rather than maintaining
autonomy, we argue that allowing the robot to revert control

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
HRI’15 Extended Abstracts, March 2–5, 2015, Portland, OR, USA.
ACM 978-1-4503-3318-4/15/03.
http://dx.doi.org/10.1145/2701973.2702715.

to the therapist when appropriate would improve both the
interaction and the therapeutic outcome.

Figure 1: The Aldebaran Nao was selected as the common
robot platform, to facilitate consistency and reproducibility.

2. BACKGROUND
Different approaches of Robot Assisted Therapy (RAT)

have been explored by researchers in the last two decades.
In previous studies robot control was typically achieved in
one of two ways: either fully tele-operated using the WoZ
method, e.g. [4, 7] or fully autonomous, e.g. [1, 2]. For
WoZ control, a hidden, manual manipulation of the robot
allows the therapist to obtain exactly the desired behaviour
and to adapt to unpredicted events. On the other hand, an
autonomous robot requires lower load on a human operator
and allows greater repeatability of behaviour, but requires to
design a complex controller. As such, only reactive control
schemes are used in prior work.

Several attempts have already been made to combine the
flexibility offered by the WoZ method and the autonomy and
the consistency provided by autonomous operation. How-
ever, working with children with ASD presents additional
challenges: the infrastructure required to perform the exper-
iments is more extensive, it is hard to gather a population
large enough to obtain statistically valid results, therapies
take place over long periods of time and, as ASD is a spec-
trum, the children’s behaviour can be more difficult to predict
than neurotypical children.

To be able to use a robot as a therapeutic tool, we use a set
of interaction scripts that determine the interaction between
the child and the robot. These scripts are defined and selected
by a therapist according to the goals of the current session
and describe a clear, serial interaction where both the robot’s
and the expected child’s actions are specified.

However, as we are working with children with ASD, it is
unlikely that the script will be completely adhered to. The
robot needs to be able to react to unpredicted actions to either
return to the script or find alternate means of continuing



the interaction. An autonomous action selection mechanism
must therefore be able to cope with unplanned events whilst
maintaining the therapeutic goals for the current session.
A general description of the context in which the action
selection mechanism should operate is presented in Figure 2.

Child
Interpretation

Child-centred
sensors

Environment
sensors

Environment
Interpretation

Prior Interaction
Data

Therapeutic
Goals

Overt robot
Behaviour

G
U
I

Interaction
Report

Autonomous
Action Selection

Mechanism

Inputs Behaviour selection Output 

Interaction with 
the therapist
Visible by the child
Proposed Action 
Selection Components 
Data Processing

Figure 2: Context for the action selection mechanism.

Despite this, in some cases, the best action to select may
be to stop the interaction and request help from the therapist.
Contrary to the current approach, where the clinician must
detect a problem and stop the interaction themselves, we
aim to allow the robot to autonomously decide to refer to a
human when this is appropriate.

3. APPROACH AND METHODOLOGY
The requirement for help for the robot may arise for a

number of reasons. Firstly, there could be physical danger
for the robot or the child. Some movements required by
the script could harm the child if he is too close, requiring
intervention if automated attempts to prevent collision fail.

Secondly, children could also react strongly to some specific
actions, and force the therapist to stop the interaction. The
robot could identify these actions and require help if one of
them is requested for execution, thereby adjusting its level
of autonomy. As the robot will be use in therapies, every
action has to be carefully therapy-oriented and some actions
could be defined that require approval before each execution.

Finally, the interaction could also fail (e.g. child no longer
engages with the robot), where the robot does not have the
competencies to pursue the interaction. In this case, therapist
intervention would be required. If the therapist and the robot
behave consistently in this context, the interaction may be
more effective in terms of therapy.

3.1 Action Selection Mechanism
Based on previous studies about action selection in robotics,

we have identified two broad approaches which could enable
control to revert to the therapist. The first one is using a
rule-based mechanism: as soon as a specific state is reached
the therapist is consulted. An example is using the child’s
engagement in the interaction as a homeostatic variable: as
soon as the implication goes outside a certain region, the
interaction is stopped.

Another possibility is to use a predictive mechanism. Based
on its previous interactions with this specific child or also
with other children, the robot could have a model of what
reaction is expected from its actions, and use it to predict the
consequences of stopping the interaction versus continuing
with its behaviour.

3.2 Evaluation methodology
To test our approach, we will use our algorithm in real

session both with neurotypical children and ones with ASD
in three scenarios: turn taking, imitation, and joint attention.
If the robot detects a case where it has to revert the control

to the therapist, it will broadcast a message describing what
action should have been executed and why it stopped. The
therapist will have the opportunity to execute the action,
select another one, intervene in the interaction, or stop the
session. We will use the therapist’s action after control
reverting and the number of times a therapist has to interrupt
the interaction without a robot’s prompt to evaluate the
efficiency of the action selection mechanism.

4. DISCUSSION
Even when triggered by the robot, an unplanned human

intervention in the interaction may have consequences on the
child, the robot, and the therapist. For example, allowing
autonomous failure detection, the robot can learn about it,
and find itself a way to avoid the same state in the future.

Concerning the child, even if the session stops before an
important problem, the emotional impact of interrupting
the current interaction need to be taken into account. As
children are sensitive, it is important to think carefully about
the way to communicate the robot’s failure to the child.
Should the information about the interruption come from
the robot? Should the therapist explain to the child what
happened to the robot? We have no general solution yet,
and the solutions may depend on individual characteristics.
These questions have to be addressed based on data from
empirical studies and collaboration with therapists.

5. CONCLUSIONS
In this paper we propose an approach to RAT for children

with ASD: allowing a robot to voluntarily interrupt the
interaction with a child and request help from a therapist.
We outlined our motivations for this behaviour and presented
possible consequences and questions to be resolved. The
proposal is that autonomous action selection supports RAT
because it reduces the workload on therapists, and improves
its consistency.

6. ACKNOWLEDGMENTS
This work is supported by the EU FP7 DREAM project

(grant 611391).

7. REFERENCES
[1] K. Dautenhahn. Robots as social actors: Aurora and the case of

autism. Proc. CT99, (3), 1999.

[2] D. Feil-Seifer and M. Mataric. B3IA: A control architecture for
autonomous robot-assisted behavior intervention for children
with Autism Spectrum Disorders. RO-MAN 2008., 2008.

[3] L. Riek. Wizard of Oz Studies in HRI: A Systematic Review and
New Reporting Guidelines. Journal of Human-Robot
Interaction, 1(1):119–136, Aug. 2012.

[4] B. Robins, K. Dautenhahn, R. T. Boekhorst, and A. Billard.
Robotic assistants in therapy and education of children with
autism: can a small humanoid robot help encourage social
interaction skills? Universal Access in the Information Society,
4(2):105–120, July 2005.

[5] B. Robins, K. Dautenhahn, and P. Dickerson. From Isolation to
Communication: A Case Study Evaluation of Robot Assisted
Play for Children with Autism with a Minimally Expressive
Humanoid Robot. Conferences on Advances in
Computer-Human Interactions, pages 205–211, Feb. 2009.

[6] S. Thill, C. A. Pop, T. Belpaeme, T. Ziemke, and
B. Vanderborght. Robot-assisted therapy for autism spectrum
disorders with (partially) autonomous control: Challenges and
outlook. Paladyn, 3(4):209–217, Apr. 2013.

[7] B. Vanderborght, R. Simut, and J. Saldien. Using the social
robot probo as a social story telling agent for children with ASD.
Interaction Studies, 110(Tager 2001), 2012.



Development of Robot-enhanced Therapy for
Children with Autism Spectrum Disorders

Project No. 611391

DREAM
Development of Robot-enhanced Therapy for

Children with Autism Spectrum Disorders

TECHNICAL REPORT
Organisation of Cognitive Control and Robot Behaviour

Date: 02/02/2015

Technical report lead partner: Plymouth University

Primary Author: P. Baxter Revision: 2.2

Project co-funded by the European Commission within the Seventh Framework Programme
Dissemination Level

PU Public
PP Restricted to other programme participants (including the Commission Service) PP
RE Restricted to a group specified by the consortium (including the Commission Service)
CO Confidential, only for members of the consortium (including the Commission Service)



Organisation of Cognitive Control
and Robot Behaviour

Contents

Summary 3

Principal Contributors 3

Revision History 3

1 Aims and Constraints 4

2 Overall Organisation 4

3 Reactive/Attention Subsystem 6

4 Deliberative Subsystem 6

5 Expression and Actuation Subsystem 8

6 Self-Monitoring Subsystem 9

7 Action Primitives and Motor Execution 9

8 Other aspects of the Cognitive Control System 10
8.1 User Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Date: 02/02/2015
Version: No 2.2

Page 2



Organisation of Cognitive Control
and Robot Behaviour

Summary

The purpose of this technical report is to summarise the motivations and constraints underlying the
cognitive control structures, and to outline an organisation of these sub-systems. This is a proposal
only; this document is intended to be a working one, to be updated as required during development.
This version of the report is based primarily on the discussions that took place in Brussels (23/01/15).

Principal Contributors

The main authors of this document are as follows (in alphabetical order).

Paul Baxter, Plymouth University
Tony Belpaeme, Plymouth University
Hoang-Long Cao, VUB
Albert De Beir, VUB
Pablo Gomez, VUB
Emmanuel Senft, Plymouth University
Greet Van de Perre, VUB
Bram Vanderborght, VUB

Revision History

Version 1.0 (P.B. 21-01-2015)
Initial outline of ideas for the DREAM supervised autonomous robot control.

Version 2.0 (P.B. 26-01-2015)
Updated after discussions during Brussels meeting 23rd Jan 2015.

Version 2.1 (P.B. 02-02-2015)
Clarifications and updates following further discussion.

Version 2.2 (P.G. 27-02-2015)
Some modifications regarding priority system and Expression and Actuation subsystem functionality.
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1 Aims and Constraints

An attempt is made in this section to formulate what the ideal (semi) autonomous system should
conform to in terms of both clinical outcomes (i.e. the requests from the psychologists to improve
the outcomes of individual children through robot-assisted therapy) and potential research (where this
does not conflict with the clinical objectives).

The primary goal of the work in WP6 is to provide robot behaviour to facilitate the Robot-Assisted
Therapy, see [1]. The main visible outcome of this should be the ability of the robot to execute the
evaluation and therapeutic scripts as defined by the therapists. Whilst this must be achieved to fulfil
the aims of the project, there are a number of areas in which there would be a role for behavioural
adaptation, learning, and autonomous decision making. These should not however conflict in any
way with the therapeutic goals for any given interaction session - indeed, it is necessary to vary the
degree of shared control between the autonomous behaviour and the wizard supervisory control if this
is more appropriate for a given child and/or circumstance.

Primary among these is the high probability that the interaction (due to the behaviour of the child
for example) will deviate from the script. This must be handled in a manner consistent with the
therapy, to not upset the child, and possibly (depending on the context) trying to re-engage the child
with the script. A range of strategies will be required to deal with these situations, depending on the
individual child (his/her characteristics) and the actual context for the departure from the script. This
behaviour is likely to require flexible action selection, and will therefore require substantial research
effort.

A second reason is that the robot is to demonstrate social behaviour in a supervised autonomous
manner (with the requirement that the supervisor may over-rule this autonomous social behaviour if
required). Social behaviour requires behaviour that is adaptive to the interaction partner in a range
of interaction modalities (e.g. movement and speech). The autonomous behaviour of the robot must
therefore be responsive to this, in a manner that is not, and indeed can not, be predetermined in the
script.

Thirdly, given the range of intervention scripts that have been defined, there is also a possible need
to modify the relative difficulty of the task (and/or interaction) given the specific characteristics and
performance of the interacting child. This would, for example, involve varying the number and type
of social behavioural cues used, the complexity of the required motor behaviours to complete the task,
and/or the number of steps in the task.

The interfaces of the cognitive controller (WP6) with the rest of the DREAM integrated system
(WP’s 4 and 5) have already been defined. The intention in providing this overview document is to
show how the subsystems of WP6 fit together to determine the behaviour of the robot in therapy inter-
actions: the context in which each subsystem must operate is thereby defined. Initially, the skeleton
of this system will be implemented in the most straightforward manner possible (with simplified code
implementations of full component functionality for example) to check that the system fulfils all the
requirements. This skeleton can then be filled in with more appropriate functionality over the course
of the project.

2 Overall Organisation

A general high level description of the robot control system is shown is figure 1. This basically
describes how the autonomous controller is informed by three external sources: the child behaviour
description, sensory information, current intervention script state, and input from a therapist (e.g.
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emergency stop, not shown in diagram). Combining these sources, the autonomous controller should
trigger as an output the appropriate sequence of action primitives to be performed (as well as some
feedback via the WoZ GUI), which then gets executed on the robot.

Figure 1: High level description of the robot control system. Child behaviour interpretation (WP5)
and sensory information (WP4) provide the context for the autonomous action selection (as well as
feedback from motor command execution), in combination with the particular intervention script

being applied. The intervention script provides context for child behaviour interpretation.

The autonomous controller is composed of a number of sub-systems, as described in the DoW:
Reactive, Attention, Deliberative, Self-Monitor and Expression and Actuation. These sub-systems
interact, and must combine their suggested courses of actions to produce a coherent robot behaviour,
in the context of constraints laid down by the therapist (for example, the script to be followed, types
of behaviour not permissible for this particular child because of individual sensitivities, etc). An
additional challenge is to ensure that the resulting system is independent of specific robot platform. As
a result, we have formulated the following architecture describing how cognitive control informed by
the therapy scripts is to be achieved (figure 2), an outcome of the WP6 meeting in Brussels (23/01/14).
The following sections provide some further outline details of the main subsystems.

Figure 2: Description of the cognitive controller subsystems. The script manager is separate from,
but tightly interacts with, the deliberative subsystem to enable the robot control system to generate
appropriate social/interaction behaviour even in the absence of an explicit interaction script. UMs:

User Models.
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3 Reactive/Attention Subsystem

In the DoW, these are separated into two distinct subsystems. The reactive subsystem provides the
general life-like behaviour of the robot (small motions, eye blinking, balancing, recovering from falls,
‘pain’ reactions, etc) in an as appropriate manner as possible (possibly requiring pilot studies to ver-
ify this). However, it should be possible to turn off these behaviours should the therapist deem it
necessary for a particular child. This functionality is not envisaged to involve learning or adapta-
tion. The attention subsystem is a “combination of perceptual attention ... and attention emulation”.
Making eventual use of saliency maps and habituation filters, this functionality will be guided by the
deliberative subsystem.

We instead propose that these two subsystems be combined into a single component, due to the
significantly overlapping technical systems required to fulfil the functions required. Both subsystems
require access to features of the environment and interacting person(s) to respond appropriately (e.g.
looking at a face or diverting attention to a loud noise somewhere in the environment). Managing this
in a single component therefore seems a sensible choice so that functionality is not replicated. As
planned in the DoW, it will be possible for the supervising therapist to switch off these functionalities
if required for interaction with a particular child.

4 Deliberative Subsystem

A central aspect of the cognitive controller is the ability to follow intervention scripts as defined by
the clinicians for both diagnosis and therapy. These scripts describe the high-level desired behaviour
of the robot1, and the expected reactions and behaviours of the child, in a defined order.

The decision was made to separate the script manager from the deliberative subsystem itself (fig
3). This decision was taken for a number of reasons. Firstly, it enables the cognitive control of the
robot to be independent of the precise application domain - with the intention that the developments
made would be more generally applicable within the field of social robotics, although the script-based
behaviours remain a central part of the behaviour generation of the system. Secondly, it ensures
that it would be possible to change the scripts in the future to alter their relative difficulty, by for
example including further steps in the intervention, changing the type of intervention, or creating dif-
ferent activities, due to a modular design2. As a consequence of this, the deliberative subsystem is
now primarily focussed on action selection considerations, making use of a range of algorithms and
methodologies as will be explored in the coming years. Thirdly, this division of the script manager
from the deliberative subsystem enables the system to generate coherent behaviour even if there is not
a script active at a given moment. This could be useful for periods between the explicit intervention
sessions for example, where the robot would then still be able to respond appropriately to environ-
mental stimuli, if so desired by the therapists. These are consistent with the aims expressed within the
WP6 DoW.

The script manager itself separates the logic necessary to manage progression through the script
(by taking into account the available sensory feedback after actions for example) from the script itself.
This makes it straightforward to add new scripts or modify existing scripts as required. This logic
management could in the first instance be achieved using a Finite State Machine (FSM).

1These predefined robot behaviours differ from the the low-level motor control of the robot, as these may be mixed
with other aspects of behaviour not specified explicitly in the high-level intervention script; e.g. the addition of attention to
unexpected events in the environment.

2As noted above, these high-level scripts do not necessarily completely define the behaviour of the robot, and are distinct
from any predefined robot motor control sequences that may be used, such as waving or nodding.

Date: 02/02/2015
Version: No 2.2

Page 6



Organisation of Cognitive Control
and Robot Behaviour

Figure 3: Overview of the script manager subsystem. The scripts are defined independently of the
script manager, which is responsible for stepping through the script as appropriate and

communicating with the other subsystems as required.

One possibility for the scripts is that each step in the script be defined as a 3-tuple of the form:
[existing state, proposed action, consequent state]. In this context, existing state could be defined
by default to be the consequent state of the previous step. The proposed action defines what action
should be taken by the robot, and be one of the actions (or unique identifier thereof) defined in D1.2.
The consequent state defines what robot state should be expected (in terms of sensed state) if the
proposed action were successfully completed. This may be used by the script manager to determine
if and when it is appropriate to move onto the next script step. These 3-tuples may initially be held in
a plain text file to facilitate examination and modification by the clinical staff as required. This can be
changed later to ease the process (for example by providing a drag-and-drop script construction GUI).

The deliberative subsystem is the primary locus of autonomous action selection in the cognitive
controller (fig 2). This subsystem takes as input sensory data, child behaviour information, informa-
tion on what step should be next executed from the therapy script, and higher-level direction from
the wizard/self-monitoring subsystem. It then proposes what action should be taken next by the robot
(this proposal is sent to the expression and actuation subsystem). In a normal script execution context,
the deliberative subsystem is the primary driver of behaviour, which would typically propose the next
script step.

There are however a number of circumstances in which this is not the most appropriate action to
perform. For example, if the child is detected to have very low engagement with the task (as deter-
mined from the WP5 component/s, and/or information from WP4 sensory system saying the child is
looking away for example), then it would be appropriate to attempt to re-engage the child with the
robot/task prior to executing the next stage in the therapy script. In this case, the deliberative sub-
system can choose to depart from the behaviour defined in the script, and instead propose a different
behaviour.
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5 Expression and Actuation Subsystem

The main functionality of this subsystem is to determine which combination of low-level actions the
robot should execute next, and how these actions are to be performed. Suggestions for actions to take
will come from three other subsystems: deliberative, reactive/attention, and self-monitoring, and the
affective state generated by the deliberative subsystem, see left side of figure 4. Along with this, it is
assumed that the supervising therapist, through the GUI, will determine (either beforehand or in real
time) the aspects of robot behaviour that should be executed, from which relative priorities will be
determined for the three subsystems. This covers for example whether external disturbances (a loud
noise in the background, or the appearance of a new face) should be reacted to by the robot (by leaving
the script for a while for example), or ignored (with the script rigidly adhered to). The Expression and
Actuation subsystem will combine these sources of information in an appropriate manner, see Motion
Mixer in figure 4, ensuring that the stability of the robot is maintained. For example, if a greeting wave
is requested by the deliberative subsystem, and the reactive/attention subsystem wants to look at a face
that has been detected, then the expression and actuation subsystem can combine the two by executing
both (if the robot can remain stable by doing so). For a basic first step switches based on priority level
could be used: i.e. if the script requests an action, execute it (and only it), but if there is no script
action requested, then do what the reactive/attention subsystem proposes. However, the intention is to
provide full behaviour mixing capabilities based on derived priorities from the therapists.

All this should be complemented by affective information, if this is available and appropriate to
use. For example, the speed of motor execution could be related to arousal levels, or the choice of
action sequence could be based on valence levels (if appropriate alternative sequences exist). This
functionality will need to be switched on or off as required by the therapist based on child-specific
considerations, and the relation to the therapy script (it may not appropriate to add emotional colouring
to actions during the diagnosis procedure for example).

To approach such challenges, the first task should be to design a platform-independent represen-
tation of expressions. Different robots use the Facial Action Coding System (FACS) by Ekman and
Friesen [2] to abstract away from the physical implementation of the robot face. FACS decomposes
different human facial expressions in the activation of a series of Action Units (UA), which are the
contraction or relaxation of one or more muscles. In a similar way, Body Action Units (BAU) will be
defined together with a Body Action Coding System, where the different gestures are decomposed in
the activation of BAUs. The BACS will point out the Action Units that need to be actuated for the gen-
eration of a desired gesture or body pose. This system avoids pre-programming of robot-dependent
body poses and actions, which is relevant since humans are able to recognize actions and emotions
from point light displays (so without body shape) [3].

The physical actuation of Action Units will depend on the morphology of the robot: a mapping
will be needed between Action Units and physical actuators, this mapping will be specific to a robot
platform and we will explore the possibility of learning this mapping. To translate this to the mor-
phology of the robot, the Action Units need to be mapped to the degrees of freedom, and thus to the
joints of the robot, see right side of figure 4.

A second task will be the categorisation of actions, comprised of temporal series of FACS and
BACS, and the organisation in libraries that are accessible from the behaviour subsystems (Reactive,
Attention and Deliberative). All actions for the different behaviours should be stored and expanded
upon without the need to reprogram other subsystems.
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Figure 4: Overview of the Expression and Actuation subsystem. This subsystem receives inputs from
several sources, categorizes them using the Library module and mixes them up to create a unique

behavior. Such behavior is mapped into the joint configuration of the corresponding robot. This last
process is done collaboratively between the subsystem and the robot.

6 Self-Monitoring Subsystem

The self-monitoring subsystem provides an oversight mechanism (or set of mechanisms) of the robot
behaviour. It is intended to provide a check to prevent technical limits being exceeded (of the robot3),
and to prevent any ethical boundaries being crossed. This subsystem should have some degree of au-
tonomous behaviour, with the intention being that these checks be implemented in a set of predefined
rules, with no role for learning within this subsystem.

During the discussions, it was proposed that the self-monitoring subsystem should also be inte-
grated explicitly with the therapist GUI. In line with the principle of supervised autonomy established
in the project, the therapist (“wizard”) should be able to monitor the behaviour of the robot, and be
able to intervene if necessary, either stopping the behaviour, modifying a behaviour, or setting an al-
ternative behaviour. Having this oversight function go through the self-monitoring subsystem seems
to be a reasonable solution. By specifying the required priorities for each subsystem depending on
the needs of the therapy, and using the “alarm signals”, the supervising therapist can stop the robot or
modify its behaviour as desired.

Regarding both the autonomous oversight functions and the supervised actions, there are a number
of issues that require exploration and further definition over the course of the project. One thing is
how the robot should behave, and what feedback it should give to the child, should something go
wrong. Possible alternatives are described in the DoW.

7 Action Primitives and Motor Execution

The behavioural functions of the action primitives required for completion of the therapy scripts have
been defined. The execution of these is handled in a number of steps, as outlined in the “Robot

3This is mentioned here as it is listed in the DoW as a competence of the self-monitoring subsystem, however, this
functionality is at least partially implemented in the low-level motor control system of the robot: see section 7.
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Low-Level Motor Control” technical report. This provides an interface between the control system
(handled in a Yarp-based system) and the API of the robot hardware (Naoqi in the case of the Nao).
The purpose is both to provide a bridge between the two systems, and to provide information to
behaviour planning and supervisory oversight regarding the progress of motor command execution,
including why a fail occurs if it does. This can be used to inform future action selection for example
(by providing feedback for learning).

In addition to this low-level control system, there is the possibility that hardware abstraction can
be handled automatically: i.e. that motor commands at the joint level can be determined automatically
for different robot embodiments, without having to manually encode each specific action.

8 Other aspects of the Cognitive Control System

8.1 User Models

One functionality that was not explicitly defined in the proposed architecture, WP6, or indeed else-
where in the project, is some source of information on the child. This information could encompass
personal identification and preference information that could be used in conversations (e.g. name,
age, favourite colour, etc), and possibly also ASD diagnosis information (perhaps as emerging from
the diagnosis interaction scripts).

These user models would enable, for example, inform learning mechanisms (within the delibera-
tive subsystem for example) to link behaviours and outcomes with specific characteristics of individ-
uals (indicated in figure 2). This information need only be uniquely identifiable rather than linked to
a specific child - although the extent to which this can be done needs to be assessed in light of ethics
considerations (cf. WP7 ethics manual draft, December 2014). Technically, in the first instance, a
unique impersonal identifier may be used to represent an individual child. Where this information
should reside, how it should be stored, etc, has not been decided. It would probably be useful how-
ever to coordinate this system with WP5, as the child behaviour interpretation methods may find such
information useful too to be able to provide more personalised characterisations of engagement and
performance for example.
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Summary

In this technical report we describe the software organisation of the Sandtray system created for the
turn-taking diagnosis/intervention interactions. This system is based on the organisation defined by the
WP3 software engineering standards, although at the moment does not fit into the rest of the DREAM
system:this was to facilitate ease of setup and launch for the end-user (i.e. minimal installation, and no
compilation required). The WoZ system provides a GUI from which the therapist can control the robot
behaviour in the turn-taking task, and logs of the interaction are automatically stored for retrospective
analysis.

Principal Contributors

The main authors of this document are as follows (in alphabetical order).

Paul Baxter, Plymouth University
Emmanuel Senft, Plymouth University

Revision History

Version 1.0 (P.B. 23-03-2015)
First version
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1 Turn-taking Diagnosis/Intervention

The turn-taking diagnosis and intervention tasks are specified in D1.1. In the context of the Sandtray
device, this is a task in which the child and the robot take turns in moving an image displayed on
the touchscreen to one of two target locations. The robot plays the game with the child, and provides
verbal indications of whose turn it is. Figure 1 shows the constructed Sandtray device. The task may
be varied by changing the images to be sorted (e.g. characters, emotions, etc).

Figure 1: The final setup of the Sandtray with robot shown with the intervention table. The robot
should ideally be centred in front of the screen to facilitate the interaction, and to ensure that the

pointing behaviours are accurate.

In this first version of the task, a therapist provides all of the decisions regarding the behaviour
of the robot: it is a full “Wizard-of-Oz” (WoZ) interaction. This enables experiments to take place
before a full autonomous system has been implemented. Despite this, all of the components of the
WoZ system are implemented using the software engineering standards established in WP3.

However, being designed as a standalone system with the intention of minimising the learning
curve necessary for deployment and use, these components are not yet implemented in the context
of the complete DREAM system architecture. The purpose of this technical report is to describe the
system, its components and its use.

2 Wizard-of-Oz System

2.1 Dependencies

The intention is that this Sandtray WoZ system can be deployed easily and without need of recom-
pilation on the target PC. There is only one dependency that requires installation before use: Yarp
v2.3.63. This is needed in order to start the system. Instructions for installing this can be found on the
project wiki (“Software Installation Guide”).

Additional setup instructions are as follows:

1. Copy folder ”dreamSandtray-release” into C: drive
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2. Add ”C:/dreamSandtray-release/working/bin” to PATH (user) environment variable: this allows
the precompiled executables to be found

3. Change the DREAM ROOT environment variable to point to ”C:/dreamSandtray-release/”: if
the full DREAM system is to be installed afterwards, be sure to change this back!

4. In file ”/working/config/config.ini”, change the IP address to that of the robot

5. In this same file, set the relative position of the robot to the touchscreen: this will be different
depending on whether the robot is standing or crouching when playing the game; point of origin
on robot is the neck joint

6. On sandtray machine, change the IP address to that of the Host PC (in ”settings.ini”)

2.2 Deployment

To launch the system, the following two steps are required:

1. On host PC: in directory ”/run” double click on ”run-sandtray.bat”: this will launch the system:
if successful, the robot will readjust the position of its arms up and a GUI will appear; before the
first launch, it may be useful to disable any firewalls, or else enable firewall access permissions
for the four components that are launched; if launch fails, then close all windows and try again
(if naoInterface.exe persists in failing to launch, then try restarting the robot)

2. After the robot has set its position and the GUI has appeared, then start the sandtray GameEngine:
if successful, then will see confirmation on the terminal; if fails then check that the sandtray is
on the same wireless network as the robot and the hot PC, and that the correct IP addressed have
been set in the config files

3. Full interaction logs are automatically created: see section 2.4 below

2.3 Behaviour Control

Assuming a successful system launch, three terminal windows are spawned, and the control GUI
(figure 2). This minimalistic GUI provides some feedback from the robot (success, or otherwise, of
the desired motor commands - see low-level robot motor control technical report) and the Sandtray
GameEngine (such as child successful or unsuccessful move, and the same for the robot, library
change confirmation, etc).

The GUI provides two types of command. The first is presented in the middle column of buttons.
These provide the verbal feedback that the robot can provide the child, such as a brief introduction,
indication of whose turn it is, and feedback on the outcome of the categorisation. Additionally, a
“rest” button is provided that moves the robot to a neutral position and switches off the motors. This
provides a first level safety feature: if there is any chance of injury to child or damage to robot during
movements, then this button will disable the robot. This is a basic feature at the moment, which will
be extended in due course (see below).

The second type of command allows manipulation of the Sandtray GameEngine. “Good Move”
and “Bad Move” make the robot perform the relevant classification of the image on screen (the image
moves across the screen with the robot hand tracking it, thus providing the illusion of robot control).
The “New lib” button presents a new image library on the touchscreen, and the “Reset lib” button
presents the current image library on the screen again. “Shutdown” closes the GameEngine remotely.
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Figure 2: The Sandtray Turn-taking task control GUI. The windows on the left provide text feedback
from the Sandtray and robot; the column of buttons in the middle provides robot verbal feedback;
and the right-hand column of buttons provides robot behaviour control and GameEngine controls.

The “Stop” button is intended to provide a second level of safety control for the controlling therapist
by enabling the interruption of robot movements that are currently under way. This functionality is
under development, as part of the continued work on the low-level motor control (please refer to the
relevant technical report).

2.4 Automated Interaction Logging

In addition to providing control, the Sandtray WoZ system also provides automated logging of all of
the important events in the interaction that are detected by the Sandtray, or that are initiated by the
therapist. These files are created automatically when the system is run: a filename with a timestamp
is created in the directory where the batch file is located (where the system is launched from) - see
section 2.2 for details.

This log file contains all events initiated through the GUI, events detected by the Sandtray, and
motor command execution feedback. All events are logged with a timestamp (one second resolution),
an identifier, and a description in comma-separated lines of a plain-text file. This facilitates parsing
at a later time for retrospective analysis, replaying the interaction for diagnosis purposes, etc. This
method of interaction logging will be extended as more data becomes available to the system.

3 Component Descriptions

The Sandtray Turn-taking WoZ system is comprised of four main components (in addition to the
two external devices): sandtrayController, sandtrayServer, naoInterface and a GUI. sandtrayServer
provides a communication interface between the yarp-based system and the Sandtray GameEngine.
sandtrayController provides the primary coordinating role between the different components, contain-
ing some functionality that will soon be split between the Deliberative and Expression & Actuation
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sub-systems. The GUI provides the therapist-facing controls (described above). The naoInterface
component

Figure 3: Components in the Sandtray WoZ control system. Communication between components is
handled by yarp: shown are the component port names for the sandtrayController component (not all

port names shown for clarity). Communication with the Sandtray device and Nao robot is handled
over wireless networks outside of yarp.

3.1 gui component

This component is the interface used by the therapist to send request to the system. The current design
is shown in figure 2. The description of the buttons may be found above.

The FLTK library is used to generate the GUI, the code is adapted from David Vernon’s protoGUI,
so the GUIutilities library is needed to generate it. The update is performed with a while(isStopping),
could be improved with a rated thread or something else. The organisation of files is the same as
described in YarpGenerator tech report: the 4 files needed for yarp, a yarpInterface class, a controller
class where the main code is, and the display class containing all the information required for design-
ing and running the GUI. Currently each button in display is linked to a static callback redirecting to
a callback in display.cpp, which calls the appropriate function in controller.cpp, this could probably
be simpler.

This component also uses the childName variable in the main config.ini to generate the string send
to load the introduction behaviour to make it personal to each child. So one introduction behaviour
need to be exported for each different child and should use the following convention: introduction-
childName , e.g. ”introductionGeorges”.
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3.2 sandtrayController component

The sandtrayController component is the main and central component. This is the one managing
the interaction between the other components. It has input and output ports from/to all the other
components. It gets the command from the gui and relay them to the server or the naoInterface and
act in accord with the feedback obtained.

As this is the central component, the logging is done from here. The file structure used is the
classical YarpGenerated one, with an additional logger class (.cpp and .h) to be able to generate
logging files. Currently the logging is disabled but the file is still created, this could be changed.

This file does some string processing, so new methods have been added to handle that. It also
integrate a Link class allowing to Link an action to a previous if a certain state is reached. The linking
process is described in depth below.

This component is also responsible of the bezier calculation and the transformation from pixel
coordinates to robot’s ones. All the variables are defined in sandtrayControllerController.h except the
horizontal and vertical distances between the robot and the screen which are defined in the global
config.ini file in centimetre.

3.3 sandtrayServer component

This component is responsible of the interface between Yarp and the Sandtray, its main functionality
is to transform Yarp message into sockets one and vice versa.

The global structure is the same as the others components. In addition, two class are define in the
controller file: SandtrayControl and SandtrayEvent. The first one is a classical class which handle
the communication along the command socket port with the Sandtray, which is used to transmit in-
formation from the controller to the Sandtray, and receive the answers. The communication is only
triggered by the SandtrayController, and handled by Yarp callbacks, so no while loop is required.

The other one manges the communication along the event socket port and in that case, the discus-
sion is triggered by the Sandtray. In the current implementation, this class wait using a while(isStopping)
to get information from the Sandtray, so yarp::os::Thread is inherited from.

A limit of the current implementation is that the Sandtray needs to be started after the server
component.

3.4 naoInterface component

This component implements the action primitives as defined in the deliverables. The idea is to process
commands to the robot, check if the command is possible, avoid conflicts and provide a way to stack
commands.

Currently the commands allowed are: pointAt, say, execute a behaviour. In addition to the classical
files, an action class has been added, which is used to serialise the different type of actions: movement,
text to speech or behaviour. All the tests performed are implemented here. The other new class
is naoInterfaceModule, this provide the interface with Nao, with all the functions robot specifics.
In principle the code should be easily modified to adapt to another robot, only this class and the
refFeature map used to avoid conflicts should be modified. More information is available in the Low
Level Control tech report.

Comparing to the previous implementation, multiple features have been added, and few changes
have been implemented in the flow, no completion check is performed when an action is received.
Multiple action cannot be successfully check anymore, like tts or behaviour and the movements can
be composed of multiple points, so a previous completion check makes no sense. The ISTARTED
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message has been also overloaded, now it can be followed by a “ sub id” with id a negative number
used to synchronyse the controller and the naoInterface.

The component now integrate a pointAt function which does a simple inverse kinematic to trans-
form x, y, z coordinate in joint space. It selects first an arm depending on how many points are more
on the right side or the left one, then compute the joint angles. This function can take multiple points
with the parameter x, y, z and t, and only a subset of the movement can be executed.

3.5 Detailed description

3.5.1 Action linking and synchronisation between the naoInterface and sandtrayController

In the previous implementation, each action required by a component and executed by the naoInter-
face was identified by a unique id. However this id was provided by the naoInterface and when a
component required an action, it had no way to know the id of this exact action, multiple components
can require action at the same time. We wanted a way to serialise two or more action. To do so, when
a component request an action it needs to know what is this action’s id to be able to command a new
action when this one is finished depending on its result.

To allow this synchronisation, a system of subId was implemented. When a action is requested by
a port, it can be overloaded by adding a new parameter at the end of the parameter list to assign a subId
to an action. The subId is a negative int allowing to know what is the id (in naoInterface) assigned to
a defined action. In naoInterface, this subId is extracted and added to the action and when the action
is started, the subId is added at the end of the ISSTARTED message to allow the other component to
know what is the id of the action with a specific subId. Currently, this subId is displayed and used
only with the ISSTARTED message. In the future it should be important to use it also in case of direct
failure.

In our setup, only the SandtrayController requires the use of synchronised actions. This is done
via the Link class. Defined in sandtrayControllerController.h, this class define an action: id and subId,
a linking condition ( status), a consequence and a pointer to another link if needed. This allow us to
perform a specific action when a defined action is finished, and cascade it if required. Currently, after
the completion of and action, we can request a new tts, movement or behaviour, the type of action
is stored in consequence, the parameters of this action are stored in the two strings param1 and
param2 or move.

To create a Link, we need to know what is the subId the causal action, the one which will trigger
the Link, later, this subId will be associated to a proper id (the same as used by naoInterface). If we
want to chain multiple action, we need first to define all our actions with the proper subId (defined in
the port parameters), and then create the different Links with the subId assigned to their causal action
and giving them the parameters for the consequence action. Then, each consequent Link can be added
to the previous Link in nextLink, and the first Link can be added to the currentLink vector in the
controller class.

A subId variable is stored in the controller, and is decremented once for each Link, and this is used
to assign subId to an action.

Currently, when an action is a success, the nextLink is added to the currentLink vector, and
if it is a faillure, it is destroyed. However there is a memory leak, if we have a chain of links, and the
first one is failed, only the next one is deleted, not all the chain...

Date: 23/03/2015
Version: No 1.0

Page 9



Sandtray Wizard-of-Oz System for
Turn-taking Intervention

3.5.2 Flow when move requested

The flow is as defined in the previous the design. The added part is the following: the sandtray returns
coordinates for the bezier move in pixel, this is relayed to the controller via the server. Then the
controller extracts the bezier points and transform the coordinate in robot space.

A first pointAt is prepared with all the bezier points plus a one at the end of the vector to signify
that only the first movement should be perform. The current subId is added also at the end of the
vector. Then a link is create with this subId and the success status to execute the full movement and
the boolean synchronizedSandtray is set to 1 meaning that the command need to be sent to the
Sandtray also. The subId variable is decremented and added to the movement after a 5, meaning that
we want to perform the full movement with the new subId. A last link is created with this subId and
the behaviour init in parameter, to reset the robot. This last link (behaviour) is added in the nextLink
pointer of the movement Link, which is added in currentLink.

Finally the first movement (initial pointAt) is sent to naoInterface. There the subId is extracted,
and sent with the ISSTARTED message to the controller, which assign this id to the first link. When
the pointing is completed, the first link is triggered: we send to the naoInterface and the Sandtray
the request to move and we add the second link to the currentLinks. Once the full movement is
received by the naoInterface, it send to the controller a new ISSTARTED message with the new id and
subId. Similarly this is handled by the controller to assign the right id to the second link. And finally
when the action is completed, the last link is triggered to reset the robot.

4 Sandtray GameEngine Management

4.1 Sandtray GameEngine

The Sandtray sorting task software is already loaded onto the touchscreen, with some sample image
libraries (see next section for details of these). There is an executable in a folder on the desktop, and
a shortcut on the desktop itself. Double-clicking this starts the programme in full-screen mode. This
automatically loads all available image libraries, and cycles through them in numerical/alphabetical
order.

There is only one keyboard shortcut that is required for operating the sorting game: the ESC key
exits the programme and returns to the desktop. We advise not to do this in front of the child unless
absolutely required - we recommend having the sorting game on the screen when the child enters the
room.

Further to this there are two on-screen buttons that can be used to control the sorting game. The
circular arrow leads to a reset of the current library (i.e. the same images are displayed again). The
other icon (a sun with two + symbols...) indicates a switch to the next library. With further integration
with the rest of the system, switching to specific image libraries will be possible at a later date. These
on-screen buttons can be disabled if required in the config file (see below).

The software has a number of options that can be modified in a configuration file, located in
“settings.ini”. There should not be any need to change the paths in this file. The “robotiP” field
should be set to the IP address of the host PC being used. The “game” options control aspects of the
GUI, as described below (table 1).
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Table 1: Sandtray sorting game options, can be found in settings.ini

Setting Description Default
LadderRungs The number of fields visible for classified images 5
LadderWidth Width of fields (in pixels) 50
ReserveTests (do not modify) deprecated functionality false
TestLibStart (do not modify) deprecated functionality -1
UseButtons Whether to display control buttons on screen true
ShowFeedback Whether to display feedback on classifications true
OneAtATime Display images one at a time on screen true
CentreImages Display images in the centre of screen (random otherwise) true

4.2 Sandtray Image Library Management

The Sandtray sorting game is based on image libraries. Each image library has a unique identifier,
and contains a set of images (in .png format). Each library is in a separate folder in /images/libraries/.
The name of each library folder follows a specific format:

libxx name opt
Where xx is an integer (e.g. 01), name is a string identifier (e.g. carbohydrates), and opt is an

optional extension that provides additional information.
For the purposes of the present experiments (turn-taking), a two category sorting task is assumed

(one, two of four category sorting tasks are possible). Each library is a folder containing a number
of images. There are no explicit limitations on the number of images per library, although resource
issues (all images are pre-loaded at run-time) may mean that splitting up large libraries into parts is
necessary. Two category images must be defined. These can be any image of the same type and size
as standard images, but with the following naming convention:

catx name.png
Where x is either A or B, and name is a string identifier of the category. For example, the following

two filenames may be used to define two categories: catA high.png or catB low.png.
Standard images (in .png format) have to be assigned to one of the two categories (A or B), and

their filenames should follow a similar but slightly different naming convention:
xNN name.png
Where x is the category to which the image belongs (as defined for the category images above), NN

is a unique image integer identifier (e.g. 01), and name is a string identifier that provides some descrip-
tive information. Examples of suitable image file names are A01 chicken.png or C11 lasagne.png.

Please see the example image libraries supplied with the Sandtray for indications of appropriate
image size and resolution (as tested with hundreds of UK primary school children in the approximate
age range of six to nine): please ensure that the images are not too large, as this will cause problems.

The string identifiers (and optional extra information) attached to the names of the libraries and the
images are not used at the moment. However, they will be used to enable the robot to refer to specific
objects, and specific properties of those objects as the autonomous system is developed. It is therefore
worth adding this information to the folder and file names during the creation process.
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Project co-funded by the European Commission within the Seventh Framework Programme
Dissemination Level

PU Public
PP Restricted to other programme participants (including the Commission Service) PP
RE Restricted to a group specified by the consortium (including the Commission Service)
CO Confidential, only for members of the consortium (including the Commission Service)



Manual for the use of Choregraphe
boxes in Wizard of Oz experiments

Contents

Summary 3

Principal Contributors 3

Revision History 3

1 How to use this manual 4

2 How the software is organized 4
2.1 How to load a project file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 How to run a project file and stop it . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Description of the scenarios 5
3.1 Actions at the start of all RET tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Joint Attention Diagnosis ADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Joint Attention Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Imitation Diagnosis with Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Imitation Diagnosis without Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.6 Imitation Intervention without Objects . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 Turn-taking diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8 Turn-taking intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Limitations of the software 9

5 Miscelanea 9

Date: 11/02/2015
Version: No 1.0

Page 2



Manual for the use of Choregraphe
boxes in Wizard of Oz experiments

Summary

The purpose of this manual is to help UBB in the development of the Wizard of Oz experiments within
Work Package 2. Both PLYM and VUB have collaborated to develop the corresponding modules in
Choregraphe. This manual aims at being a reference point to ease the habituation of the therapists to
the software.

Principal Contributors

The main authors of this document are as follows (in alphabetical order).

Pablo Gómez, Vrije Universiteit Brussel

Revision History

Version 1.0 (P.G. 11-02-2015)
First draft
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1 How to use this manual

In order to make the software the more understandable as possible we have divided each of the sce-
narios in Deliverable D1.1 into different project files. So that, in between breaks, the forthcoming
scenario has to be loaded. The procedure to follow to load a project will be explained in Section 2.
Once opened, each project file includes a set of boxes to make the robot perform an action or say
something. Each of these boxes is identified by a self-explaining name. To make easier the manage-
ment of the boxes during the experiment we have not grouped them chronologically but into families
of similar behaviors, i.e. all text boxes are close to each other, actions regarding pointing are together,
and so on. In addition, a representative image identifies each family of behaviors.

At the end of the manual some notes about the limitations of this software are included. We must
not forget that it is following a Wizard of Oz methodology so most of the work to follow the script is
required from the therapists.

2 How the software is organized

As mentioned above each of the scenarios in the deliverable D1.1 is one project file named after the
name included in D1.1.

2.1 How to load a project file

In order to load a project file, once Choregraphe has been opened, click on File, Open project... and
select the one you prefer from the list of projects, and click Open. Then, you will see something like
in Figure 1.

Figure 1: Opening a project file.

By double-clicking on the box that appears, Figure 2 will show up. You need to click on the
Interaction block shown in blue. All the required behaviors for the corresponding scenario will be
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shown.

Figure 2: Accessing the behaviors within a project file. To activate each behavior click twice on the
small Play button on the left of each of them.

All behaviors include a name to briefly identify what they do. They are grouped according to their
functionality. There is no chronological order.

We have included a Restart button to use in case something went wrong to initialize all the vari-
ables and start the intervention over. There is a Stop button which is required by Choregraphe, you
don’t need to pay attention to it.

2.2 How to run a project file and stop it

In order to run a project file you just need to click on the Play button, in green in Figure 2. Once
it is running, you can activate each behavior double-clicking on the small Play button each behavior
includes, in red in Figure 2. When such behavior is activated the button changes its color to green for
a few seconds. If it didn’t happen the behavior was not correctly activated.

In order to stop a project file, is as easy as clicking on the Stop button next to the Play button
within the upper menu.

3 Description of the scenarios

In this Section, the scenarios developed will be briefly described. All scenarios include the required
behaviors in Sections 3.1 and 3.9 in Deliverable D1.1. Those behaviors are described here in Subsec-
tion 3.1.
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3.1 Actions at the start of all RET tasks

At the beginning the robot stays standing up in a relax pose waiting to start. Two motivating motions
are provided to try to engage the child, see AirJuggle and CallSomeone boxes in Figure 3 as well as
a box to make the robot dance, see blue frame in Figure 3. There is also a box called Random which
creates 6 different behaviors with the purpose of engaging the child.

There are several text boxes to start the session with the child and one to suggest to have a break.
Click on each of them to make the robot say something. These boxes are those under the red frame
in Figure 3. There are also text boxes to re-engage the child if something was unexpected, see yellow
frame in Figure 3

3.2 Joint Attention Diagnosis ADOS

Within this project file there are text boxes to be used to make the robot say Look at that <object>
where object could be a plane, a car, a cup or a flower, see purple frame in Figure 3; text boxes to
provide feedback to the child after each interaction; and there are also boxes to direct the gaze of the
robot (left, right and center) and boxes for pointing to left and right see green frame in Figure 3.

Figure 3: Joint Attention Diagnosis project file.

3.3 Joint Attention Intervention

In addition to what was included in the previous scenario, within this project file there are text boxes
to ask the child to choose an emotion, purple frame in Figure 4; and boxes for expressing different
emotions, see green frame in Figure 4.
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Figure 4: Joint Attention Intervention project file.

3.4 Imitation Diagnosis with Objects

Additionally to what there are in other project files, within this one there are text boxes to ask the
therapist to give the robot certain object, see purple frame in Figure 5; a box to ask the child to
replicate the motion, in yellow in Figure 5; and boxes for making different gestures with and without
the objects, see green frame in Figure 5.

Figure 5: Imitation Diagnosis with Objects project file.
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In order to make the robot pick up an object, the therapist should approach the object to the robot
and touch its head, then the robot will open its hands. With a second touch in the head, the robot will
close the hands grabbing the object. To make the robot drop the object, the same procedure should be
followed.

3.5 Imitation Diagnosis without Objects

For this project file there are specific boxes to make the robot make 4 different motions (cover its eyes,
touch its head, airplane arms and wave with one hand), see green frame in Figure 6.

Figure 6: Imitation Diagnosis without Objects project file.

3.6 Imitation Intervention without Objects

This project file includes text boxes already described in previous scenarios.

3.7 Turn-taking diagnosis

The turn-taking diagnosis behaviour for the WoZ experiments is handled by a separate system based
on the software engineering framework established in WP3. Please refer to the technical report “Sand-
tray Wizard-of-Oz System for Turn-taking Intervention” for more details.

3.8 Turn-taking intervention

The turn-taking intervention behaviour for the WoZ experiments is handled by a separate system
based on the software engineering framework established in WP3. Please refer to the technical report
“Sandtray Wizard-of-Oz System for Turn-taking Intervention” for more details.
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4 Limitations of the software

As the experiments will follow the Wizard of Oz methodology, the therapists are responsible for
following the script of each scenario. There is no autonomous behavior within this software at all.
Moreover, in case it is needed more boxes can be added.

If you need further information about Choregraphe, you may find it in Aldebaran documentation
(http://doc.aldebaran.com/2-1/news/2.0/choregraphe_rn2.0.html).

5 Miscelanea

The software has been developed using Naoqi version 2.1.2.17. If you need to upgrade it, please fol-
low the instructions from the wiki (https://dreamproject.aldebaran.com/projects/
dream/wiki/Nao_software).
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Touchscreen-Mediated Child-Robot Interactions
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Abstract. Robots are finding increasing application in the domain
of ASD therapy as they provide a number of advantageous prop-
erties such as replicability and controllable expressivity. In this
abstract we introduce a role for touchscreens that act as medi-
ating devices in therapeutic robot-child interactions. Informed by
extensive work with neurotypical children in educational contexts,
an initial study using a touchscreen mediator in support of robot-
assisted ASD therapy was conducted to examine the feasibility of
this approach, in so doing demonstrating how this application pro-
vides a number of technical and potentially therapeutic advantages.

Keywords: ASD, Robot-Assisted Therapy, Sandtray

INTRODUCTION

The application of robots to aid in the therapy of chil-
dren with Autistic Spectrum Disorders (ASD) has become
increasingly established [1], [2], with evidence suggesting
that it can provide beneficial outcomes for the children [3].
In addition to this, recent efforts have emphasised providing
an increasing degree of autonomy for the robot [4].

Providing such autonomous behaviour in interaction con-
texts is a challenging task, with sensory and motor limi-
tations imposing a number of constraints. In our previous
work, we have developed a methodology that makes use
of a touchscreen mediator between children and robots to
overcome a number of these difficulties: the Sandtray [5]. In
this setup, a child and a robot engage in a collaborative task
that is provided on the touchscreen (e.g. sorting of images
into categories). The Sandtray has been successfully applied
to a range of neurotypical child-robot interaction studies
in various contexts, for example behavioural alignment [6],
education [7], and others. As the Sandtray was inspired by
the therapeutic intervention of sandplay (with this having
proposed advantages for children with ASD [8]), we now
seek to apply this same methodology to robot-assisted ASD
therapy.

Touchscreens (without the robot) have found previous
applications to this domain [9]. For example, a touchscreen
has been used to enforce collaborative activity between pairs
of children with ASD, resulting in an increase in coordination
and negotiation behaviours [10], a finding supported else-
where [11]. Furthermore, there have been attempts to enable
sandplay therapy-like interactions with touchscreens [12],

*This work was supported by the EU FP7 project DREAM (grant number
611391, http://dream2020.eu/).

Fig. 1. Indicative setup and use of touchscreen for child-robot therapeutic
interaction - robot is controlled by a wizard, and the mediator provides input
to the interaction if needed (not to scale; positions are indicative only).

although our approach differs in both application context
and involvement of the robot. These studies indicate the
suitability of using touchscreens for children with ASD.

There are a number of advantages afforded by the use of
such a mediating touchscreen in HRI. Firstly, it provides a
shared space for collaboration that does not require complex
manual dexterity for either the child or the robot; indeed it
provides the same affordances for both interactants (pointing
and dragging). Secondly, it reduces the sensory processing
load (vision processing) on the robot since information on
screen-oriented activity by the child can be obtained directly
from the touchscreen. Thirdly, it provides a straightforward
means of changing the task (or more broadly the interaction
context) by just changing the images displayed on the screen:
for instance, a sorting task can be appropriate for domains
as diverse as mathematics and nutrition just by changing the
pictures displayed.

The aim of this contribution is to motivate and illustrate
how such touchscreen mediators can specifically serve as
useful tools in the domain of robot-assisted therapy by first
describing an application currently in progress, and then
discussing the opportunities and challenges for the future.

APPLICATION CASE STUDY: TURN-TAKING

An initial application to ASD therapy has been imple-
mented and evaluated. Turn-taking is an important social skill
that is used as part of therapeutic interventions [13]. We have
created an emotion image categorisation task (using sad and
happy faces) on the Sandtray for a child and Nao robot to
play, with robot verbal behaviour used to encourage turn-
taking behaviours. For this study, the robot was explicitly
remote controlled (wizarded) by a remote operator (fig. 1).

With a four year-old girl with ASD, six interaction ses-
sions with the Robot-Sandtray turn-taking task were con-



Fig. 2. (Top) Sample data from the sixth child-robot Sandtray turn-
taking interaction session. The feedback was employed to encourage the
child to move and to give them feedback. Orange circles indicate robot
encouragements for the child to take a turn. (Bottom) Trends over six
sessions, showing change in delay between robot prompt and the child
moving, and the mean number of prompts per child move (with 95% CI).

ducted over a period of four weeks. Other robot-based
therapy activities were conducted at a separate time. Each
interaction had a mean length of 11:06 mins (sd 5:03 mins).

Since interaction data can be captured through the touch-
screen, it is possible to retrospectively examine the events
that occurred and their timing. Considering the relationship
between robot encouragement and child moves in a single
interaction (e.g. fig. 2, top), the data suggest that both the
number of robot encouragement instances required before
the child made a move, and the delay between suggestions
and actual moves increases over time (fig. 2, bottom). A
clinical explanation for this relationship is not proposed here,
although the ideal behaviour in this context is a turn-taking
interaction with the robot, without necessarily requiring ex-
plicit prompting. What can be noted though is that data such
as these provide some insight into the interaction between
the child and the robot over time.

DISCUSSION AND OPEN QUESTIONS

The examination and use of touchscreen-derived informa-
tion has two benefits. Firstly, it may come to constitute an
additional source of information for the therapist to aid in
diagnosis or inform future therapy, with additional processing
making aspects of emotion available for example [14]. The
extent to which this is clinically useful is an open question
that requires investigation. It should however be noted that
we do not suggest that such data can replace traditional
diagnosis information, rather that it can provide supplemental
information. It should be further noted that the touchscreen-
derived information alone is likely to be insufficient to
provide a complete characterisation of the child’s behaviour.

Secondly, since the information captured by the touch-
screen is directly accessible to the robot system, it can be
used by the robot to adapt its behaviour to the specific cir-
cumstances of an individual child in individual interactions,

e.g. [6]. In the case of autonomous robot behaviour, such a
source of information that does not require the overhead of
complex visual or audio processing is a significant benefit.

Extensive previous work has been conducted with this
touchscreen mediated interaction between (neurotypical)
children, and robots. While this has shown that the touch-
screen effectively constrains the content of the interaction
(thus facilitating robot autonomous behaviour) [15], it is
an open question as to whether a similar effect (such as
helping to maintain focus on the interaction) is observable
for children with ASD, or over what time scales such an
effect may be manifested.

To conclude, we have presented data from an example set
of interactions between a child with ASD and a robot in
the context of the Sandtray. This provides an illustration of
the type of data that is readily available through the use of
the touchscreen mediation technology. While further devel-
opment and data collection is required (and is ongoing), we
suggest that the use of touchscreens as mediators for child-
robot interactions in the context of ASD therapy provides
benefits in terms of behaviour characterisation and technical
feasibility that should be further taken advantage of.
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Abstract

This paper presents a method for progres-
sively increasing autonomous action selec-
tion capabilities in sensitive environments,
where random exploration-based learning is
not desirable, using guidance provided by a
human supervisor. We describe the global
framework and a simulation case study based
on a scenario in Robot Assisted Therapy
for children with Autism Spectrum Disorder.
This simulation illustrates the functional fea-
tures of our proposed approach, and demon-
strates how a system following these princi-
ples adapts to different interaction contexts
while maintaining an appropriate behaviour
for the system at all times.

1 Introduction

Humans are interacting increasingly with machines,
and robots will be progressively more important part-
ners in the coming years. Human-human interactions
involve high dimensionality signals and require com-
plex processing: this results in a large quantity of data
that ideally needs to be processed by an autonomous
robot. One potential solution is the application of ma-
chine learning techniques. Specifically, online learning
is desirable, however, some level of initial knowledge
and competencies are required to avoid pitfalls in the
early phases of the learning process, particularly in
contexts where random exploration could lead to un-
desirable consequences.

In this paper, we propose an approach inspired by, but
separate from, learning from demonstration to guide

Appearing in Proceedings of the 4th Workshop on Ma-
chine Learning for Interactive Systems (MLIS) 2015, Lille,
France. JMLR: W&CP volume 40. Copyright 2015 by the
authors.

this early learning of an action selection mechanism for
autonomous robot interaction with a human, by tak-
ing advantage of the expert knowledge of a third-party
human supervisor to prevent the robot from exploring
in an inappropriate manner. We first present the for-
mal framework in which our action selection strategy
learning takes place (section 2), then illustrate this
with a case study from the domain of Robot Assisted
Therapy for children with Autism Spectrum Disorder
(ASD), where the incorrect selection of actions can
lead to an unacceptable impact on the goals of the
interaction (section 3).

Agent
Execute Action A

Environment

Supervisor
Select A based on

C, S, A', K 
and history 

Context

Algorithm

Update M based 
on history

Suggest A'
Based on inputs 

and model M

 

State (S)

Context (C)

AA'

Impact

Taken into account for learning

Impact

Figure 1: The supervised online learning of au-
tonomous action selection mechanism.

2 Supervised Emergent Autonomous
Decision Making

2.1 Framework

The situation considered involves a robotic agent, a
human supervisor of the agent, and a human with
which the agent, but not the supervisor, should in-
teract. The agent proposes actions that are accepted
or rejected by the supervisor prior to executing them.
The method proposed in this paper aims at enabling
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the agent to progressively and autonomously approxi-
mate the ideal behaviour as specified by the supervisor.

Our framework has five components: an agent and an
environment interacting with each other, a supervi-
sor, the algorithm controlling the agent and a context
characterising the interaction between the agent and
the environment. The agent has a defined set of avail-
able actions A. The environment could be a human, a
robot, or a computer for example and is characterised
by a n-dimensional vector S ∈ Rn, which is time vary-
ing. The context C ∈ Rm gives a set of parameters
defining higher-level aspects, such as goals or the state,
of the interaction, see figure 1. The supervisor and the
agent have direct access to the context, but may ignore
the real value of the state and see it only through ob-
servations.

The principal constraints are that the interaction has
one or more high level goals, and some available ac-
tions can have a negative impact on these goals if ex-
ecuted in specific states. This should be avoided, so
algorithms depending on randomness to explore the
environment state space are inappropriate.

In order to simplify the system, we are making the
following assumptions. Firstly, that the environment,
while dynamic, is consistent: it follows a defined set of
rules E which also describe how the context is updated.
Secondly, the supervisor T is omniscient (complete
knowledge of the environment), constant (does not
adapt during the interaction), and coherent (will react
with the same action if two sets of inputs are identi-
cal). Finally, the supervisor has some prior knowledge
of the environment K.

The algorithm has a model M of the supervisor and
the environment and will update it through online
learning following the learning method L. M is it-
eratively updated based on supervisor feedback to ap-
proximate T and E , in this way progressively approxi-
mating the action that the supervisor would have cho-
sen, and what impact this would have on the environ-
ment. Equation 1 describes the update of each part of
the framework from the step n to n + 1.

Mn : (C0→n, S0→n, A0→n−1, A
′
0→n−1) −→ A′n

T : (C0→n, S0→n, A
′
0→n, A→n−1,K) −→ An

E : (C0→n, S0→n, A0→n) −→ (Sn+1, Cn+1)

L : (C0→n+1, S0→n+1, A
′
0→n, A0→n) −→Mn+1

(1)

At the start of the interaction, the environment is in a
state S0 with the context C0 and the algorithm has a
model M0. Applying M0 to C0 and S0, the algorithm
will select an action A′0 and propose it to the super-
visor. The supervisor can either accept this action or

select a new one according to T , and makes the agent
execute the resulting action A0. The environment will
change to a new state S1 and the context will be up-
dated to C1 according to E . Based on S1, S0, C1, C0,
A0, and A′0, the algorithm will update its model to
M1. The process can then be repeated based on the
updated model.

2.2 Related Work

The approach we take here necessarily requires the ap-
plication of machine learning, but we do not commit at
this stage to a single algorithmic approach; the specific
requirements for our application include online learn-
ing, deferring to an external supervisor, and being able
to handle a dynamic environment.

A widely used method to transfer knowledge from a
human to a robot is Learning from Demonstration
(LfD), see [2] for a survey. In the case of policy learn-
ing, a teacher provides the learning algorithm with cor-
rect actions for the current state and repeats this state-
action mapping for enough different states to give the
algorithm a general policy. LfD is usually combined
with supervised learning: trying directly to map out-
puts and inputs from a teacher, see [12] for a list of
algorithms that can be used in supervised learning.
The other important point is how the demonstrations
are generated, a first approach is using batch learn-
ing: the teacher trains the algorithm during a training
phase after which the robot is used in full autonomy
[11]. Or there may be no explicit training phase; us-
ing online learning the demonstrations are given dur-
ing the execution if required: the robot can request
a demonstration for the uncertain states, e.g. when
a confidence value about the action to perform is too
low [6].

Another method is Reinforcement Learning: the algo-
rithm tries to find a policy maximising the expected
reward [3, 10]. However, this implies the presence of
a reward function, which may not be trivial to de-
scribe in domains (such as social interaction) that do
not lend themselves to characterisation. Consequently
Abbeel and Ng proposed to use Inverse Reinforcement
Learning by using an expert to generate the reward
function [1], subsequently extended to use partially-
observable MDPs [8], although expert-generated re-
wards also pose problems on the human side [17].

The goal of our proposed approach differs from these
alternative existing methods. The intention is to pro-
vide a system that can take advantage of expert hu-
man knowledge to progressively improve its competen-
cies without requiring manual intervention on every
interaction cycle. This is achieved by only asking the
human supervisor to intervene with corrective infor-
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mation when the proposed action of the robot agent is
deemed inappropriate (e.g. dangerous) prior to actual
execution. This allows the robot to learn from con-
strained exploration; a consequence of this is that the
load on the supervisor should reduce over time as the
robot learns. The supervisor nevertheless retains con-
trol of the robot, and as such we characterise the robot
as having supervised autonomy. Contrary to the active
learning approach used by, for example, Cakmak and
Thomaz [5] the robot is not asking a question and re-
quiring a supervisor response, it is proposing an action
which may or may not be corrected by the supervisor.

3 Case Study: Application to Therapy

One potential application area is Robot Assisted Ther-
apy (RAT) for children with Autism Spectrum Disor-
ders (ASD). Children with ASD generally lack typical
social skills, and RAT can help them to acquire these
competencies, with a certain degree of success, e.g.
[7, 14]. However, these experiments typically use the
Wizard of Oz (WoZ) paradigm [13], which necessitates
a heavy load on highly trained human operators.

We propose the use of supervised autonomy [15, 16],
where the robot is primarily autonomous, but the ther-
apeutic goals are set by a therapist who maintains
oversight of the interaction. Having a supervised au-
tonomous robot would reduce the workload on the
therapist.Both the therapist and the robot would be
present in the interaction, the robot interacting with
the child and the therapist supervising the interaction
and guiding the robot while it is learning its action
selection policy.

The formalism described above (section 2.1) can be di-
rectly applied to this scenario. In this case, the context
is the state of the task selected by the therapist to help
the child develop certain social competencies, for ex-
ample, a collaborative categorisation game [4] intended
to allow the child to practice turn taking or emotion
recognition. The state may be defined using multiple
variables such as motivation, engagement, and perfor-
mance exhibited by the child during the interaction,
the time elapsed since the last child’s action, and their
last move (correct or incorrect). The robot could have
a set of actions related to the game, such as proposing
that the child categorises an image, or giving encour-
agement to the child.

In this scenario, the goal would be to allow the child to
improve their performance on the categorisation task,
and this would be done by selecting the appropriate
difficulty level and finding a way to motivate the child
to play the proposed game. We can expect the child to
react to the robot action and that these reactions can
be captured by the different variables that define the

child’s state (as provided by therapists for example).
In principle, while precise determinations are likely to
be problematic, we assume that some aspects of these
variables can be estimated using a set of sensors (e.g.
cameras and RGBD sensors to capture the child’s gaze
and position; the way the child interacts with the touch
screen; etc). For the remainder of this paper, however,
we assume that a direct estimation of internal child
states are available to the system.

3.1 Proof of concept

A minimal simulation was constructed to illustrate the
case study described above. The state S is defined us-
ing three variables: the child’s performance, engage-
ment and motivation in the interaction. The robot has
the following set of actions A: encouragement (give a
motivating feedback to the child), waving (perform a
gesture to catch the child’s attention), and proposi-
tion (inviting the child to make a classification). In
this minimal example, the environment E is the child
model. A minimal model of the child was constructed
that encompassed both processes that were dependent
on the robot behaviour (e.g. responding to a request
for action), and processes that were independent of
the robot behaviour (e.g. a monotonic decrease of en-
gagement and motivation over time independently of
other events). The reaction of the model follows a
rule-based system, but the amplitude of the response
is randomly drawn from a normal distribution to rep-
resent the stochastic aspect of the child’s reaction and
the potential influence of non-defined variables in the
state. A number of simplifications are necessary, such
as the assumption of strict turn-taking and interac-
tions in discrete time. The minimal child model is
summarised in figure 2.

State: 
Performance

Motivation
Engagement 

 Motivation+=Norm(0.1,0.05)  Engagement+=Norm(0.1,0.05)
Motivation>0.6

Engagement>0.6

Perf += 0.05 Perf -= 0.05

Motivation = 0.5
Engagement = 0.5

Motivation -= Norm(0.01,0.001)
Engagement -= Norm(0.01,0.001)

Encouragement Waving

Proposition

Yes No

Figure 2: Model of the child used in the minimal sim-
ulation; random numbers are drawn from normal dis-
tributions.

Formally, the minimal simulation follows the frame-
work established above (equation 1), with the simpli-
fication that a history of prior states, contexts, and
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actions is not used in the learning algorithm. This re-
sults in a setup where the system makes a suggestion
of an action to take, which the supervisor can either
accept or reject, in which case an alternative action is
chosen (figure 3).

This allows the supervisor to take a more passive ap-
proach when the algorithm selects an acceptable action
since they will only have to manually select a correc-
tive action when this is needed. If the learning method
is effective, the number of corrective actions should de-
crease over time, decreasing the workload on the ther-
apist over the interaction.

State (S)
 & 

Context (C)

M proposes
action A'

Does 
Supervisor (T) agree 

with A'?

A = 
alternate 

action

Agent executes
action A

      No

Change in Environment (E)

Yes, A = A'
Learning M

using L

Figure 3: Description of agent’s action selection pro-
cess: the agent proposes actions that are validated by
the supervisor prior to execution.

The learning model M is a MultiLayer Perceptron
(MLP), with three input nodes for the input states,
three output nodes for the three possible actions and
nine nodes in the hidden layer. The model is trained
using backpropagation (as L), the true labels are given
by the supervisor decision: output of 1 for the action
selected by the supervisor (A) and −1 for the other
ones. A Winner-Takes-All process is applied on the
output of the MLP to select the action suggested by
the robot (A’).

Figure 4 shows a subset of a run from step 100 to
150. With this approach, there is no distinct learning
and testing phases, but in the first part of the interac-
tion (before step 100), the supervisor had to produce
multiple corrective actions to train the network to ex-
press the desired output. The strategy used by the
supervisor is the following: if the motivation is lower
than 0.6 the supervisor enforces the action ‘encourage-
ment’, else if the engagement is below 0.6 ‘waving’ is
enforced, and if both are above 0.6 then a proposition
is made. The first graph presents the evolution of the
state over time, and the second one the output of the
MLP for each action. The vertical red lines represent
an intervention from the supervisor, i.e. a case where
the supervisor enforces a different action than the one
suggested by the MLP. The action actually executed
is represented by a cross with the same colour as the
respective curves.

Figure 5 shows a comparison of the cumulative total
of the different actions suggested and of the interven-
tion as well as the child performance for three differ-
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ent models of a child and for a random action selection
scheme. The difference in the child models in the three
first graphs is the value of the thresholds required for
a good classification action, high reactive child: 0.6
and 0.6, asymmetrically: 0.9 for encouragement and
0.6 for engagement, and low reactive: 0.9 and 0.9. Be-
low these thresholds, a proposition would lead to a bad
action decreasing the performance. It can be observed
that the algorithm learns different strategies for each
child and that there is more learning apparent at the
start of the interaction than at the end (the rate of
interventions is decreasing over time), indicating that
the system is choosing the appropriate action at the
appropriate time, and that the workload on the super-
visor (necessity to provide these corrective actions) de-
crease over time. The last plot demonstrates a random
action selection with a high reactive child. Contrary
to the other cases, the child’s performance decreases
over time, and the number of interventions increases.
Here, a bad action only decreases the performance, but
in reality it may result in the termination of the inter-
action, which must be avoided.

4 Discussion

While demonstrating promise, there are a number of
limitations to the framework as presented. The as-
sumptions described in section 2.1 are typically vio-
lated when working with humans. Firstly the children
are all different, and a method learned for one child
may often not be suited when working with another.
Furthermore, the same child may have non-consistent
behaviour between the sessions and even within a sin-
gle session. There is no perfect solution to solve this
problem, but we can expect that with enough training
sessions and a more complex learning algorithm, the
system would be able to capture patterns and react to
the different behaviours appropriately. Since it is ex-
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Figure 5: Comparison of the cumulative total of the different actions suggested, the supervisor interventions
required, and child performance for three different models of a child (highly responsive; asymmetrically increased
responsiveness to engagement than motivation; low responsiveness), and a random action selection scheme.

pected that in a real application of such an approach a
therapist who knows the child will always be present,
we propose that for a new child the algorithm will use
a generic strategy based on previous interactions with
other children, with subsequent fine-tuning under su-
pervision.

Another assumption that is likely to be violated is that
of a perfect supervisor. As explained in [6] humans
are not always consistent nor omniscient, but meth-
ods presented in the literature can be used to cope
with these inconsistencies if enough data is gathered.
Further mitigating solutions could be employed, such
as the robot warning the therapist if it is about to
select an action which had negative consequences in
a previous interaction (even if for a different child).
Furthermore, it may not be possible to measure the
true internal states of the child in the real world, with
imperfect estimations of these states being more likely
accessible. In this case, inspiration from [9] can be
used to mixed the POMDP framework with the help
of an exterior oracle. Another problem which will have
to be addressed in the future is the difference in in-
puts between the robot and the therapist: the thera-
pist will have access to language, more subtle visual
features and their prior experience, whereas the robot
may have direct and precise access to some aspects of
the child’s overt behaviour (such as timings of touch-
screen interaction).

In the currently implemented case study, we assume
that the supervisor responds to the action proposed
by the robot within some predetermined fixed time,
whether this response is accept or reject (figure 3).
This, in principle, allows the supervisor to only ac-
tively respond if a proposed action is clearly inappro-
priate. In further developments, we will incorporate
a measure of certainty (given prior experience) into
the time allowed the supervisor to respond to the pro-

posed action: for example increasing the time available
if the confidence in the proposed action is low. This
modulation of the load on the supervisor’s attention
according to confidence should result in the supervisor
being able to increasingly pay attention to the child
directly, rather than to the robot system, as training
progresses.

5 Conclusion

We have presented a general framework to progres-
sively increase the competence of an autonomous ac-
tion selection mechanism that takes advantage of the
expert knowledge of a human supervisor to prevent in-
appropriate behaviour during training. This method
is particularly applicable to application contexts such
as robot-assisted therapy, and our case study has pro-
vided preliminary support for the utility of the ap-
proach. While the simulation necessarily only pro-
vided a minimal setup, and thus omitted many of the
complexities present in a real-world setup, we have
nevertheless shown how the proposed method resulted
in the learning of distinct action selection strategies
given differing interaction contexts, although further
refinement is required for real-world application. In-
deed, given real-world supervisor knowledge limita-
tions, we suggest it will furthermore be possible for
a suitably trained action selection mechanism of this
type to aid the supervisor in complex and highly dy-
namic scenarios.
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Abstract. The Wizard-of-Oz robot control methodology is widely used
and typically places a high burden of effort and attention on the human
supervisor to ensure appropriate robot behaviour, which may distract
from other aspects of the task engaged in. We propose that this load can
be reduced by enabling the robot to learn online from the guidance of
the supervisor to become progressively more autonomous: Supervised
Progressively Autonomous Robot Competencies (SPARC). Applying this
concept to the domain of Robot Assisted Therapy (RAT) for children with
Autistic Spectrum Disorder, a novel methodology is employed to assess
the effect of a learning robot on the workload of the human supervisor. A
user study shows that controlling a learning robot enables supervisors to
achieve similar task performance as with a non-learning robot, but with
both fewer interventions and a reduced perception of workload. These
results demonstrate the utility of the SPARC concept and its potential
effectiveness to reduce load on human WoZ supervisors.

1 Introduction

Over the last two decades, an increasing amount of research has been conducted
to explore Robot Assisted Therapy (RAT). Using robots in therapies for children
with Autism Spectrum Disorder (ASD) has revealed promising results [5, 10, 11].
The Wizard-of-Oz (WoZ) paradigm is typically used for this application, and
others, where the robots are not autonomous but tele-operated. Many motivating
factors for moving away from WoZ in RAT have been put forward [8, 13]. In
particular, autonomous behaviour facilitates repetition of the robot behaviour
and decreases the workload on therapists, freeing them to pay attention to other
aspects of the interaction. It is the intention of our research to facilitate this shift
to robot autonomy.

As the optimal robot behaviour is unlikely to be known in advance (be it
in a therapeutic or indeed other domain), and with adaptability during and
between the different interactions being generally desirable, it is necessary to
provide the robot with learning capabilities. In the context of RAT, by using the
knowledge of a therapist, the learning can be guided so that it is faster and safer,
especially as the robot cannot use random exploration to acquire knowledge about
its environment when interacting with children with ASD in case of negative



therapeutic and/or clinical outcomes. We propose an approach taking inspiration
from the Learning from Demonstration and online learning literature, and call it
SPARC: Supervised Progressively Autonomous Robot Competencies. In SPARC,
a therapist guides the robot in the early stages of the interaction, and progressively,
the robot learns an action policy adapted to the particular therapeutic session
[12]. Assuming the effective learning of the robot in this context, the therapist
can allow the robot to behave increasingly autonomously, whilst maintaining
oversight. Although not reducing the attentional requirements, this would reduce
the physical interventions to direct the robot behaviour required by the therapist.
Thus, by proposing and executing good actions, SPARC can reduce the therapists’
workload.

A RAT scenario typically involves three parties: the patient, a robot, and
the human therapist. In this context, the therapist does not interact with the
patient directly, but rather through the robot. The therapist could therefore
be described as playing the role of a robot supervisor. The focus of this paper
is not on a new learning algorithm, but rather on the interaction between the
robot and the therapist (supervisor), and the role that robot autonomy can
play in this relationship. Specifically, as an initial validation of the principle, we
seek to assess whether the SPARC concept can feasibly result in a reduction
in workload for the supervisor, even given different strategies used by different
individuals. A user study employing a novel methodology is conducted (section
3), demonstrating that progressive robot autonomy does indeed result in lower
supervisor workload (section 4). This outcome provides support for the proposed
approach and motivates further development efforts in the domain of RAT.

2 Related work

A number of research groups have studied the use of robot in therapy for children
with ASD, which allowed children to express previously unseen social behaviour
for example [9, 10]. Two primary methods have been used for these investigations:
using an autonomous robot following preprogrammed rules [6, 14], or using the
WoZ paradigm, allowing more flexibility in the robot’s reaction. As noted in
[8, 13], using WoZ allows testing and prototyping of interaction scenarios, but
researchers should consider moving away from it to achieve more scalability, more
repeatability, and to allow the use of robots without increasing the workload on
therapists. Complex behaviour is required for a therapeutic robot, thereby making
learning a desirable feature for future, more autonomous, RAT. As therapists
possess the knowledge required to make appropriate decisions in different contexts,
Learning from Demonstration [1] provides a useful starting point. Recently, Knox
et al. proposed the Learning from Wizard paradigm in [7]. The robot is first
controlled by a human operator as in a WoZ scenario, and after a number of
interactions, batch learning is applied on the previous interaction data to obtain
autonomous behaviour.

A fixed action policy of this type is however not desirable for RAT as children
may not be consistent between interactions, and thus online learning is required



Fig. 1. Setup used for the user study from the perspective of the human supervisor.
The child-robot (left) stands across the touchscreen (centre-left) from the wizarded-robot
(centre-right). The supervisor can oversee the actions of the wizarded-robot through the
GUI and intervene if necessary (right).

to provide the robot with the adaptability necessary to update its action policy
depending on the current circumstances. Several experimenters in HRI have
studied active learning: a robot actively questions a human teacher in order to
request data points or demonstration for an uncertain scenario. A study exploring
the type of questions that a robot could ask and the human reactions can be seen
in [3], and Chernova and Veloso propose a progressive learning algorithm where a
robot can estimate the confidence in its action decision in a fixed environment [4]:
if the confidence is too low, a demonstration from a human teacher is required to
complete the task.

However, an important element missing from the current literature is online
learning for interaction. The robot needs to be able to progressively create an
action policy, and update it later if necessary, to reach a more complex interaction
behaviour. This paper explores how supervised progressive learning can be used in
an interaction scenario and introduces a novel methodology to test this technique.

3 Assessing the effect of a progressively autonomous
robot on supervisor workload

The focus of the present study is to assess whether the application of the SPARC
concept to RAT results in a decrease in workload for the human supervisor. Two
types of robot controller are employed to determine the presence and magnitude of
this effect: a robot that learns from the actions of the supervisor to progressively
improve its behaviour (learning controller), and a robot that only generates
random actions (non-learning controller).

The methodology used in this paper is based on a real scenario for RAT for
children with ASD based on the Applied Behaviour Analysis therapy framework.
The aim of the therapy is to help the child to develop/practice their social skills:
the task we focus on here is emotion recognition. This scenario involves a child



playing a categorisation game with a robot on a mediating touchscreen device
[2]. Images of faces or drawings are shown to the child, and she has to categorise
them by moving the image to one side or the other depending on whether the
picture shown denotes happiness or sadness (e.g. fig. 1). The human supervisor
is physically present and guides the robot using the Wizard of Oz paradigm, but
does not interact with the child directly.

In our proposed system, the basic interaction structure following the SPARC
concept is as follows: the robot suggests an action to the supervisor, the supervisor
agrees or disagrees with this suggestion (providing an alternative if disagreeing),
the robot executes the action, and then both robot and supervisor observe the
outcome. Over time, it is possible for the robot to learn an appropriate strategy
based on observations of the child and oversight from the supervisor, with the
supervisor still maintaining overall control if necessary.

Given the focus on human supervisor workload, it is necessary to provide
a consistent experimental environment across both conditions in which the
task, setup, and interaction partner is kept constant. A minimal model of child
behaviour is therefore used to stand in for a real child. A second robot is employed
in the interaction to embody this child model: we term this the child-robot. The
robot being directly guided by the human supervisor is termed the wizarded-robot
(fig. 1).

3.1 Child model

The purpose of the child model is not to realistically model a child (with or
without autism), but to provide a means of expressing some of the behaviours we
observed in our interactions with children in a repeatable manner. The child-robot
possesses an internal model encompassing an engagement level and a motivation
level, together forming the state of the child. The engagement represents how
often the child-robot will make categorisation moves and the motivation gives
the probability of success of the categorisation moves. Bound to the range [−1, 1],
these states are influenced by the behaviour of the wizarded-robot, and will
asymptotically decay to zero without any actions from the wizarded-robot. These
two states are not directly accessed by either the supervisor or the wizarded-
robot, but can be observed through behaviour expressed by the child-robot: low
engagement will make the robot look away from the touchscreen, and the speed
of the categorisation moves is related to the motivation (to which gaussian noise
was added). There is thus incomplete/unreliable information available to both
the wizarded-robot and the supervisor, making the task non-trivial.

The influence of the wizarded-robot behaviour on the levels of engagement
and motivation are described below (section 3.2). In addition to this, if a state
is already high and an action from the wizarded-robot further increases it,
then there is a chance that this level will sharply decrease, as an analogue of
child-robot frustration. When this happens, the child-robot will indicate this
frustration verbally (uttering one of eight predefined strings). The reason this
mechanism is required is that it prevents a straightforward engagement and



motivation maximisation strategy, thus better approximating the real situation,
and requiring a more complex strategy to be employed by the supervisor.

3.2 Wizarded-robot control

The wizarded-robot is controlled through a Graphical User Interface (GUI) and
has access to multiple variables characterising the state of the interaction. The
wizarded-robot has a set of four actions, which each have a button in the GUI:

– Prompt an Action: Encourage the child-robot to do an action.
– Positive Feedback: Congratulate the child-robot on making a good classifica-

tion.
– Negative Feedback: Supportive feedback for an incorrect classification.
– Wait: Do nothing for this action opportunity, wait for the next one.

The impact of the action on the child-robot depends on the internal state and
the type of the last child-robot move: good, bad, or done (meaning that feedback
has already been given for the last move and supplementary feedback is not
necessary). A prompt always increases the engagement, a wait has no effect on
the child-robot’s state, and the impact of positive and negative feedback depends
on the previous child-robot move. Congruous feedback (positive feedback for
correct moves; negative feedback for incorrect moves) results in an increase in
motivation, but incongruous feedback can decrease both the motivation and the
engagement of the child-robot. The supervisor therefore has to use congruous
feedback and prompts, whilst being careful not to use them too often, to prevent
the child-robot becoming frustrated. A ‘good’ strategy would keep the engagement
and motivation high, leading to an increase in performance of the child-robot in
the categorisation task.

Through the GUI, the supervisor has access to observed states (noisy esti-
mations of the child-robot state), and information about the interaction his-
tory: number of moves, child-robot performance, time since last child-robot and
wizarded-robot actions, type of the last child-robot move, and elapsed time. How-
ever the supervisor can not control the wizarded-robot directly, actions can only
be executed only at specific times triggered by the wizarded-robot. Two seconds
after each child-robot action, or if nothing happens in the interaction for five
seconds, the wizarded-robot proposes an action to the supervisor by displaying
the action’s name and a countdown before execution. Only after this proposition
has been done can the supervisor provide feedback to the wizarded-robot. If the
supervisor does nothing in the following three seconds, the action proposed by the
wizarded-robot is executed. This mechanism allows the supervisor to passively
accept a suggestion made by the wizarded-robot or actively make an intervention
by selecting a different action and forcing the wizarded-robot to execute it.

3.3 Learning algorithm

The two robot controllers used for the study were a learning controller and a
non-learning random action selection controller. The learning algorithm used was



a Multi-Layer Perceptron, trained with back propagation (five input, six hidden
and four output nodes): after each new decision from the supervisor, the network
was fully retrained with all the previous state-action pairs and the new one.

3.4 Participants

In WoZ scenarios, the wizard is typically a technically competent person with
previous experience controlling robots. As such, to maintain consistency with
the target user group, the participants for this study (assuming the role of the
supervisor) are taken from a robotics research group. Ten participants were used
(7M/3F, age M =29.3, 21 to 44, SD=4.8 years).

3.5 Hypotheses

To evaluate the validity of our method and the influence of such an approach,
four hypotheses were devised:

H1 A ‘good’ supervisor (i.e. keeping the motivation and engagement of the
child-robot high) will lead to a better child-robot performance.

H2 When interacting with a new system, humans will progressively build a
personal strategy that they will use in subsequent interactions.

H3 Reducing the number of interventions required from a supervisor will reduce
their perceived workload.

H4 Using a learning wizarded-robot allows the supervisor to achieve similar
performance with fewer interventions when compared to the same scenario
with a non-learning wizarded-robot.

3.6 Interaction Protocol

Each participant experienced both robot controllers, with the order changed
between participants to control for any ordering effects. In Condition LN the
participants first interact with the learning wizarded-robot, and then with the
non-learning one; in Condition NL the participants first interact with the non-
learning wizarded-robot, and then the learning robot. Participants were randomly
assigned to one of the two conditions.

The interactions took place on a university campus in a dedicated experiment
room. Two Aldebaran Nao robots were used; one robot had a label indicating
that it was the Child-Robot. The robots face each other with a touchscreen
between them, and participants assuming the role of the supervisor sit at a desk
to the side of the wizarded-robot, with a screen and a mouse to interact with
the wizarded-robot (fig. 1). The participants were able to see the screen and the
child-robot.

A document explaining the interaction scenario was provided to participants.
After the information had been read, a 30s video presenting the GUI in use was
shown to familiarise them with it, without biasing them towards any particular
intervention strategy. The participant then clicked a button to start the first



interaction which lasted for 10 minutes. The experimenter was sat in the room
outside of the participants’ field of view. After the end of the first interaction, a
post-interaction questionnaire was administered. The same protocol was applied
in the second part of the experiment with another post-interaction questionnaire
following. Finally, a questionnaire asking the participants to explicitly compare
the two conditions was administered.

4 Results

4.1 Interaction data

The state of the child and the interaction values were logged at each step of the
interaction (at 5Hz). All of the human actions were recorded: acceptance of the
wizarded-robot’s suggestion, selection of another action (intervention), and the
states of the child-robot (motivation, engagement and performance) at this step.
From this the intervention ratio was derived: the number of times a user chose a
different action to the one proposed by the wizarded-robot, divided by the total
number of executed actions. On average, after a first exploration phase, where
the participant discovers the system, the learning robot robot has an intervention
ratio lower than the non learning one (fig. 2, left)

The performance indicates the number of good categorisations executed by the
child-robot minus the number of bad categorisations. A strong positive correlation
(Pearson’s r=0.79) was found between the average child-robot motivation and
engagement and its performance.

In both conditions, the average performance in the second interaction (MLN−2

=38, 95% CI [36.2, 39.8], MNL−2=34.8, 95% CI [30.8, 38.8]) was higher than
in the first one (MLN−1=29.4, 95% CI [25.3, 33.5], MNL−1=24.3, 95% CI [19.4,
29.4]; Fig. 2 left). The 95% Confidence Interval of the Difference of the Mean
(CIDM) for the L-NL condition is [4.1, 13.1] and for the NL-L condition is [4.0,
16.8]. However, the performance is similar when only the interaction order (first
or second) is considered. The participants performed slightly better in the LN
condition, but the CIDM includes zero in both cases (95% CIDM1 [-1.5, 11.5],
95% CIDM2 [-1.2, 7.6]). In the condition L-NL, the intervention ratio increased
between the learning and non learning condition (MLN−1=0.31, 95% CI [0.20,
0.42] to MLN−2=0.68, 95% CI [0.66, 0.70], CIDMLN=[0.26, 0.48]). But in the NL
condition, the intervention ratio is almost identical between the two interactions
but slightly lower for the learning case (MNL−1=0.50, 95% CI [0.44, 0.57] to
MNL−2=0.46, 95% CI [0.40, 0.51], CIDMNL [-0.03, 0.13]). This shows that when
the wizarded-robot learned, a similar performance is attained as without learning,
but the number of interventions required to achieve this is lower.

4.2 Questionnaire data

The post-interaction questionnaires evaluated the participant’s perception of the
child-robot’s learning and performance, the quality of suggestions made by the



Fig. 2. (Left) evolution of intervention ratio over time for the learning and non learning
cases. Intervention ratio (centre) and final performance (right) for the two conditions
and the two interactions (errors bars show 95% CI ). In condition LN participants
started wizarding a robot which learns their interaction style, followed by a non-learning
robot; in condition NL participants started with a non-learning robot, followed by a
learning robot. Results show that a learning robot reduces the workload of the wizard,
but performs equally well as a non-learning robot that needs wizarding at all times.

Fig. 3. Questionnaire responses (mean and 95% CI ): increased confidence in the
learning wizarded-robot over the non-learning version is apparent, as is a lower perceived
workload.

wizarded-robot, and the experienced workload. All responses used seven point
Likert scales.

Across the four possible interactions, the rating of the child-robot’s learning
was similar (M =5.25, 95% CI [4.8, 5.7]). The same effect was observed for the
evaluation of the child performance (M =4.75, 95% CI [4.3, 5.2]). As the child-
robot was using the same interaction model in all four conditions, this result is
expected.

Participants report the wizarded-robot as more suited to operate unsupervised
in the learning than in the non learning condition ( MLN−1=4.8, MLN−2=3.6,
MNL−1=3, MNL−2=5.2 ; CIDM for LN condition [-0.2, 2.6], CIDM for the NL
condition [1.6, 2.8]).

Similarly, a trend was found showing that learning wizarded-robot is perceived
as making fewer errors than the non-learning robot (MLN−1=1.6, MLN−2=4.0,
MNL−1=2.6, MNL−2=2 ; CIDM for LN condition [1.3, 3.4], CIDM for the NL
condition [0.1, 1.1]).

The participants tended to rate the workload as lighter when interacting with
the learning robot, and this effect is much more prominent when the partici-
pants interacted with the non-learning robot first ( MLN−1=4.6, MLN−2=3.6,
MNL−1=3.8, MNL−2=5.4 ; CIDM for LN condition [-0.6, 2.6], CIDM for the NL
condition [0.7, 2.5]).



5 Discussion

Strong support for H1 (a good supervisor leads to a better child performance)
was found, a correlation between the average states (engagement and motivation)
and the final performance for all of the 10 participants was observed (r=0.79).
We could expect a similar effect when working with real children, but measuring
these values would be a challenge.

The results also provide support for H2 (supervisors create personal strategies):
all the participants performed better in the second interaction than in the first
one. This suggests that participants developed a strategy when interacting with
the system in the first interaction, and were able to use it to increase their
performance in the second interaction. Looking in more detail at the interaction
logs, it is possible to see that different people used different strategies.

H3 (reducing the number of interventions will reduce the perceived workload) is
partially supported: the results show a trend for participants to rate the workload
as lighter when interacting with the learning robot, and another trend between
using a learning robot and the intervention ratio. However, when considering the
difference of workload rating and intervention ratios between the two interactions,
a positive correlation is only found for the LN condition, which could be accounted
for by the initial steep learning curve for the study participants. Nevertheless,
regardless of the order of the interactions, the learning robot consistently received
higher ratings for lightness of workload (fig. 3).

Finally, H4 (using learning keeps similar performance, but decreases inter-
ventions) is supported: interacting with a learning robot results in a similar
performance than interacting with a non-learning robot, whilst requiring fewer
active interventions from the supervisor. This has real world utility, it frees some
time for the supervisor, to allow her to focus on other aspects of the intervention,
e.g. analysing the child’s behaviour rather than focusing on the robot control.

It should be noted that the actual learning algorithm used in this study is only
of incidental importance, and that certain features of the supervisor’s strategies
may be better approximated with alternative methods – of importance for the
present work is the presence of learning at all. Future work will assess what the
most appropriate machine learning approach is given the observed features of
supervisor strategy from this study.

In conclusion, this paper proposed the SPARC concept (Supervised Progres-
sively Autonomous Robot Competencies). Based on a suggestion/intervention
system, this approach allows online learning for interactive scenarios, thus in-
creasing autonomy and reducing the demands on the supervisor. Results showed
that interacting with a learning robot allowed participants to achieve a simi-
lar performance as interacting with a non-learning robot, but requiring fewer
interventions to attain this result. This suggests that while there is always adap-
tation in the interaction (leading to similar child-robot performance given the
two wizarded-robot controllers), the presence of learning shifts this burden of
adaptivity onto the wizarded-robot rather than on the human. This indicates
that a learning robot could allow the therapist to focus more on the child than
on the robot, with improved therapeutic outcomes as potential result.
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Abstract—Subjective appreciation and performance evaluation
of a robot by users are two important dimensions for Human-
Robot Interaction, especially as increasing numbers of people
become involved with robots. As roboticists we have to carefully
design robots to make the interaction as smooth and enjoyable
as possible for the users, while maintaining good performance
in the task assigned to the robot. In this paper, we examine the
impact of providing a robot with learning capabilities on how
users report the quality of the interaction in relation to objective
performance. We show that humans tend to prefer interacting
with a learning robot and will rate its capabilities higher even if
the actual performance in the task was lower. We suggest that
adding learning to a robot could reduce the apparent load felt
by a user for a new task and improve the user’s evaluation of
the system, thus facilitating the integration of such robots into
existing work flows.

I. INTRODUCTION

This paper presents a study exploring the impact of providing
a robot with learning capabilities on the interaction preferences
and robot performance evaluations by users.

Two main approaches are reported in the literature to study
human preferences about robots. The first one involves the
administration of surveys where participants are asked robot-
related questions with or without priming. For example, in
[1] 240 subjects are asked questions about tasks that could be
replaced by robots and about general attitudes toward robots,
without trying to influence the participants a priori. Priming
can also be a useful means of educating the participants before
administering a questionnaire, allowing them to imagine a
more constrained and plausible scenario than they otherwise
would. This approach has been followed by Coeckelbergh et al.
[2], who surveyed the attitudes of participants toward Robot
Assisted Therapy (RAT) for children with autism spectrum
disorder. The participants answered more positively, in contrast
to previous studies conducted without priming, when they were
first exposed to a one minute video presenting the state of the
art of robotics in RAT.

The second main approach is administering a questionnaire
to participants after an actual interaction with a robot. Using
this method, the responses are grounded in the context of their
interaction: this can diminish the generalisability of the results,
but makes them more reliable. This method has been applied
to explore how elderly people react to a robot with learning
abilities [3].

This paper follows the real robot interaction approach,
and presents additional results gathered in the experiment

presented in [4]. In this study, participants interacted with
a robot both with and without learning capabilities, and this
manuscript reports their interaction preference and their relative
performance evaluation of the two robots.

II. METHODOLOGY

The study (and therefore the methodology) is the same as in
[4] where we introduced Supervised Progressively Autonomous
Robot Competencies (SPARC), a means for the robot to learn
from the interaction to improve its capabilities. This previous
paper also reported the impact of SPARC on the performance
and workload of a robot’s human supervisor in a scenario
inspired by RAT for children with autism spectrum disorder.
In classical RAT, the robot is interacting with the child and is
often controlled using the Wizard of Oz (WoZ) paradigm, i.e.
fully tele-operated. This often implies a high workload on the
therapist, which could be reduced by providing the robot with
a supervised autonomy. As this study focuses on the interaction
between the wizarded-robot and its supervisor, we replace the
child with a robot interacting in his place (the child-robot) to
produce consistent experimental conditions (fig. 1).

Fig. 1. Installation used for the study. The child-robot stands on the left,
performing the task on the touchsceen, and facing the wizarded-robot on the
centre-right. The human supervisor can control the action about to be executed
by the wizarded-robot using the GUI on the right.

The child-robot is interacting with a touchscreen, and
performs a categorisation task where it has to classify images
of face as either happy or sad, with the aim of improving
its performance. The wizarded-robot can execute actions (e.g.
giving positive or negative feedback, waiting, or prompting the
child to act), aiming to help the child-robot in its task.



The participants have to control the wizarded-robot to make
it execute the correct actions to help the child-robot. This
is however context dependent: actions can either improve or
worsen the performance of the child-robot based on its current
state. A Graphical User Interface (GUI) allows the users to
control the wizarded-robot in a WoZ inspired scenario involving
supervised autonomy. At specific times, the wizarded-robot
makes suggestions to the supervisor who can either not react
and let the action execute, or use a button to force the wizarded-
robot to execute another action. A habituation phase allows the
participants to become familiar with the interface and action
set. If the suggestion of the robot is correct, the supervisor
does not need to act to have this action executed.

The participants interacted with two systems. In the first
system, the actions proposed by the wizarded-robot are random,
so we expect the user to correct them most of the time. This
system simulates a classical WoZ setup, which we denote
the non-learning robot. The second system uses SPARC
and includes a learning algorithm based on a Multi-Layer
Perceptron using noisy observation of states as inputs and a
winner-take-all on the actions as output. This system is referred
to as the learning-robot. It is important to note that in both
systems, these terms relate to the capabilities of the wizarded-
robot, not the child-robot (which had constant behaviour in
both systems).

The study involved ten participants (7M/3F, age M=29.3, 21
to 44, SD=4.8 years) taken from a robotic research group, as
typical WoZ users are technical. Each participant interacted for
10 minutes with both systems, with the order counterbalanced.
In the LN condition, participants interacted first with the
learning robot then with the non-learning one, and the order is
reversed in the NL condition. This paper presents and analyses
the responses from the participants to the questions:
– Which wizarded-robot was better able to perform the task?
– Which wizarded-robot did you prefer supervising?

III. RESULTS AND DISCUSSION

Overall, the participants preferred supervising the learning-
robot (6 out of 10) and found it better able to perform the
task (8 out of 10). Despite the limitations of the small sample
size, these results suggest that providing a robot with learning
capabilities can improve its perception by users and also make
the users prefer supervising it. These results are consistent with
previous results [4], which showed that providing a robot with
learning capabilities can decrease the number of interventions
required to achieve a similar performance compared to a robot
without learning. The reduction in the number of interventions
needed might explain the results observed here.

Breaking the results down by ordering condition (LN vs.
NL) provides a more detailed perspective (fig. 2). From these
separated results, the learning capability is not the only effect
influencing the preferences of, and the evaluation by, the
participants: the order of interaction also plays an important
role. On average, the second robot is the preferred one to
supervise (7 of 10) and rated as better able to perform the
task (7 of 10). This ordering effect was probably due to the
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Fig. 2. Results for supervisory preference and rating of ‘preferred to supervise’
and ‘better to perform the task’ for the two conditions. The vertical bars
represent the number of times that the learning robot was selected and the
horizontal dotted line denotes chance (i.e. 50%).

complexity of the system that the participants interacted with.
The participants had to get used to a GUI displaying a large
volume of information, and to the time constraints.

Additionally, in 4 of the 5 cases when participants interacted
with the learning robot first, they achieved a better performance
during the second interaction than during the first one. Three of
these participants also rated the learning robot as better able to
perform the task even when it had a lower performance. This
could indicate that participants can distinguish between the
robot’s abilities and the performance achieved (depending also
on their abilities). It could also be a reflection of the natural
propensity of humans to adapt and learn through interaction.
Viewed in this way, the results could be interpreted as showing
that interaction with the learning robot first better equips the
human to interact with the non-learning robot than vice-versa,
leading to higher performance, and hence preference ratings,
for the non-learning robot in the LN condition. While another
potential benefit of learning robots, this interpretation will
require further empirical investigation.

In this paper we presented results showing a trend towards
the addition of learning capabilities to a robot helping users to
cope with a new or complex task, and improving the rating
of their performance by their supervisor. This is an important
point for design, especially when there is a heavy workload
on users such as in RAT when therapists have to use WoZ to
continuously control the robot.
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Abstract—Social HRI requires robots able to use appropriate,
adaptive and contingent behaviours to form and maintain en-
gaging social interactions with people. Cognitive Architectures
emphasise a generality of mechanism and application, making
them an ideal basis for such technical developments. Following
the successful first workshop on Cognitive Architectures for HRI
at the 2014 HRI conference, this second edition of the workshop
focusses specifically on applications to social interaction. The
full-day workshop is centred on participant contributions, and
structured around a set of questions to provide a common
basis of comparison between different assumptions, approaches,
mechanisms, and architectures. These contributions will be used
to support extensive and structured discussions, with the aim
of facilitating the development and application of cognitive
architectures to social HRI systems. By attending, we envisage
that participants will gain insight into how the consideration
of cognitive architectures complements the development of au-
tonomous social robots.

Index Terms—Cognitive Architectures; Cognitive Robotics;
Social Human-Robot Interaction

I. INTRODUCTION

Achieving social interactions between humans and robots
is a complex task that has yet to be attained, but which is
necessary for the increasing range of real-world applications
for social robots. It requires an understanding of human
social behaviour, and it requires the robots to use appropriate,
adaptive and contingent behaviours to form and maintain these
social interactions. Given that pre-programmed approaches are
clearly insufficient for this problem, Cognitive Architectures
provide a good alternative as they propose general mechanisms
of ‘intelligence’ and behaviour generation.

Following the successful First Workshop on Cognitive Ar-
chitectures for HRI held at the HRI conference in 2014
(Bielefeld) [1], we we are running a second edition, in which
we focus specifically on cognitive architectures for social
human-robot interaction1. As previously, the intention is to
have the workshop be as inclusive as possible, catering both
for experienced researchers in the area, but also for those
for whom this may be a new topic. For all, we intend the
workshop to provide a forum for discussion and the exchange
of ideas. To facilitate this discussion and to provide a basis for
a concrete contribution to the research community, we request
short position paper contributions, and will organise a special

1https://sites.google.com/site/cogarch4socialhri2016/

Fig. 1. Workshop logo: cogs are typically used to represent cognition in an
individual agent, this has been adapted to acknowledge the central role that
interaction must play in social human-robot interactions in addition to the
‘internal’ cognition of the individuals.

issue (based on extended version of the position papers) after
the workshop to consolidate the progress made, and provide
a reference point for the community.

II. BACKGROUND

Cognitive Architectures are constructs (encompassing both
theory and models) that seek to account for cognition (over
multiple timescales) using a set of domain-general structures,
mechanisms and/or processes [2]. Typically (but not neces-
sarily) inspired by human cognition [3], the emphasis is on
deriving a set of general principles of operation not constrained
to a specific task or context. Despite the multitude of im-
plementations used [4], they encourage the system designer
to initially take a broader perspective than the computational
mechanisms to be used and consider what sort of functionality
needs to be present for the type of application, and how this
relates to other cognitive competencies that are required.

For HRI, such an approach to building autonomous systems
based on Cognitive Architecture would emphasise first those
aspects of behaviour that are common across domains, before
applying these to specific interaction contexts for evaluation.
In the case of social interaction, the problems are numerous,
encompassing the coordination of multiple sensory and motor
modalities for the robot, the timing of proactive and reactive
actions, and the recognition of interacting human states (cogni-
tive, affective, physical, etc). Indeed, recent theoretical devel-
opments have emphasised the complex temporal coordination
dynamics of human social behaviour, rather than the internal
state of any individual agent [5]. This leads to questions



regarding how the human should be taken into account in the
action preparation/selection for the robot: explicit and individ-
ual models of performance, theory-of-mind, and/or generalised
statistical models of human behaviour? It also gives rise to
the question of whether and how the robot ‘cognition’ and
actions should be directly informed by (or indeed constrained
by) human psychology and physiology, with the complexity
and ‘non-optimal’ behaviours that may result, e.g. [6]. Should
our cognitive architectures for social robots be based directly
on models of human behaviour, or is there no need for this?
These, and related, questions are outstanding in the field and
require addressing if the utility and efficacy of social robots
in the real world is to be realised.

Up to now, there have only been limited and relatively
isolated attempts to addressing these questions, particularly
within the HRI community, with few examples of direct
applications, e.g. [7]. Building on the first iteration of this
workshop [1], we seek to bring together researchers who
are attempting to formalise knowledge of appropriate robot
behaviours for naturalistic interaction with people, typically
emphasising generally applicable, holistic perspectives (i.e.
striving to consider the full gamut of socially interactive
behaviour rather than only individual aspects).

III. OUTLINE OF THE WORKSHOP

This workshop is aimed at researchers from a wide range
of backgrounds who may be interested in applying concepts
from Cognitive Architectures to their work, specifically Social
HRI. Participation in this workshop is open to all interested
researchers.

Prospective participants are requested to submit a 2-4 page
position paper on (preferably) their work involving cognitive
architectures (including the development and/or application
thereof). In order to facilitate interactions and discussions at
the workshop (by providing a basis for comparison), we ask
that all authors additionally use their position papers to provide
an answer to six guiding questions. These are as follows:

1) Why should you use cognitive architectures - how would
they benefit your research as a theoretical framework, a
tool and/or a methodology?

2) Should cognitive architectures for social interaction be
inspired by and/or limited by models of human cogni-
tion?

3) What are the basic requirements for social interaction
for a cognitive architecture?

4) How the requirements for social interaction would in-
form your choice of the fundamental computational
structures of the architecture (e.g. symbolic, sub-
symbolic, hybrid, ...)?

5) What is the primary outstanding challenge in developing
and/or applying cognitive architectures to social HRI
systems?

6) Can you devise a social interaction scenario that current
cognitive architectures would likely fail, and why would
this be the case?

Submission of a position paper is not a pre-requisite for
attendance, and we encourage researchers to attend the work-
shop even if not willing/able to submit a position paper, in
order to maximise community engagement and the uptake
of these concepts within the field of HRI. By attending,
we envisage that participants will gain insight into how the
consideration of cognitive architectures complements the de-
velopment of autonomous social robots.

IV. ORGANISERS

Paul Baxter is a researcher at Plymouth University (UK) in
the Centre for Robotics and Neural Systems, and the Cognition
Institute. After obtaining a PhD in Developmental Cognitive
Robotics (University of Reading, UK), he worked on the EU
FP7 ALIZ-E project to apply and evaluate a memory-centred
perspective on cognition to social child-robot interaction. His
current research work involves the development of supervised
autonomous therapy robots for children with ASD (EU FP7
DREAM project), with a specific focus on cognitive robot
control.

Greg Trafton is a Cognitive Scientist at the Naval Research
Laboratory in Washington, DC, USA. He has degrees in
both Computer Science (Trinity University) and Psychology
(Princeton University) and works on Human-Robot Interaction
from a cognitive modeling / architectures perspective.

Séverin Lemaignan is a researcher at Plymouth University
(UK) in the Centre for Robotics and Neural Systems, and the
Cognition Institute, focusing on the cognitive pre-requisites of
social interaction between humans and robots. He conducts
both basic work on mechanisms like the Theory of Mind, and
technical realisations on interactive robots.
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Abstract—The Memory-Centred Cognition perspective places
an active association substrate at the heart of cognition, rather
than as a passive adjunct. Consequently, it places prediction and
priming on the basis of prior experience to be inherent and
fundamental aspects of processing. Social interaction is taken
here to minimally require contingent and co-adaptive behaviours
from the interacting parties. In this contribution, I seek to
show how the memory-centred cognition approach to cognitive
architectures can provide an means of addressing these functions.
A number of example implementations are briefly reviewed,
particularly focusing on multi-modal alignment as a function
of experience-based priming. While there is further refinement
required to the theory, and implementations based thereon, this
approach provides an interesting alternative perspective on the
foundations of cognitive architectures to support robots engage
in social interactions with humans.

I. INTRODUCTION

The representation and handling of memory is an important
feature of cognitive architectures, with a variety of symbolic
and sub-symbolic representation schemes used (generally as
passive storage), typically based on assumptions of modularity
[1]. As such, memory is generally considered to be structurally
separable from the cognitive processing mechanisms, and
functions to provide these ‘cognitions’ with the required data.

In the memory-centred cognition perspective, memory is
instead considered to be a fundamentally active process that
underlies cognitive processing itself rather than being a passive
adjunct [2], [3]. Based on evidence and models in neuropsy-
chology, e.g. [4], this approach necessitates a re-examination
of the organisation and functions of cognitive architectures, as
outlined below (section III).

Previously, I put forward the case for the greater consid-
eration of memory in HRI developments [5]. I argued that
memory is pervasive: fundamentally involved in all aspects of
social behaviour, beyond mere passive storage of information
in data structures. In this brief (and relatively introspective)
contribution, I expand on this point, exploring specifically the
requirements of social interaction for robots, and consequently
what cognitive architectures need to encompass.

II. FACETS OF SOCIAL INTERACTION

Social interaction is a complex phenomena that entails a
range of abilities on the part of the interactants; indeed, there
are facets of human-human social interaction that are as yet
not fully understood, with the neural substrates supporting

these in the individual yet to be characterised. One aspect that
is commonly emphasised is the requirement for social signal
processing for the individual, where behavioural cues (such as
gaze, intonation, gesture, etc) should be interpreted to inform
the behaviour of the observer.

One central idea emerging in the behavioural sciences
is the notion of ’social contingency’: the coupling and co-
dependency of behaviours between interacting individuals [6].
This explicitly acknowledges the necessary role that the ’other’
plays to set up the contingent behaviours, and moves away
from the emphasis on social signal processing (though not dis-
counting it). Minimal interaction paradigms provide intriguing
illustrations of this: even given a low bandwidth interaction
environment, there are non-trivial dynamics set up that cannot
be explained by observations of an individual [7].

For social interaction generally, and in particular for this
latter interacting systems perspective, there is an important role
for prediction [8]. When interacting, there is an expectation
that the interaction partner is also a social agent, and thus
predicable in that context. Infants, for example, can use the
gaze behaviour of a robot to infer that the robot is a psy-
chological agent with which they can interact [9]. A previous
study has further lent support to the idea that the imposition
of expectations of social behaviour (and therefore the arising
of socially contingent behaviours, in this case turn-taking) will
come about if the interactants view each other as (potentially)
social agents [10].

If the interaction partner (whether it is human or robot) is
attributed with social agency, initially as a result of anthropo-
morphism for example [11], then one fundamental character-
istic of social interaction between humans that will be seen is
the ‘chameleon effect’ [12], or imitation/alignment, e.g. [13],
[14], [15]. The presence of this within an interaction, as a type
of contingency between the interactants (see above), could be
seen as an indicator of sociality.

These phenomena, from attribution of social agency to
alignment, illustrate a necessity for social robots (to a certain
extent at least) to conform to human cognitive and behavioural
features, as well as to their constraints, to enable predictability,
consistency and contingency of robot behaviour with respect
to the human(s) in the interaction.



III. MEMORY-CENTRED COGNITIVE ARCHITECTURE

From neurospychology, the Network Memory framework
[4] emphasises the central role that distributed associative
cortical networks play in the organisation and implementation
of cognitive processing in humans. The role of associative
networks serves not only as a learning system (through
Hebbian-like learning), but also as a substrate for activation
dynamics. The reactivation and adaptation of existing networks
combine to generate behaviour that is inherently based on prior
experience.

The Memory-Centred Cognition perspective, as applied to
the domain of cognitive robotics [2], seeks to extend these
principles of operation: associative networks supporting acti-
vation dynamics that bring prior experience to bear on the
current situation. A developmental perspective is necessary in
order to do so [16]: the creation (and subsequent updating) of
the associative networks must be done through the process of
experience in order to form the appropriate associations be-
tween information in the present sensory and motor modalities
of the robot (or system, in the case of a simulation).

Once an associative structure has been acquired, the princi-
ple mechanism at play is priming [2]. Priming in a memory-
centred system occurs when some sub-set of the system is
stimulated (from incoming sensory information for example),
which causes activation to flow around the network, in turn
causing parts of the network with no external stimulation to
become active. Priming in this way fulfils a number of im-
portant functions. Firstly, it sets up cross-modal expectations,
or the prediction of currently absent stimuli. Secondly, the
priming process facilitates an integration of information across
different modalities in a way that is explicitly based on prior
experience (biased by the weights of the associative network).

A computational implementation of this has been applied
to an account of the developmental acquisition of concepts
[17]: not only was the system able to complete the task with
a high success rate, but also the errors it made were con-
sistent with those made by humans. A similar computational
implementation has also been used to demonstrate how word
labels for real-world objects can facilitate further cognitive
processing [18]. These examples provide a glimpse of the
range of cognitive processing (relevant to human cognitive
processing) that can be accounted for using the memory-
centred perspective.

Regarding social human-robot interaction, and in particular
the notion that alignment is a fundamental feature of it (section
II), the memory-centred perspective provides an intuitive, and
indeed effective, account. Using exactly the same mechanism
as for the concept learning study, the structure of an associative
network was learned based on human behaviour (across a
number of different modalities), which could then be directly
used to determine the characteristics of the robot behaviour
[14]. Alignment is achieved as a by-product of the way the
memory-centred cognitive system operated: the associations
were learned through experience, and behaviour was generated
from priming (i.e. recall).

IV. ADDRESSING QUESTIONS

From the context outlined above, I now attempt to provide
answers to a set of six questions relevant to the notion of
social cognitive architectures. I particularly seek to emphasise
a principled-basis (as opposed to computational mechanism-
basis) for cognitive architectures and for the application to
social interaction.

A. Why should you use cognitive architectures - how would
they benefit your research as a theoretical framework, a tool
and/or a methodology?

The benefit would be in considering cognitive architectures
as a set of principles (a theoretical framework), a methodology
for assessing these principles, and as a tool for providing
robots with autonomous intelligent behaviour.

There are in my view three specific contributions related to
scientific development (as opposed to technical implementa-
tion) that cognitive architectures can make to HRI research and
development, which are centred around the idea of a cognitive
architecture being made up of a set of formalised hypotheses.

Firstly, in a principled manner, they allow data and theory
from empirical human studies to be integrated into artificial
systems. For example, if data from a psychology experiment
is to be integrated, a framework for doing so is required
(i.e. the architecture enables an interpretation of the data).
This first point promotes the idea of a directly human-
inspired/constrained architecture. Secondly, treating cognitive
architectures as a set of formalised (through implementation)
principles, they facilitate a comparison of different archi-
tectures at a level abstracted away from the computational
systems/algorithms used, enabling a focus on the assumptions.
In the presently considered case of social interaction, this is a
useful facet given the as yet uncertain nature of what exactly
constitutes social interaction (section II). Thirdly, the applica-
tion of cognitive architectures (in robotic systems for instance)
provides a means of evaluating its constituent assumptions and
principles. This is related to the first point, but is focused
more on the integration of empirical evidence obtained from
application/experimentation with the architecture itself.

B. Should cognitive architectures for social interaction be
inspired and/or limited by models of human cognition?

Following from the principles of social interaction outlined
above, essentially, yes.

Taking the view that social interaction between humans is
founded on the intrinsic tendency of humans to expect certain
types of behaviour from their interaction partners (see section
II), it becomes important to ensure that the robot will not
violate expectations. In order not to violate expectation, there
must necessarily be some understanding (either on the part of
the system designer or learned by the system itself) of what
expected human behaviour would be.

In the memory-centred cognition perspective, prior inter-
action history of the robot with humans would constrain its
future behaviour by this experienced behaviour.



C. What are the functional requirements for a cognitive ar-
chitecture to support social interaction?

The discussion of social interaction (section II) emphasised
the importance of contingent behaviour, anticipation/prediction
to support this, and adaptation/personalisation. In addition, it
is necessary to specify appropriate timing, and embodiment-
appropriate responses.

If socially-appropriate behaviour is in the eye of the (human)
beholder, then the Keepon robot for example demonstrates the
importance of coherence of behaviour and timing [19]. The
minimally complex embodiment is convincingly responsive in
a social manner, to the extent that it is seen as a communicative
partner [20]. Even though it doesn’t use language, only uses
few degrees of freedom (in contrast to many other robots used
in HRI), and is only minimally humanoid in appearance, the
effect of apparent sociality is strong.

Integration of sensory and motor modalities in a temporally
consistent and responsive manner (i.e. contingency), based on
principles of prediction from prior experience (i.e. memory),
and coherency with the robot embodiment used (c.f. Keepon
example) are therefore fundamental functional requirements
for a social cognitive architecture.

D. How would the requirements for social interaction inform
your choice of the fundamental computational structures of
the architecture (e.g. symbolic, sub-symbolic, hybrid, ...)?

Given the commitment to the memory-centred cognition
perspective in this work, there is a natural fit with sub-
symbolic computational structures. This provides a number
of inherent advantages (section III), such as the integration
of predictive behaviour from prior experience, and priming
effects (within and between modalities).

However, the nature of applications in human-robot inter-
action (relying on language for example) means that it is
not yet possible to dispense with symbol-processing systems.
Nevertheless, there is in principle an effort to push the limits
of sub-symbolic processing mechanisms up the processing and
representation hierarchy, as revisited below (section V).

E. What is the primary outstanding challenge in developing
and/or applying cognitive architectures to social HRI systems?

One of the primary challenges in the application of cognitive
architectures to social interaction lies in the general lack of
understanding of what is precisely involved in human-human
social interaction. To a certain extent it is an attempt to find a
solution to a problem that is as yet not fully characterised. This
reflects on the requirements for the cognitive architectures that
should engage in social interaction: if a commitment to human-
like cognition/behaviour is made (see section IV-B), then what
precisely are the constraints that need to be incorporated?

A more practical concern that requires further development
is the provision of sensory systems for robots that can provide
sufficiently complex characterisations of the (social) environ-
ment for effective decision making. There is however, in my
opinion, no clear distinction between sensory systems and
cognitive processing, given the necessity for interpretation of

raw sensory signals (e.g. camera images) at various levels of
abstraction.

F. Can you devise a social interaction scenario that current
cognitive architectures would likely fail, and why?

The question is whether the application to a single domain
can be generalised to other domains, which is where the
benefits of cognitive architectures should come (section IV-A).
As such, rather than a specific interaction scenario, I would
suggest instead that autonomous sociality over variable time-
scales poses challenges to current approaches and implemen-
tations.

In the short term, the challenge for social robots is to pro-
duce behaviour appropriate to the interaction context, informed
by prior interaction experience, in a manner consistent with
the expectations of the interacting humans. Furthermore, this
socially interactive behaviour should adapt to the interaction
partner over time, in terms of verbal and non-verbal behaviours
for example. The technical challenges to support this in terms
of sensory processing are outstanding, but there are also clear
challenges in terms of the mechanisms of adaptation required
(i.e. the ‘cognitive’ aspect). The memory-centred approach has
ventured an implementation towards this problem, although the
account is as yet incomplete.

Over extended periods of time, the challenges are com-
pounded by requirements for stability. This is not just stability
in terms of ensuring the system doesn’t fail, but also in
resolving the apparent trade-off between adaptability to new
situations and robustness of the cognitive system. From the
perspective of the memory-centred cognition account, the res-
olution to this question lies in how the formation, maintenance
and manipulation of memory is handled in the system in terms
of parameters and structures.

V. OUTLOOK

The nature of the discussion above is primarily principled
and theoretical rather than focused on specific computational
mechanisms. Naturally I believe memory-centred cognition
perspective to have a consistency and coherence that merits
consideration and further development. However, it is not in
its current state able to practically support all aspects of real
social interactions with real people.

This is a limitation shared with many ‘emergent’ cog-
nitive architecture approaches [21]: theoretically interesting
and coherent perhaps, but practically limited in terms of
what can be done on real systems (use of language and
dialogue being good examples of this). This is partly due to
an implication of the theoretical perspective: by committing
to a holistic approach that emphasises the integration and
interplay of many different factors (including, for example,
cognition, embodiment, culture, etc), the problem is made
more difficult before a computational implementation is even
begun. On a practical level, the types of dynamical system (be
they neural network-based or other) used are typically not fully
understood, or are at least highly complex [22], e.g. in terms of
conditions for stability (particularly when adaptation/learning



is incorporated), which does not bode well for social robots
that have to be reliable in real interactions with real people.

For these reasons, I do not believe that symbol-based
approaches should (or can) be discarded, at least not for
the foreseeable future. They provide the means of getting
closer to actually achieving the desired behaviours in reality.
Having said this, and as noted above (sec. IV-D), I remain
intent on pushing the boundary between symbolic and sub-
symbolic implementations ‘up’ the abstraction hierarchy, in
a manner common with a range of other developmentally-
oriented researchers [23], [24].

So, what does a memory-centred cognitive architecture look
like if it is to be effectively applied to social interaction? And
what does the memory-centred cognitive architecture enable in
terms of social robots that would be difficult to achieve with
an alternative approach? The functionality of developmental
learning of cross-modal associations for prediction and action
generation outlined above (section III) provides a technically
difficult but in principle effective solution to the issue of
learning from a vast array of potential multi-modal information
in a way that is useful for action generation. This is not to say
that this is the only approach (theoretical or computational)
that would be capable of a similar functionality. However,
this is where the second aspect, the requirement to fulfill
social interaction with humans through conformity with human
cognition (section II), becomes a distinguishing characteristic
of the memory-centred approach.

In developing the theory, I have applied it to a range of
practical systems and applications, as reviewed above (sec-
tion III). For example using the same mechanism, accounts
have been made of concept acquisition [17] and multi-modal
robot behaviour alignment to an interaction partner [14].
Other systems using the same principles have been used
to demonstrate the development of low-level sensory-motor
coordination through experience [16], and the role of words
in supporting new cognitive capabilities [18].

Whereas my commitment to the memory-centred cognition
perspective for robotics is strong, my commitment to the
specific mechanisms used is weak. I must acknowledge that
there are a number of weaknesses with the various systems
used, notably related to hierarchical structure/representation,
and an incomplete account of temporal processing. However,
in my view, this does not invalidate the theoretical approach,
and merely serves to provide motivation to either find or
develop a more appropriate computational implementation that
fulfils all of the principles and constraints of the memory-
centred cognition perspective.
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A Guide to Using systemGUI

Summary

The purpose of this technical report is to provide a guide for all technical partners and the end users
of the systemGUI developed as part of WP6. Technical partners may need this information in order
to perform tests with an expanded subset of the integrated DREAM system. Therapists will need to
understand how the systemGUI interface is used in order to run planned experiments effectively. This
report is based on the current systemGUI at the production date; details may change to align with the
GUI changes in the future.

Principal Contributors

The main authors of this document are as follows (in alphabetical order).

Hoang-Long Cao, VUB
Pablo Gomez, VUB
James Kennedy, Plymouth University
Emmanuel Senft, Plymouth University

Revision History

Version 1.0 (J.K. 18-01-2017)
Outline of first draft.

Version 1.1 (J.K. 18-01-2017)
First version complete.

Date: 18/01/2017
Version: No 1.0
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A Guide to Using systemGUI

1 Overall Vision

The GUI is split into four sections:

1. Actions to be performed between scripts (Section 2)

2. Actions to be performed when running a script (Section 3)

3. Child history information (Section 4)

4. Developer console (not covered in this document)

To switch between these sections, use the tabs as highlighted in Figure 1. Some buttons will remain
greyed-out until certain elements have been loaded - see the relevant section of this report for further
details.

Figure 1: View of systemGUI on launch. Tabs to move between the main interaction views are
highlighted by the orange box.
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A Guide to Using systemGUI

2 Off-Script Actions

Figure 2 shows the off-script actions pane. The robot must be connected correctly to the system in
order to perform these actions. Clicking a button will trigger the corresponding robot behaviour. This
tab is not available while a script is running, but can be used when a script is stopped, or when a script
step is manually stopped by the therapist using the ’I will choose’ button (more details in Section 3).
These buttons are to be used by the therapist between scripts for maintaining the child’s engagement,
or in scripts to regain the child’s focus if they are not engaging.

Figure 2: View of off-script actions tab.
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A Guide to Using systemGUI

3 Running Scripts

The script pane, as shown in Figure 3 is where most of the therapy will be conducted from. The
interaction model is based on supervised autonomy, as described in DREAM deliverable D6.3.3. To
start an intervention:

1. Select a child from the ’Name’ drop-down

2. Type a name for the session in the ’Session Name’ field

3. Select the ’Session Partner’: either Therapist or Robot

4. Click ’Create Session’

From this point, the child details are loaded - they can now be viewed in the ’Child History’ tab, and
the ’Load script’ option is now available. After a script is selected in the ’Load script’ drop-down, the
’Start script’ button can be used to begin the script. It can be paused at any time using the ’I will choose’
red button at the right of the pane. It can be completely stopped to restart, or select a new script using
the ’Stop script’ button (same location as the ’Start script’ button was). The robot will autonomously
follow the script steps loaded on the left. If the proposed action is incorrect or sensory information is
missed then the therapist can override the robot behaviour using the ’I will choose’ button on the right.
This pauses the script and enables the ’Between Scripts’ tab and the lower part of the script buttons.
These can now be used to execute robot behaviours until the ’Back to script’ button is pressed (same
location as ’I will choose’). The buttons available will depend on the script loaded - this is so the right
subset of the robot behaviours is displayed to keep things simple (choosing from 6 or 7 options is easier
than from 40+). The ’Do it now’ button can be used to instantly execute the current proposed robot
behaviour.

Figure 3: View of on-script actions tab after a script has been loaded.
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A Guide to Using systemGUI

4 Child History/Data Storage

This view provides details for the child in the current session; see Figure 4. The details will not be
loaded here until a child is selected from the ’Name’ drop-down and ’Create Session’ has been clicked.
In the left pane are the details stored in the user model by the therapists for each child (these details
are pre-entered by the therapists using the userModelCreator.exe tool available in the DREAM SVN
/release/tools directory produced by J.K., PLYM). In the right pane are historical intervention details.
All of these pieces of information are read from the user model file, stored in the DREAM SVN
/release/components/userModel/config/userdata directory. Each user has their own .user file with the
pre-entered and intervention data stored. These files therefore hold a primary means of evaluating the
interventions and should never be manually modified while experiments are ongoing, they should be
regularly backed up, and also be treated as confidential.

Before running an experiment, it is important that the intervention history is cleared for any users
that have been used as part of testing (this should be done manually).

Figure 4: View of child history tab after a session has been loaded.
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Towards “Machine-Learnable” Child-Robot Interactions:
the PInSoRo Dataset

Séverin Lemaignan1, James Kennedy1, Paul Baxter2 and Tony Belpaeme1

Abstract— Child-robot interactions are increasingly being
explored in domains which require longer-term application,
such as healthcare and education. In order for a robot to behave
in an appropriate manner over longer timescales, its behaviours
should be coterminous with that of the interacting children.
Generating such sustained and engaging social behaviours is an
on-going research challenge, and we argue here that the recent
progress of deep machine learning opens new perspectives that
the HRI community should embrace. As an initial step in that
direction, we propose the creation of a large open dataset
of child-robot social interactions. We detail our proposed
methodology for data acquisition: children interact with a robot
puppeted by an expert adult during a range of playful face-to-
face social tasks. By doing so, we seek to capture a rich set of
human-like behaviours occurring in natural social interactions,
that are explicitly mapped to the robot’s embodiment and
affordances.

I. MACHINE LEARNING: THE NEXT HORIZON FOR
SOCIAL ROBOTS?

While the family of recurrent neural networks have re-
peatedly made the headlines over the last few years with
impressive results, notably in image classification, image
labelling and automatic translation, they have been largely
ignored in many other fields so far as they are perceived to
require very large datasets (hundreds of thousands to millions
of observations) to actually build up useful capabilities.
Even though neural networks have demonstrated compelling
results in open-ended, under-defined tasks like image la-
belling, they did not stand out as attractive approaches to
problems involving high dimensions with relatively small
datasets available – like human-robot social interactions.

Besides, if one considers “social interactions” to also
entail joint behavioural dynamics, and therefore, some sort of
temporal modeling, neural networks look even less enticing
as time is notably absent from most of the tasks which neural
networks have been successful at.

In 2015, the Google DeepMind team demonstrated how a
convolutional recurrent neural network could learn to play
the game Break-Out (amongst 48 other Atari games) by
only looking at the gaming console screen [1]. This result
represents a major milestone: they show that a relatively

This work has been partially supported by the EU H2020 Marie
Sklodowska-Curie Actions project DoRoThy (grant 657227), the EU FP7
DREAM project (grant 611391), and the EU H2020 L2TOR project (grant
688014).
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firstname.surname@plymouth.ac.uk

2Paul Baxter is with the Lincoln Centre for Autonomous Sys-
tems, School of Computer Science, University of Lincoln, U.K.
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small sample size (about 500 games) is sufficient for an
artificial agent to not only learn how to play (which requires
an implicit model of time to adequately move the Break-
Out paddle), but to also create gaming strategies that look
like they would necessitate planning (the system first breaks
bricks on one side to eventually get the ball to break-out and
reach the area above the remaining bricks, therefore ensuring
rapid progress in the game). We argue that the complexity
of mechanisms that such a neural network has been able to
quickly uncover and model should invite our community to
question its applicability to human-robot interactions (HRI)
in general, and sustained, natural child-robot interactions in
particular.

However, the lack of a widespread HRI dataset suitable
for the training of neural networks is a critical obstacle to
this initial exploration. Therefore, as a first step, we propose
a design for such a dataset, as well as a procedure to acquire
it. We hope that discussions during the workshop may help
in further refining this proposal.

II. MACHINE LEARNING AND SOCIAL BEHAVIOUR

Using interaction datasets to teach robots how to socially
behave has been previously explored, and can be considered
as an extension of the traditional learning from demonstration
(LfD) paradigms to social interactions (for instance [2],
[3]). Previous examples have generally focused on low-level
recognition or generation of short, self-standing behaviours,
including social gestures [4] and gazing behaviours [5].

Based on a human-human interaction dataset, Liu et
al. [6] have investigated machine learning approaches to
learn longer interaction sequences. Using unsupervised learn-
ing, they train a robot to act as a shop-keeper, generating
both speech and socially acceptable motions. Their approach
remains task-specific, and while they report only limited
success, they emphasise the “life-likeness” of the generated
behaviours.

Kim et al. [7] highlight that applying deep learning to
visual scene information in an HRI scenario was successful,
but that generating behaviours for the robot to be able to act
in a dynamic and uncertain environment remains a challenge.

These examples show the burgeoning interest of our
community for the automatic learning of social interactions,
but also highlight the lack of structure of these research
efforts, as further illustrated by the quasi-absence of public
and large datasets of human-robot interactions. To our best
knowledge, only the H3R Explanation Corpus [8] and the
Vernissage Corpus [9] have been published to date. The H3R
Explanation Corpus is a human-human and human-robot



Fig. 1. The acquisition setup: a child interacts with a robot in a range
of interactive tasks. The robot is physically guided by an adult expert. We
record, in a synchronised manner, the full joint-states of the robots, the RGB
and depth video stream from three perspectives (global scene and each of the
participant faces), and the sounds (notably, the verbal interactions between
the participants).

dataset focusing on a “assembly/disassembly explanation”
task and includes physiological signals (22 human-robot
interactions), but is not publicly available. the Vernissage
Corpus includes one museum guide robot interacting with
two people (13 interactions in total), with recordings and
annotations of poses and speech audio (stated to be publicly
available). Both these corpora are however too small for
machine-learning applications.

III. THE PLYMOUTH INTERACTING SOCIAL ROBOTS
DATASET (PINSORO)

A. High-Level Aims

The Plymouth Interacting Social Robots (PInSoRo)
Dataset is intended to be a novel dataset of human-guided
social interactions between children and robots. Once cre-
ated, we plan to make it freely available to any interested
researcher.

This dataset aims to provide a large record of social child-
robot interactions that are natural: we aim to acquire robot
behaviours through corresponding human social behaviour.
To this end, we propose that an expert adult will puppet
a passive robot (Fig. 1). As such, the gestures, expressions
and dynamics of the interaction are defined and acted by a
human, but as he/she uses the robot body to actually perform
the actions, the motions are implicitly constrained by (and
thus reflect) the robot embodiment and affordances.

The interactions are supported by a range of short social
tasks (described in Section III-B). Critically we propose to
limit these tasks to face-to-face social interactions, either
dyadic or triadic. This constrains the dataset to a more
tractable domain, and should ensure technical feasibility. The
tasks have to fulfil several key requirements:

• be fundamentally social, i.e. these tasks would make
little or no sense for an agent alone;

• foster rich multi-modal interaction: simultaneous
speech, gesture, and gaze behaviours are to be observed;

• exhibit non-trivial dynamics, such as implicit turn-
taking;

• should cover a broad range of interaction contexts and
situations.

While the tasks will initially be short (in order to acquire
a diverse enough dataset), we believe that the captured
social behaviours could also be used to inform long-term
child-robot interaction. Indeed, naturalistic, rich and socially-
oriented multimodal behaviour (beyond simple stereotyped
and reactive behaviour) sets the expectation in the human
that long-term interactions and social presence [10] can
be supported by the robot. Furthermore, we expect such
a dataset to allow researchers to uncover several implicit
and/or micro-behaviours that, while essential for long-term
natural interactions, are difficult to explicitly characterise,
and therefore difficult to implement.

B. Tasks

We suggest an initial set of four tasks, lasting about
10 minutes each. They involve collaborative manipulation
of simple objects (such as toy cubes), (acted) storytelling,
and dialogue-based social gaming. The tasks are intended
to be sufficiently different from one another in order to
collect a variety of different behaviours, and to minimise
task-dependency of the behaviours eventually learnt from the
dataset. Physical manipulation of objects across the tasks is
limited by the Aldebaran Nao grasping capabilities; the tasks
are designed with this in mind, e.g. pushing objects away or
to the side is possible, whereas pulling them is more difficult.

The tasks are also designed to be playful and engaging,
and are derived from classic childrens’ games and activities
(they are directly inspired by tasks used in other child-robot
interaction work, such as [11]). They are thus expected to
elicit social interactions that are particularly relevant to child-
robot interaction.

a) Task 1: Spatial reasoning: In this task, one part-
ner (child or robot) has a “completed” model made from
shapes. Their role is to explain to the other partner how to
arrange an identical set of shapes in order to re-create the
completed model. The partner with the completed model is
not allowed to directly touch the shapes. This task is intended
to encourage verbal communication and deictic as well as
iconic gestures. It is possible to tune the difficulty of the
task through, for example, providing multiple pieces with
the same colour, or shape. Similar spatial tasks have been
used in other HRI experiments both with adults [12] and
children [13].

b) Task 2: Storytelling: The second task revolves
around storytelling. To provide a context and collaborative
element to the storytelling, “Story Cubes” are incorporated
into the task. These cubes are like dice, but with pictures
in place of numbers; the pictures serve to guide the story.
The two partners are asked to invent a story together, and
they take turns in throwing one (large, custom-made) die,
arranging the new picture into the story line, and proceeding
to tell, and act out, the unfolding story. This task is expected
to primarily generate verbal interaction, accompanied by
iconic gestures.



Fig. 2. A sokoban-inspired task requiring collaboration to complete given
limitations in robot manual dexterity: the robots face each other across the
long edge of each puzzle. Each object (red/blue square) must be pushed
to its own goal (red/blue G), in three example levels of difficulty: (A) red
and blue objects each simply pushed by one individual, both interactants
required, but no explicit collaboration; (B) again a single object requires
only a single interactant to manipulate, but some coordination is required
due to shared path; (C) each object requires both interactants to manipulate,
as well as coordination due to joint path.

c) Task 3: Collaborative strategising: The third pro-
posed task is inspired by the Sokoban game (Fig. 2): the
two partners must correctly move a set of cubes to locations
within a 2D playground by only pushing the cubes. Due to
the physical setup of the interaction (Fig. 1), the robots are
essentially limited to pushing away the cubes, transforming
the game into a necessarily collaborative activity.

d) Task 4: Party game “Taboo”: The fourth proposed
task involves triads in a social party game chosen not to
require specific gesturing. One such game is “Taboo”, a game
where one must get others to guess a word without using the
word itself. As the game relies only on verbal interaction,
we expect all the gestures and gaze behaviour performed
by the players to be social backchannel communication, and
therefore of direct relevance for the dataset. Using triads is
also expected to elicit a richer set of social situations. We
expect it to prevent the overfitting of the model to the specific
features of dyadic social interactions.

C. Methodology

The envisioned dataset would be comprised of a large
number (> 50) of about 30 minutes long recordings of
interactions between one child and one puppet-robot, guided
by an experimenter (Fig. 1). The pair would be invited to
play one or several of the proposed tasks (to be defined after
initial pilots). The children would be between 8 and 14 years
old. A possibly narrower age range is to be specified once the
tasks are precisely defined to ensure the tasks are suitable and
engaging for the target age group. Children would typically
be recruited from local schools.

We propose to use a Nao robot, and to record the full joint-
state of the robot over time. The robot is mostly passive:
the feet are firmly fixed on the support table, and all other
degrees of freedom, except for the head, are free. The head
is externally controlled so that the robot gaze follows the
gaze of its human puppeteer in real-time.

The choice of the Nao robot is guided by its small size,
making it suitable for puppeting, and its prevalence in the
HRI community, resulting in a dataset relevant for a broader

academic audience. Also, since Nao is a relatively high
degrees-of-freedom (DoF) robot (25 DoFs in total, 5 DoFs
per arm), it mimics human kinematics reasonably well. As
the motions are recorded in joint space, the dataset can
be mapped to other robotic embodiments with similarly
configured degrees-of-freedom.

D. Recorded Data

The dataset would comprise the following raw data:
• full 30Hz 25 DoF joint-state of the Nao robot,
• RGB + depth video stream of the scene (see Fig. 1),
• RGB + depth video stream from the child, as seen by

the robot,
• speech recording.
Recorded in a fully synchronised manner, these data

streams are intended to represent a useful input for many
machine-learning techniques. They provide a rich dataset for
a range of domains related to social child-robot interaction:
from analysis of behavioural alignment between partners
(via metrics like the recently proposed Individual Motor
Signature [14]), to modeling of the dynamics of turn-taking,
to the uncovering of implicit in-the-moment synchronisation
mechanisms.

This would be complemented by higher-level, post-
processed data:

• 68 face landmarks on the child’s face, providing options
for further facial analysis (like emotion recognition),

• child’s skeleton extraction,
• the gaze localisation of each of the participants,
• the 3D localisation of all physical actors (child, all robot

parts, cameras, table, manipulated objects),
• the verbal interaction transcripts (automatic transcript

with manual verification and correction).
All these sources would be acquired via the ROS mid-

dleware (which provides the required mechanism for time
synchronisation between the sources) and stored as ROS bag
files, making it simple to replay the interactions.

As this dataset would contain sensitive data involving
children, strict and specific guidelines to ensure the ethical
handling of the dataset will be issued before effectively
sharing any data.

IV. DISCUSSION

A. Envisioned Applications

The recent advances in machine-learning described in the
introduction raise the question of its applicability to the key
challenges of artificial intelligence for robotics. Social HRI is
a particularly difficult field as it encompasses a large range of
cognitive skills in an intricate manner. Application domains
of social HRI are typically under-defined, highly dynamic
and difficult to predict.

From the data collected, a starting point for machine
learning could entail a probabilistic model for reactive be-
haviours in a given task, i.e. finding for each “social cue” the
possible set of responses and their probabilities. This could
be made generative by using the probability distribution to



seed a roulette-wheel action selection mechanism, effectively
creating a probabilistic reactive controller. Whilst simplistic,
this is an illustrative example of how the data may be used.

As suggested in the introduction, we also believe that such
a dataset could be used to train deep neural networks. While
the proposed dataset is very likely not comprehensive enough
to train a neural network into an autonomous interactive
system, it may be sufficiently rich to train interesting hidden
units whose activations would be conditional on specific
social situations. For instance, one could imagine that an
adequately configured network would generate hidden units
able to activate on joint gaze, or on deictic gestures. It must
be emphasised that such findings are entirely hypothetical,
and we only conjecture them here.

B. Possible Methodological Alternative

Several methodological issues that may impact on the
quality of the interaction, the data collection, and the gener-
alisability of results have been anticipated. As the puppeteer
behaviours are bound to the embodiment of the robot, it may
be that this manipulation inhibits the production of natural
behaviours. A small-scale pilot will be used to explore
whether or not the puppetted behaviours of the robot inhibit
natural interactions with the children.

Besides, one drawback of the proposed acquisition
methodology is that the puppeteer remains partially visible
to the child (the hands, legs, torso are visible), which may
impact the clarity of the interaction (is the child interacting
with the robot or with the human behind it?). An alternative
acquisition procedure is considered where the puppeteer
would remotely control the robot from a different room,
using Kinect-based skeleton tracking for the posture control,
a head-mounted device for immersive remote vision, and
a headset for remote audio. While this adds significant
complexity to the acquisition procedure and increases the
level of dexterity a task may require, it would provide a
cleaner interaction context.

While the tasks have been designed to collect a variety
of social behaviours and interaction dynamics, it may be
that they are still too similar for any subsequent machine
learning to acquire adequately general (i.e. not task-specific)
behaviours for broader use. Similarly, the use of a single
robot may prevent generalisation to other robotic platforms.
However, it is not possible to know until algorithms have
been applied and tested.

C. Long-Term Considerations

If useful social behaviours can be learnt from the initial
dataset collected, then this would warrant further collection
and exploration of the technique. Transfer to adult-adult
pairs could be conducted (possibly with modification of the
tasks). Child pairs performing the tasks without the robot
could be used to further update behavioural models, as could
human behaviours in response to learned robot models, thus
providing longer-term adaptivity of behaviour.

Whilst we must acknowledge that the task-centred in-
teractions we propose as part of the PInSoRo dataset are

relatively short-term, we do argue that they are capable of
simultaneously capturing a range of subtle and complex
naturalistic behaviours across a range of different modali-
ties. This type of rich behaviour (by going beyond simple
stereotyped and reactive behaviour) supports the expectation
in the human that they are interacting with a truly socially
competent agent, thus providing the conditions in which
long-term child-robot interactions could take place. The ap-
plication of machine learning algorithms (particularly “deep”
methods) provide an opportunity to automatically datamine
the solutions to this vastly complex problem that may not be
possible with hand-coded systems. Whilst this methodology
may yet prove to not be sufficient for a complete solution,
we propose that the PInSoRo dataset (and others that may
follow) establishes a necessary foundation for the creation
of socially-competent robots over long-term interactions.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] C. L. Nehaniv and K. Dautenhahn, Imitation and social learning in
robots, humans and animals: behavioural, social and communicative
dimensions. Cambridge University Press, 2007.

[3] Y. Mohammad and T. Nishida, “Interaction learning through imita-
tion,” in Data Mining for Social Robotics. Springer, 2015, pp. 255–
273.

[4] Y. Nagai, “Learning to comprehend deictic gestures in robots and
human infants,” in Proc. of the 14th IEEE Int. Symp. on Robot and
Human Interactive Communication. IEEE, 2005, pp. 217–222.

[5] S. Calinon and A. Billard, “Teaching a humanoid robot to recognize
and reproduce social cues,” in Proc. of the 15th IEEE Int. Symp. on
Robot and Human Interactive Communication. IEEE, 2006, pp. 346–
351.

[6] P. Liu, D. F. Glas, T. Kanda, H. Ishiguro, and N. Hagita, “How to
train your robot - teaching service robots to reproduce human social
behavior,” in Proc. of the 23rd IEEE Int. Symp. on Robot and Human
Interactive Communication, 2014, pp. 961–968.

[7] K.-M. Kim, C.-J. Nan, J.-W. Ha, Y.-J. Heo, and B.-T. Zhang, “Poro-
robot: A deep learning robot that plays video q&a games,” in Proc. of
the AAAI 2015 Fall Symposium on AI for Human-Robot Interaction,
2015.

[8] Y. Mohammad, Y. Xu, K. Matsumura, and T. Nishida, “The H3R
Explanation Corpus human-human and base human-robot interaction
dataset,” in Proc. of the Int. Conf. on Intelligent Sensors, Sensor
Networks and Information Processing. IEEE, 2008, pp. 201–206.

[9] D. B. Jayagopi, S. Sheiki, D. Klotz, J. Wienke, J.-M. Odobez,
S. Wrede et al., “The vernissage corpus: A conversational human-
robot-interaction dataset,” in Proc. of the 8th ACM/IEEE Int. Conf. on
Human-Robot Interaction. IEEE Press, 2013, pp. 149–150.

[10] I. Leite, C. Martinho, A. Pereira, and A. Paiva, “As time goes by:
Long-term evaluation of social presence in robotic companions,” in
Proc. of the 18th IEEE Int. Symp. on Robot and Human Interactive
Communication. IEEE, 2009, pp. 669–674.

[11] T. Belpaeme, J. Kennedy, P. Baxter, P. Vogt, E. J. Krahmer, S. Kopp
et al., “L2TOR - Second Language Learning Tutoring using Social
Robots,” in Proc. of the First Int. Workshop on Educational Robots at
the 2015 Int. Conf. on Social Robotics, 2015.

[12] A. Sauppé and B. Mutlu, “Effective task training strategies for
instructional robots,” in Proc. of the 10th Annual Robotics: Science
and Systems Conference, 2014.

[13] C. Zaga, M. Lohse, K. P. Truong, and V. Evers, “The effect of a robot’s
social character on children’s task engagement: Peer versus tutor,” in
Proc. of the 2015 Int. Conf. on Social Robotics. Springer, 2015, pp.
704–713.
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WP6 Full Port Descriptions

Summary

The purpose of this technical report is to provide a complete overview of the WP6 system. The system
is broken down into components and all connections on ports are shown between these components.
For the primitives, this document also defines the structure of the messages being passed on ports for
use by other technical partners in WP4 and WP5.
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WP6 Full Port Descriptions

1 Overview

This Technical Report outlines the design of WP6 components and their connections to one another
and components from other work packages, down to the communication port level. It is intended to
be used as a guide for the developers within WP6, and also the other technical partners to understand
the information that WP6 components expose for their use. The components described are as follows
(with the DREAM deliverable number detailing their purpose/implementation):

• attentionReactionSubsystem (D6.1, D6.2)

• scriptManager (D6.3.1+)

• deliberativeSubsystem (D6.3.1+)

• userModel (D6.3.3+)

• systemGUI (D6.3.3+)

• sandtrayServer (D6.3.3+)

• sandtrayEvent (D6.3.3+)

• actuationSubsystem (D6.4.1+)

• naoInterface (D6.4.3+)

• selfMonitoringSubsystem (D6.5; due M54)
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WP6 Full Port Descriptions

2 Primitive Implementations

Below are definitions of the two previously undefined (at the port level) primitives that WP6 exposes to
other components.
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getInterventionStatus(VectorOf<int>) (Agreed in principle with WP5; ST). The complete set of new 
definitions are required to complete the script_id parameter. The structure may need to change if 
there are any situations in which we can expect two behaviours in the same script step; this is not 
the case in D1.1.). 

getInterventionStatus(script_id, script_step, expected_behaviour_id, 
expected_behaviour_parameter, expected_behaviour_time_window, on_script, script_type_id) 

Index Description Possible 
Values Value Translation 

0 script_id 0 between scripts/script not started 
  1 joint attention 1 
  2 joint attention 2 
  3 joint attention 3 
  .. more tbc 
1 script_step >=0 script step indicator 
2 expected_behaviour_id 0 no child behaviour expected for script step 
  1 child perform good sandtray move 
  2 child touch sandtray image 
  3 child does not touch sandtray 
  4 child touch robot-owned sandtray image 
  5 look right 
  6 look left 
  7 point left 
  8 point right 
  9 no movement 
  10 child speaks 
  11 hand wave 
  12 hands covering eyes 
  13 hands on head 
  14 fly 
  15 drive car 
  16 drink/smell 
  17 new complex traj 1 
  18 new complex traj 2 
  19 new complex traj 3 
  20 new complex traj 4 
  21 Knocking 
3 expected_behaviour_parameter -1 no parameter 
  >=0 sandtray image id 

4 expected_behaviour_time_window >=0 time in ms for behaviour to occur within (-1 means 
infinity) 

5 on_script 0 off script 
  1 on script 
6 script_type_id 0 turn taking 
  1 imitation 
  2 joint attention 
  3 pattern 
  4 sharing information 

 

 



interactionEvent(VectorOf<int>) (Agreed in principle with WP5; ST). The primary intention of this 
primitive is to transmit relevant sandtray events for calculation of child performance from WP6 to 
WP5, however it has designed to be flexible for other purposes if required at a later date). 

interactionEvent(type_of_event_id, event_parameter) 

Index Description Possible Values Value Translation 
0 type_of_event_id 0 good sandtray move 
  1 bad sandtray move 
  2 touch on sandtray image 
  3 touch off sandtray image 
  4 child touch robot-owned sandtray image 
1 event_parameter -1 no parameter 
  >=0 sandtray image id 

 



WP6 Full Port Descriptions

3 Component and Port Descriptions

This section includes a graphical representation of all connections with WP6 specified to the port level.
Below this are tables for each of the components in WP6, describing the component, the ports, the port
directions, and the data formatting.
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Component Name
Functionality
Primitives implemented

moveHand(handDescriptor, x, y, z, roll)
moveHead (x, y, z)
moveSequence(sequenceDescriptor)
moveTorso (x, y, z)
release()
say(text, tone)
enableRobot();
disableRobot();

System architecture ports used Port Port Type Comm's with
/actuationSubsystem/disableRobot:i BufferedPort<VectorOf<int>> Actuate i
/actuationSubsystem/enableRobot:i BufferedPort<VectorOf<int>> Actuate i
/actuationSubsystem/grip:i BufferedPort<VectorOf<int>> Actuate i
/actuationSubsystem/moveHand:i BufferedPort<VectorOf<double>> Actuate i
/actuationSubsystem/moveTorso:i BufferedPort<VectorOf<double>> Actuate i
/actuationSubsystem/release:i BufferedPort<VectorOf<int>> Actuate i
/actuationSubsystem/say:i BufferedPort<Bottle> Actuate i
/actuationSubsystem/moveSequence:i BufferedPort<VectorOf<int>> Actuate i
/actuationSubsystem/moveHead:i BufferedPort<VectorOf<double>> Actuate i

Other ports used Port Port Type Comm's with
/naoInterface/pointAt:i BufferedPort<VectorOf<float>> Actuate i
/naoInterface/sensorFeedback:o BufferedPort<Bottle> Actuate o
/naoInterface/robotMotorFeedback:o BufferedPort<Bottle> Actuate o

Date of submission core
Date of submission extended

ins 10
outs 2

18/11/2016
extended delivery only

/naoInterface
Translates action primitives into robot-specific commands
grip()



Component Name
Functionality

Primitives implemented
System architecture ports used Port Port Type Comm's with

/selfMonitoringSubsystem/getChildBehaviour:i BufferedPort<VectorOf<double>> CBS (WP5) i
/selfMonitoringSubsystem/engagementFlag:i BufferedPort<VectorOf<double>> CBS (WP5) i
/selfMonitoringSubsystem/getChildPerformance:i BufferedPort<VectorOf<double>> CBS (WP5) i

Other ports used Port Port Type Comm's with
/selfMonitoringSubsystem/actionFeedback:i BufferedPort<Bottle> Actuate i
/selfMonitoringSubsystem/fallingInterruption:i BufferedPort<VectorOf<int>> ARS i
/selfMonitoringSubsystem/getInterventionStatus:i BufferedPort<VectorOf<int>> CC (Delib) i
/selfMonitoringSubsystem/deliberativeFeedback:i BufferedPort<Bottle> Delib i
/selfMonitoringSubsystem/sensorySummary:i BufferedPort<Bottle> Delib i
/selfMonitoringSubsystem/suggestedAction:i BufferedPort<Bottle> Delib i
/selfMonitoringSubsystem/selectedBySupervisor:i BufferedPort<Bottle> GUI i
/selfMonitoringSubsystem/therapistCommand:i BufferedPort<Bottle> GUI i
/selfMonitoringSubsystem/userData:i BufferedPort<Bottle> UM i
/selfMonitoringSubsystem/affectiveState:o BufferedPort<Bottle> ARS o
/selfMonitoringSubsystem/attentionSwitchOff:o BufferedPort<VectorOf<int>> ARS o
/selfMonitoringSubsystem/reactionSwitchOff:o BufferedPort<VectorOf<int>> ARS o
/selfMonitoringSubsystem/therapistGazeCommand:o BufferedPort<VectorOf<double>> ARS o
/selfMonitoringSubsystem/selectedAction:o BufferedPort<Bottle> Delib, Actuate o
/selfMonitoringSubsystem/userDelib:o BufferedPort<Bottle> Delib o
/selfMonitoringSubsystem/proposedToSupervisor:o BufferedPort<Bottle> GUI o
/selfMonitoringSubsystem/smsSummary:o BufferedPort<Bottle> GUI o
/selfMonitoringSubsystem/startStop:o BufferedPort<VectorOf<int>> Script o
/selfMonitoringSubsystem/updatedData:o BufferedPort<Bottle> UM o

Date of submission core
Date of submission extended

ins 12
outs 10

/selfMonitoringSubsystem
Monitors activity during the intervention and the intended behaviour of the robot. It checks ethical limitations. Communicates with the 
therapist through a GUI.

18/11/2016
31/01/2018

None



Component Name
Functionality

Primitives implemented
System architecture ports used Port Port Type Comm's with

/attentionReactionSubsystem/checkMutualGaze:i BufferedPort<VectorOf<int>> SI (WP4) i
/attentionReactionSubsystem/getFaces:i BufferedPort<VectorOf<double>> SI (WP4) i
/attentionReactionSubsystem/getSoundDirection:i BufferedPort<VectorOf<double>> SI (WP4) i
/attentionReactionSubsystem/identifyFaceExpression:i BufferedPort<VectorOf<double>> SI (WP4) i
/attentionReactionSubsystem/recognizeSpeech:i BufferedPort<Bottle> SI (WP4) i

Other ports used Port Port Type Comm's with
/attentionReactionSubsystem/actionFeedback:i BufferedPort<Bottle> Actuate i
/attentionReactionSubsystem/robotSensors:i BufferedPort<Bottle> Actuate i
/attentionReactionSubsystem/attentionBias:i BufferedPort<VectorOf<double>> Delib i
/attentionReactionSubsystem/affectiveState:i BufferedPort<Bottle> SMS i
/attentionReactionSubsystem/attentionSwitchOff:i BufferedPort<VectorOf<int>> SMS i
/attentionReactionSubsystem/reactionSwitchOff:i BufferedPort<VectorOf<int>> SMS i
/attentionReactionSubsystem/therapistGazeCommand:i BufferedPort<VectorOf<double>> SMS i
/attentionReactionSubsystem/elicitedAttention:o BufferedPort<VectorOf<double>> Actuate o
/attentionReactionSubsystem/eyeBlinking:o BufferedPort<Bottle> Actuate o
/attentionReactionSubsystem/fallingReaction:o BufferedPort<VectorOf<int>> Actuate o
/attentionReactionSubsystem/fallingReactionSpeech:o BufferedPort<VectorOf<int>> Actuate o
/attentionReactionSubsystem/socialFacialExpression:o BufferedPort<VectorOf<int>> Actuate o
/attentionReactionSubsystem/socialReaction:o BufferedPort<VectorOf<int>> Actuate o
/attentionReactionSubsystem/socialReactionSpeech:o BufferedPort<VectorOf<int>> Actuate o
/attentionReactionSubsystem/fallingInterruption:o BufferedPort<VectorOf<int>> SMS, Actuate o

Date of submission core
Date of submission extended

ins 12
outs 8

/attentionReactionSubsystem
Given inputs from sensoryInterpretation component and other cognitive controller subsystems, it outputs attention data for the Actuation 
subsystem (where the moveHead( ) primitive is implemented). Additionally, it ensures that the robot can handle the real time challenges of its 
environment appropriately taking care of small motions, appropriate eye blinking, whole body motion during gesturing and head motion, 
recovering from falls, and appropriately reacting to affective displays by young users.
None

extended delivery only
18/11/2016



Component Name
Functionality
Primitives implemented
System architecture ports used Port Port Type Comm's with

None
Other ports used Port Port Type Comm's with

/scriptManager/commandSuccess:i BufferedPort<Bottle> Delib i
/scriptManager/startStop:i BufferedPort<VectorOf<int>> SMS, Delib i
/scriptManager/interventionCommand:o BufferedPort<VectorOf<int>> Delib o

Date of submission core
Date of submission extended

ins 2
outs 1

/scriptManager
Contains and manages the logic for stepping through the scripts as defined in D1.1
None

18/11/2016
31/01/2018



Component Name

Functionality
Primitives implemented
System architecture ports used Port Port Type Comm's with

/deliberativeSubsystem/getChildBehaviour:i BufferedPort<VectorOf<double>> CBS (WP5) i
/deliberativeSubsystem/getChildPerformance:i BufferedPort<VectorOf<double>> CBS (WP5) i
/deliberativeSubsystem/checkMutualGaze:i BufferedPort<VectorOf<int>> SI (WP4) i
/deliberativeSubsystem/getArmAngle:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getBody:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getBodyPose:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getEyeGaze:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getEyes:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getFaces:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getGripLocation:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getHands:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getHead:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getHeadGaze:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getObjects:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getObjectTableDistance:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getSoundDirection:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/identifyFace:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/identifyFaceExpression:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/identifyObject:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/identifyTrajectory:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/identifyVoice:i BufferedPort<VectorOf<int>> SI (WP4) i
/deliberativeSubsystem/recognizeSpeech:i BufferedPort<Bottle> SI (WP4) i
/deliberativeSubsystem/trackFace:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/trackObject:i BufferedPort<VectorOf<double>> SI (WP4) i
/deliberativeSubsystem/getEyeGaze:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/getGripLocation:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/getHeadGaze:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/getObjects:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/getObjectTableDistance:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/getSoundDirection:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/identifyFace:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/identifyFaceExpression:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/identifyObject:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/identifyTrajectory:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/trackFace:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/trackHand:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/trackObject:o BufferedPort<VectorOf<double>> SI (WP4) o
/deliberativeSubsystem/interactionEvent:o BufferedPort<VectorOf<int>> CBS (WP5) o

/deliberativeSubsystem/getInterventionStatus:o BufferedPort<VectorOf<double>>
SI (WP4) - SMS 
- CBS (WP5)

o

Other ports used Port Port Type Comm's with
/deliberativeSubsystem/actionFeedback:i BufferedPort<Bottle> Actuate i
/deliberativeSubsystem/interventionCommand:i BufferedPort<VectorOf<int>> Script i
/deliberativeSubsystem/selectedAction:i BufferedPort<Bottle> SMS i
/deliberativeSubsystem/userDelib:i BufferedPort<Bottle> SMS i
/deliberativeSubsystem/sandtrayEvent:i BufferedPort<Bottle> sandtray i
/deliberativeSubsystem/sandtrayReturn:i BufferedPort<Bottle> sandtray i
/deliberativeSubsystem/robotSensors:i BufferedPort<Bottle> Actuate i
/deliberativeSubsystem/attentionBias:o BufferedPort<VectorOf<double>> ARS o
/deliberativeSubsystem/commandSuccess:o BufferedPort<VectorOf<int>> Script o
/deliberativeSubsystem/startStop:o BufferedPort<VectorOf<int>> Script o
/deliberativeSubsystem/deliberativeFeedback:o BufferedPort<Bottle> SMS o
/deliberativeSubsystem/sensorySummary:o BufferedPort<Bottle> SMS o
/deliberativeSubsystem/sandtrayCommand:o BufferedPort<Bottle> sandtray o
/deliberativeSubsystem/suggestedAction:o BufferedPort<Bottle> SMS o

Date of submission core
Date of submission extended

ins 31
outs 22

31/01/2018
18/11/2016

/deliberativeSubsystem
Takes input from the environment (including sensory information, and the therapist via the GUI) and uses the script manager to 
propose a robot action to the self-monitoring subsystem (which in turn passes this via the therapist using the GUI when using 
SPARC).
getInterventionStatus(interventionDescriptor, stateDescriptor, cognitiveModeDescriptor)



Component Name
Functionality
Primitives implemented
System architecture ports used Port Port Type Comm's with

None
Other ports used Port Port Type Comm's with

/userModel/userID:i BufferedPort<VectorOf<int>> GUI i
/userModel/updatedData:i BufferedPort<Bottle> SMS i
/userModel/userData:o BufferedPort<Bottle> SMS o

Date of submission core
Date of submission extended

ins 2
outs 1

/userModel
Loads and updates the user model file for each child
None

18/11/2016
31/01/2018



Component Name
Functionality
Primitives implemented
System architecture ports used Port Port Type Comm's with

/systemGUI/getChildBehaviour:i BufferedPort<VectorOf<double>> CBS (WP5) i
/systemGUI/getChildPerformance:i BufferedPort<VectorOf<double>> CBS (WP5) i

Other ports used Port Port Type Comm's with
/systemGUI/proposedToSupervisor:i BufferedPort<Bottle> SMS i
/systemGUI/smsSummary:i BufferedPort<Bottle> SMS i
/systemGUI/selectedBySupervisor:o BufferedPort<Bottle> SMS o
/systemGUI/therapistCommand:o BufferedPort<VectorOf<double>> SMS o
/systemGUI/userID:o BufferedPort<VectorOf<int>> UM o

Date of submission core
Date of submission extended

ins 4
outs 3

/systemGUI
Wizard GUI for the therapist to control the intervention and the robot
None

18/11/2016
31/01/2018



Component Name
Functionality

Primitives implemented None
System architecture ports used Port Port Type Comm's with

None
Other ports used Port Port Type Comm's with

/actuationSubsystem/elicitedAttention:i BufferedPort<VectorOf<double>> ARS i
/actuationSubsystem/eyeBlinking:i BufferedPort<Bottle> CC/ARS i
/actuationSubsystem/fallingInterruption:i BufferedPort<VectorOf<int>> CC/ARS i
/actuationSubsystem/fallingReaction:i BufferedPort<VectorOf<int>> CC/ARS i
/actuationSubsystem/fallingReactionSpeech:i BufferedPort<VectorOf<int>> CC/ARS i
/actuationSubsystem/socialFacialExpression:i BufferedPort<VectorOf<int>> CC/ARS i
/actuationSubsystem/socialReaction:i BufferedPort<VectorOf<int>> CC/ARS i
/actuationSubsystem/socialReactionSpeech:i BufferedPort<VectorOf<int>> CC/ARS i
/actuationSubsystem/sensorFeedback:i BufferedPort<Bottle> NI i
/actuationSubsystem/robotMotorFeedback:i BufferedPort<Bottle> NI – PI i
/actuationSubsystem/sandtrayReturn:i BufferedPort<Bottle> sandtray i
/actuationSubsystem/selectedAction:i BufferedPort<Bottle> SMS i
/actuationSubsystem/robotSensors:o BufferedPort<Bottle> Delib, ARS o
/actuationSubsystem/disableRobot:o BufferedPort<VectorOf<int>> NI – PI o
/actuationSubsystem/enableRobot:o BufferedPort<VectorOf<int>> NI – PI o
/actuationSubsystem/grip:o BufferedPort<VectorOf<int>> NI – PI o
/actuationSubsystem/moveHand:o BufferedPort<VectorOf<double>> NI – PI o
/actuationSubsystem/moveHead:o BufferedPort<VectorOf<double>> NI – PI o
/actuationSubsystem/moveSequence:o BufferedPort<VectorOf<int>> NI – PI o
/actuationSubsystem/moveTorso:o BufferedPort<VectorOf<double>> NI – PI o
/actuationSubsystem/pointAt:o BufferedPort<VectorOf<float>> NI – PI o
/actuationSubsystem/release:o BufferedPort<VectorOf<int>> NI – PI o
/actuationSubsystem/say:o BufferedPort<Bottle> NI – PI o
/actuationSubsystem/sandtrayCommand:o BufferedPort<Bottle> sandtray o
/actuationSubsystem/actionFeedback:o BufferedPort<Bottle> SMS, ARS, Delib, GUI o

Date of submission core
Date of submission extended

ins 12
outs 13

/actuationSubsystem
Receives inputs from other subsystems and produces outputs to the robot interface. It combines actions from the subsystems and sends the next 
action to perform by the robot.

18/11/2016
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Component Name
Functionality
Primitives implemented
System architecture ports used Port Port Type Comm's with

None
Other ports used Port Port Type Comm's with

/sandtrayEvent/sandtrayEvent:o BufferedPort<Bottle> Delib o
Date of submission core
Date of submission extended

ins 0
outs 1

/sandtrayEvent
Manages data communication with the sandtray game engine
None

extended delivery only
18/11/2016



Component Name
Functionality
Primitives implemented
System architecture ports used Port Port Type Comm's with

None
Other ports used Port Port Type Comm's with

/sandtrayServer/sandtrayCommand:i BufferedPort<Bottle> Delib, Actuate i

/sandtrayServer/sandtrayReturn:o BufferedPort<Bottle> Delib, Actuate o

Date of submission core
Date of submission extended

ins 1
outs 1

/sandtrayServer
Manages data communication with the sandtray game engine
None

extended delivery only
18/11/2016
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Abstract

Shortcomings of reinforcement learning for robot control include the sparsity of the
environmental reward function, the high number of trials required before reaching
an efficient action policy and the reliance on exploration to gather information about
the environment, potentially resulting in undesired actions. These limits can be
overcome by adding a human in the loop to provide additional information during
the learning phase. In this paper, we propose a novel way to combine human inputs
and reinforcement by following the Supervised Progressively Autonomous Robot
Competencies (SPARC) approach. We compare this method to the principles of
Interactive Reinforcement Learning as proposed by Thomaz and Breazeal. Results
from a study involving 40 participants show that using SPARC increases the
performance of the learning, reduces the time and number of inputs required for
teaching and faces fewer errors during the learning process. These results support
the use of SPARC as an efficient method to teach a robot to interact with humans.

1 Introduction

To be widely used by non-technical people, robots have to be able to learn, in order to adapt their
behaviour to new challenges and tasks. These robots have to acquire knowledge whilst interacting in
an environment which possibly includes other people. Reinforcement Learning [14] is a machine
learning algorithm specifically designed to address the issue of learning how to interact efficiently
based on feedback from the environment. This learning method has already been widely applied to
robots [10], however, as pointed by Knox and Stone in [9], the reward function from the environment
can either not be defined for certain tasks or at least be sparse in its assignation of reward. A solution
is to include a human in the learning process, moving from classical machine learning to interactive
machine learning. In this framework, a human supervisor is fully integrated in the learning process
and can provide additional information to the algorithm to improve the learning [4]. Furthermore,
this approach also provides end users with the ability to steer the learning in the direction they desire,
which can improve the robot’s usability [1].
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Multiple approaches have been proposed to combine human feedback and reinforcement learning. In
[8], Knox et al. present the TAMER framework, designed to teach an action policy in the absence of
any environmental feedback using a human to provide the missing rewards used for the reinforcement
learning. Thomaz and Breazeal [16] propose to combine human and environmental rewards and use
them directly as input for a Q-Learner. During their experiments, they observed that participants
tried to use rewards as a way to guide the robot’s actions. Consequently, they introduced a second
guidance channel to guide the robot action in follow-up studies and observed better learning.

However, we argue that the lack of control over the robot’s action in these methods limits the impact
of the human in the learning loop. By taking inspiration from Learning from Demonstration [2, 3], the
human can provide demonstration of the desired action policy, and at the same time interactively teach
the robot. Following this approach, we have proposed the Supervised Progressively Autonomous
Robot Competencies – SPARC [13]. This is based on the supervised autonomy framework [15]: the
robot can act autonomously, but a human is supervising it to prevent undesirable actions from being
executed if necessary. By adding machine learning (reinforcement learning in this case), in which
the robot can learn from the human corrections and improve its action policy over time whilst only
executing actions deemed appropriate by the supervisor.

This paper presents the combination of SPARC and reinforcement learning and compares it with
a previously applied approach following the principles of Interactive Reinforcement Learning [16]
using four metrics: performance, teaching time, number of inputs and risks taken while teaching.
We show that in each of these metrics, SPARC leads to a significant improvement over Interactive
Reinforcement Learning, supporting its use as a framework to teach robots in an interactive fashion in
sensitive environments, such as those typically encountered in human robot interaction.

2 Methodology

Problem specifications In this paper, we tackle the action selection problem in an environment
modelled as a deterministic Markov Decision Process. An agent can execute actions changing the
current state to a new one according to a fixed deterministic transition function. A limited number of
states provide rewards (positive or negative), and the agent has to maximise the rewards obtained
over time. Additionally, a human supervisor is present and can provide additional information to the
robot to improve the learning (rewards and guidance for IRL or commands for SPARC).

Interactive Reinforcement Learning Due to its clarity, simplicity and aim to be used for human-
robot interaction, the method used as a benchmark in this paper is Interactive Reinforcement Learning
(IRL) following principles proposed in [16]. Thomaz and Breazeal proposed a first example of incor-
porating a human in the learning process by directly combining the reward from the environment with
human rewards: a human supervisor can provide rewards which are combined to the environmental
ones and used with Q-Learning. Following early studies, authors enriched the interaction with three
mechanisms to improve the teaching: a guidance mechanism to direct the robot’s attention to some
actions (without covering the entire action space), a communication of uncertainty and an undo
behaviour executing an action cancelling the previous one after a negative reward. This study uses an
algorithm inspired from the one proposed by Thomaz and Breazeal and implementing these additions.

Supervised Progressively Autonomous Robot Competencies In [12] and [13], we proposed the
Supervised Progressively Autonomous Robot Competencies (SPARC) as an interaction framework
allowing a supervisor (human or other) to teach a robot an action policy. SPARC is centred around
a suggestion/correction mechanism whereby the agent suggests actions to its supervisor which can
either correct the action by selecting another one or let the action be executed after a short delay
by not reacting to the suggestion. This system allows the supervisor to be totally in control of the
actions being executed by the robot. A learning algorithm, here reinforcement learning, learns from
the supervisor decision to improve the suggestions over time, decreasing the necessity of correcting
actions and thus reducing the workload on the supervisor.

As the supervisor only provides commands and no reward to the robot, this approach is initially not
designed to be used with reinforcement learning. However the constant control of the supervisor
on the robot’s action implies that every action executed by the robot has been implicitly or actively
validated by the supervisor, so all these executed actions can receive a positive reward: we reward 0.5
for actions actively selected by the supervisor, and 0.25 for the actions passively accepted.
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Evaluation task To evaluate the efficiency of combining SPARC with reinforcement learning and
to compare the results with IRL, we run a study using Sophie’s kitchen, the initial setup used by
Thomaz and Breazeal in [16]. Participants have to teach a virtual robot how to bake a cake in the
environment presented in Figure 1. The robot can pick-up, drop or use objects and can move left or
right between three locations: the shelf, the table and the oven. Six main steps have to be completed
to bake the cake: placing the bowl on the table, putting a first ingredient in the bowl (flour or eggs),
then the other one, mixing with the spoon, emptying the bowl in the tray and finally putting the tray in
the oven. As shown later, we used these six steps to evaluate participants’ performance. As argued by
Thomaz and Breazeal, this environment is interesting for interactive learning due to the large number
of states (more than 10,000), multiple non-trivial successful action policies (minimum of 28 actions to
achieve the goal) and success and failure states used to provide environmental rewards: for example,
if the spoon is put in the oven, a failure state is reached, providing a negative reward, ending the
current teaching episode and returning the environment to the initial state. More detailed information
can be found in [16]. This environment has been reimplemented to be used in this study, and the two
interaction methods are using strictly the same learning algorithm, only the way to interact changes.

(a) Step 0: Initial state. (b) Step 3: ingredients in the bowl. (c) Step 6: Success.

Figure 1: Sophie’s kitchen, the environment used in the study in three different states.

Study setup The study involves 40 participants (age M=25.6, SD=10.09; 24F/16M) divided into
two groups. The first group interacts with IRL and the second one with SPARC. Participants first
teach the robot how to complete the task and then a testing phase, where participants’ inputs are
disabled, evaluates the robot behaving on its own to assess participants performance in teaching. To
limit the study time, a hard limit of 25 minutes for the teaching phase has been set for both systems,
but participants could move on to the testing whenever they desired.

This paper presents a subset of the results of a larger study having each participant interacting three
times with each system. The full results are currently being analysed.

3 Results

As not all participants reached the goal state (i.e., a cake in the oven) during training, the performance
is expressed on a scale from 0 to 6 representing how many of the 6 main steps presented in section
2 (putting the bowl on table, adding an ingredient...) are autonomously completed by the robot in
the testing phase. Results on four metrics (performance, interaction time, number of failure during
teaching and number of inputs given by the teacher) are presented in Table 1 and Figure 2.
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Figure 2: Comparison of the performance, interaction time, number of failures and number of inputs
for the two conditions. Black horizontal bars represent medians and grey circles raw data points.
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Table 1: Results of evaluation metrics for the two systems (n = 20). Using Wilcoxon rank sum test
(results being non-normal), SPARC is significantly more efficient than IRL on all four metrics.

Metric Median IRL Median SPARC Z-value p-value Effect size

Performance 0 6 −4.2 < .001 −0.67
Time (min) 16.3 8.97 2.53 0.011 0.4
Number of failure 9 3 4.06 < .001 0.641
Number of inputs 248 141 1.98 0.048 0.312

In this study, most of the participants using IRL did not reach a single step toward success (median of
0). This does not mean that this method cannot be used to teach an action policy: some participants
reached the goal state with IRL and an expert would consistently achieve the goal state in this task.
However, due to the more complex reward scheme and other challenges to interpret the trainers’
rewards [5, 6, 11] not tackled by this method, participants need to have more in-depth understanding
of how to interact with the algorithm to achieve success. These results support our thesis that relying
only on feedback and guidance is a suboptimal method to teach a robot: even in this simple scenario,
non-expert participants perform poorly. On the other hand, the median performance of 6 for SPARC
shows that at least half of the participants reached the goal when interacting with SPARC and this in
a shorter time, facing fewer failures during teaching and using fewer input. As such the combination
of reinforcement learning and SPARC seems a more efficient teaching method.

4 Discussion

This study used a relatively simple environment: it has discrete states and a deterministic transition
function. Realistic environments will be more complex and challenging. Furthermore, this simulation
did not contain human interactants, but interacting with people adds two major constraints; unlike
simulation we cannot train the agent for a long time before obtaining a correct action policy. In
addition, as soon as the robot is used with people its behaviour has to be appropriate: suboptimal
actions might have negative consequences. For this reason, the presence of a human supervisor
having control over the robot’s action has many advantages: it ensures that the behaviour expressed is
appropriate and provides robustness against probabilistic environments, sensory errors and imperfect
action policies. Whilst it is being controlled, the robot can progressively learn from the supervisor,
and smoothly become more autonomous over time, reducing the workload on the supervisor. As the
robot is acting in the real world and is executing a correct action policy, the need for exploration is
reduced thus accelerating the learning process.

By relying on human commands and corrections, SPARC changes the teaching paradigm compared
to classical interactive reinforcement learning methods. The human control over the robot’s actions
allows to bypass the need for users to manually assign rewards or evaluations to actions. It also
uses only one-way feedbacks (selection) compared to two-way feedback in classical approaches
(positive or negative reinforcement), thus preventing SPARC to face some of the challenges of human
rewarding practices as described in [5, 11]. For example, a lack of feedback (absence of correction of
an action) can either be direct passive support of the proposed action or if the action should have been
corrected, it can be due to a slow reaction time or a desire not to interact. However, the control over
the robot actions can allow supervisors to correct the trajectory when required and thus assuming a
passive support in all cases where feedback is missing can still lead to efficient learning. SPARC
could be combined with more classical Learning from Demonstration approaches [3] to teach lower
level action policies, such as direct motor control where correct actions cannot be easily selected.

In this study, Interactive Reinforcement Learning achieved a poor performance with only a limited
number of participants succeeding to use it to teach the robot how to bake the cake. On the other
hand, SPARC achieved a high success rate in a shorter time and with fewer failures and lower
teaching effort. This is consistent with [7], where authors argue that feedback channels are not an
efficient method to teach an action policy from scratch, they recommend to start with Learning from
Demonstration and then move to feedbacks for fine tuning. By relying on human intervention to
prevent poor performance before it occurs, this paper has shown how SPARC can be usefully applied
to teach an action policy while maintaining high performance, avoiding dangerous situations, and yet
without overloading the human supervisor.
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ABSTRACT

When a robot is learning it needs to explore its environment and how its environment responds on its
actions. When the environment is large and there are a large number of possible actions the robot can
take, this exploration phase can take prohibitively long. However, exploration can often be optimised
by letting a human expert guide the robot during its learning. Interactive machine learning, in which a
human user interactively guides the robot as it learns, has been shown to be an effective way to teach a
robot. It requires an intuitive control mechanism to allow the human expert to provide feedback on
the robot’s progress. This paper presents a novel method which combines Reinforcement Learning
and Supervised Progressively Autonomous Robot Competencies (SPARC). By allowing the user to
fully control the robot and by treating rewards as implicit, SPARC aims to learn an action policy
while maintaining human supervisory oversight of the robot’s behaviour. This method is evaluated and
compared to Interactive Reinforcement Learning in a robot teaching task. Qualitative and quantitative
results indicate that SPARC allows for safer and faster learning by the robot, whilst not placing a high
workload on the human teacher.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the not too distant future robots will be expected to have
social skills, leaving the factory to interact with people in envi-
ronments designed exclusively for use by humans (Fong et al.,
2003). Their users will not be academics or engineers but the
elderly, therapists, children or simply non-experts in technology
and science. Each user will have specific needs that cannot be
totally anticipated at the robot’s design stage. Many researchers
have argued that this issue can be best addressed by having the
user involved in generating the behaviour (e.g. Gorostiza and
Salichs, 2011; Hoffman, 2016). However, we cannot assume
that users will have the technical knowledge required to make
changes to the code controlling the robot. Therefore, we believe
that robots need to have a mechanism allowing a human to teach
the robot in an easy, natural and efficient manner.

One way to provide a robot with such learning capability
is to use machine learning. Classic machine learning is often
designed by experts to be used by experts, its interface being

∗∗Corresponding author:
e-mail: emmanuel.senft@plymouth.ac.uk (Emmanuel Senft)

often too complex for people not involved in the design process
(Amershi et al., 2014). Many methods also suffer from practical
issues: Deep Learning (LeCun et al., 2015) relies on having
large datasets to train networks, while Reinforcement Learning
(Sutton and Barto, 1998) uses extensive and costly exploration to
gather data points used for learning. As we aim at allowing a non-
expert end-user to personalise the robot’s behaviour, complex
interfaces are not desirable, large dataset are not available and
random exploration can lead to undesired actions by the robot.
This suggests two main challenges: how to empower the user
with the ability to teach the robot and how to gather safe training
experiences for the robot. A solution aiming to solve these two
challenges is interactive machine learning (Amershi et al., 2014;
Fails and Olsen Jr, 2003; Olsen, 2009). In this framework, the
human is part of the machine learning process. By providing
ground truth labelling or guiding the agent during exploration to
the interesting parts of the environment, the human can bootstrap
and guide the learning. Furthermore, the human can provide
more information than simply labelling the samples, bringing
further improvements to the learning (Holzinger, 2016; Stumpf
et al., 2007) and if enough control is provided, the human teacher
can also prevent the robot from making undesirable or potentially
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dangerous errors.
In this paper, we present a novel approach to combine rein-

forcement learning with interactive machine learning following
the Supervised Progressively Autonomous Robot Competencies
(SPARC) method proposed in Senft et al. (2015b). By giving
control of the robot’s actions to a teacher, we aim to maximally
use the human’s knowledge and transfer it to a robot in a quick,
safe and efficient manner. This method is compared to Interac-
tive Reinforcement Learning (IRL), described in Thomaz and
Breazeal (2008), using a study involving 40 participants interact-
ing with both approaches in Sophie’s Kitchen, the environment
used to demonstrate IRL.

The reminder of the paper is organised as follows. Section 2
presents different approaches used to teach robots in an interac-
tive fashion. We then describe the scope of the study, including
our hypotheses (Section 3) and methodology (Section 4). Re-
sults are presented in Section 5 and are discussed in Section 6.
We also propose guidelines for designing robots which interac-
tively learn from people. Finally, we conclude by summarising
the main results and the guidelines in Section 7.

2. Related Work

In human-robot interaction, the expected behaviour of the
robot is often solely known by the users: for therapies, thera-
pists are the experts and they know how the robot is supposed
to behave when interacting with patients. For assistive robots
in homes, each user has his own desires and preferences con-
cerning the robot’s behaviour. Consequently, these users have
to be able to adapt the behaviour of the robot in a way which
suits them without requiring technical skills. One approach to
allow non-technical persons to teach a robot an action policy
is Learning from Demonstration (Billard et al., 2008; Argall
et al., 2009). In this framework, a human provides a robot with
demonstrations of the expected behaviour and the robot learns
the correct action policy. This methods is often used for teaching
motor trajectories to a robot, but is also applicable to high level
action policy learning in robotics (Taylor et al., 2011). The con-
ventional approach consists of a set of demonstrations from the
teacher followed by additional learning without supervision until
reaching an appropriate action policy. However, human-robot
interactions are not a static process, the learning should happen
during all interactions and be interactive: the user should at all
times be able to correct the robot when it selects a suboptimal
action.

In interactive machine learning a human is included in the
learning loop, allowing him to provide input during the learning
process, this approach has received increased attention over
the last decade. One of the main domains being extensively
researched is active learning (Settles, 2010). Active learning has
been used in a range of fields: from medical image classification
(Chyzhyk et al., 2013) to robotics (Chernova and Veloso, 2009).
In this framework, an agent has to classify points in a dataset and
an ‘oracle’ is present and available. The oracle, often a human,
can provide ground truth labelling, but its use has a cost (time
or money for example) and consequently should be minimised.
As such, the conventional challenge of active learning is to find

how to optimise the use of the oracle to improve the learning.
Multiple approaches have been tested, such as requiring labels
for the points with the higher uncertainty or which categorisation
would provide the best improvement of the learning.

However, as pointed out by Cakmak and Thomaz (2012), one
of the main limits of active learning is that the robot is in control
of the interaction: the robot takes initiative to request training
data from the user, regardless of what the human wants the robot
to do, potentially leading to frustration or incomprehension on
the human side. For this reason, methods have been developed
to give the initiative back to the human, placing the human
in a teaching role. For example, when set in a reinforcement
learning framework, the human teacher can provide additional
feedback (Knox and Stone, 2010; Thomaz and Breazeal, 2008)
and actively decides to reward or not to reward a specific action.

In human robot interactions, the robot’s actions can have a
real impact on the world and some actions, if executed at an
incorrect moment, can create discomfort for the user or even
cause physical or psychological harm. These errors can be the
result of an incorrect action policy or a sensor failure for example,
but they have to be prevented. When using a robot in real human-
robot interaction applications, a safeguard should therefore be
present to prevent the robot from executing undesirable actions,
especially when working with vulnerable users, where some
actions would have severely negative effects. It is on this basis
that the concept of supervised autonomy was introduced (Thill
et al., 2012): a safeguard is provided by a human supervising
the robot in a semi-autonomous setup. The robot is mainly
autonomous, but a human teacher has enough control over the
interaction to step in at any time to correct the action about
to be executed by the robot. This approach ensures that only
desired actions will be executed by the robot whilst not relying
completely on a human to control the robot as with Wizard of Oz
(Riek, 2012). The challenge is then the incorporation of robot
learning into this scheme to facilitate progressive performance
improvement: this approach can be combined with interactive
machine learning to let the robot learn from its errors without
requiring the robot to actually make them. At the same time, the
human is used to bootstrap the learning with their knowledge,
but also to ensure that the robot behaviour is always appropriate.
This would allow the robot to improve its behaviour over time,
while reducing the frequency of human interventions, having the
robot learning without needing to face the consequence of its
actions.

An analogous system is predictive texting on mobile phones:
as a user types a message, possible words are suggested, but the
user has full control over which word to select. All the while,
the algorithm learns: it adopts new words, spellings and tunes its
predictive models to suit the user’s particular language use and
preferences. We propose a similar mechanism for Human-Robot
Interaction, and in this context we introduce the Supervised
Progressive Autonomous Robot Competencies (SPARC) (Senft
et al., 2015a,b).

By combining interactive machine learning and supervised
autonomy, SPARC provides an agent with online learning whilst
keeping the control of the agent’s actions in the user’s hand. This
method based on a suggestion/correction mechanism allows the
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robot to adapt its behaviour to the user whilst ensuring, due
to the presence of the human teacher, that the actual actions
executed by the robot are suited to the current interaction. This
approach is especially useful in context where the cost of having
the robot making errors is high, such as when interacting with
vulnerable population.

3. Scope of the study

Following on from our earlier research on using people to
teach an action policy to a robot during interaction (Senft et al.,
2015b), we seek to evaluate SPARC when combined with the
widely used learning paradigm of Reinforcement Learning (RL)
(Sutton and Barto, 1998). We compare this approach to an
alternative method combining interactive machine learning and
reinforcement learning: IRL (Thomaz and Breazeal, 2008). To
this end we tested both learning methods in the environment
initially used by Thomaz and Breazeal and described in Section
4.

3.1. Interactive Reinforcement Learning

IRL implements the principles presented in Thomaz and
Breazeal (2008). In IRL the human teacher can provide positive
or negative feedback on the last action executed by the robot.
The robot combines this with environmental feedback into a re-
ward which is used to update a Q-table: a table with a Q-values
(the expected discounted reward) assigned to every state-action
pair and used to select the next action. Three additions to the
standard algorithm have been proposed and implemented by
Thomaz and Breazeal and are used here as well: guidance, com-
munication by the robot and an undo option.

The guidance emerged from the results of a pilot study where
participants assigned rewards to objects to indicate that the robot
should do something with these objects. With the guidance,
teachers can direct the attention of the robot toward certain item
in the environment to indicate the robot that it should interact
with them.

The robot can communicate its uncertainty by directing its
gaze toward different items in the environment with equally high
probability of being used next. The aim of this communication
of uncertainty is to provide transparency about the robot’s in-
ternal state, for example indicating when a guidance should be
provided.

Finally, after a negative reward, the robot tries to cancel the
effect of the previous action (if possible), resulting in a undo
behaviour. As shown in the original paper, these three additions
improve the performance on the task.

3.2. SPARC

SPARC (Supervised Progressively Autonomous Robot Com-
petencies) uses a single type of input similar to the guidance
present in IRL. However with SPARC, it is used to control the
actions of the robot. The robot communicates every of its in-
tentions (i.e the action it plans to execute next) to its teacher.
The teacher can either not intervene and let the robot execute
the suggested action or he can step in and force the robot to
execute an alternative action. This combination of suggestions

and corrections gives the teacher full control over the actions
executed by the robot. This also makes the rewards redundant:
rather than requiring the human to explicitly provide rewards a
positive reward can directly be assigned to each action executed
by the robot as it has been either forced or passively approved
by the teacher.

3.3. Differences of approaches

Unlike IRL, SPARC offers full control over the actions exe-
cuted by the robot. SPARC changes the learning paradigm from
learning from the environment’s response to learning from the
users preferences. We use an expert in the task domain to evalu-
ate the appropriateness of actions before their execution and we
use this evaluation and control provided to the expert not to rely
on observing negative effect of an action to learn that this action
should be avoided, but rather what the best action is for each
state. Even in a non-deterministic environment such as HRI,
some actions can be expected to have a negative consequence.
The human teacher can stop the robot from ever executing these
actions, preventing the robot from causing harm to itself or its
social or physical environment.

Another noticeable difference is the way in which the robot
communicates with the user: in IRL, the robot communicates
its uncertainty about an action and with SPARC its intention of
executing an action.

It should also be noted that the quantity of information pro-
vided by the user to the robot is similar for both IRL and SPARC:
in SPARC the user can offer the whole action space as commands
to the robot, but removes the need for explicit rewards. While
in IRL, the teacher can guide the robot toward a subset of the
action space but has to manually provide feedbacks to evaluate
the robot’s decisions.

3.4. Hypotheses

Three hypotheses are tested in this study:

• H1: Effectiveness and efficiency with non-experts. Com-
pared to IRL, SPARC can lead to higher performance,
whilst being faster, requiring fewer inputs and less mental
effort from the teacher and minimising the number of errors
during the teaching when used by non-experts.

• H2: Safety with experts. SPARC can be used by experts to
teach an action policy safely, quickly and efficiently.

• H3: Control. Teachers prefer a method in which they can
have more control over the robot’s actions.

4. Methodology

4.1. Task

The task used in this study is the same as Thomaz and
Breazeal (2008): Sophie’s kitchen, a simulated environment
on a computer where a virtual robot has to learn how to bake a
cake in a kitchen. As the source code was not available, the task



4

(a) Initial state (b) Step 1 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Fig. 1: Presentation of different steps in the environment. 1a initial state, 1b
step 1: the bowl on the table, 1c step 3: both ingredients in the bowl, 1d step
4: ingredients mixed to obtain batter, 1e step 5: batter poured in the tray and 1f
step 6 (success): tray with batter put in the oven. (Step 2: one ingredient in the
bowl has been omitted for clarity)

was reimplemented to stay as close as possible to the description
in the paper and the online version of the task1.

The scenario is the following: a robot, Sophie, is in a kitchen
with three different locations (shelf, table and oven) and five
objects (flour, tray, eggs, spoon and bowl) as shown in Figure
1a. Sophie has to learn how to bake a cake and the user has to
guide the robot through a sequence of steps while giving enough
feedback so the robot can learn a correct series of actions. As
presented in Figure 1, there are six crucial steps to achieve a
successful result:

1. Put the bowl on the table.
2. Add one ingredient to the bowl (flour or eggs).
3. Add the second ingredient.
4. Mix the ingredients with the spoon to obtain batter.
5. Pour the batter in the tray.
6. Put the tray in the oven.

The environment is a deterministic Markov Decision Process,
defined by a state, a set of actions (move left, move right, pick
up, drop and use), a deterministic transition function, absorbing
states (success or failure) after which the simulation is restarted
in its initial state and an environmental reward function (+1
for success and -1 for failure and -0.04 for every other step to
penalise long sequences). Different action policies can lead to
success, but many actions end in a failure state, for example
putting the spoon in the oven results in a failure. As argued by
Thomaz and Breazeal, this environment provides a good setup
to evaluate teaching methods to a robot due to the large number
of possible states (more than 10,000), the presence of success
and failure states and the sparse nature of the environmental
reward function which increases the need for a teacher to aid the
learning. More details on the environment are available in the
original paper.

1http://www.cc.gatech.edu/~athomaz/sophie/

WebsiteDeployment/

4.2. Implementation

In this experiment two systems are tested: IRL and SPARC.
The underlying learning algorithm is strictly identical for both
system, only the way of interacting with it is different: partic-
ipants have more control in SPARC, implicitly reward action
rather than explicitly and evaluate the intention of the action
rather than its results. The learning algorithm (see algorithm
1) is a variation on Q-learning, without reward propagating2.
This guarantees that any learning by the robot is only due to the
teaching by the human, and as such provides a lower bound for
the robot’s performance. By using Q-learning, the performance
of the robot would be higher.

4.2.1. Interactive Reinforcement Learning
We have implemented IRL following the principles presented

in Thomaz and Breazeal (2008). The user can use the left click
to display a slider in order to provide rewards. The guidance is
implemented by right-clicking on objects: it directs the robot’s
attention to the object if facing it (a click on objects in different
locations has no effect). Following the guidance, the robot will
execute the candidate action involving the object. The action
space is not entirely covered by this guidance mechanism: for
example, it does not cover moving from a location to another.
This guidance if used correctly, limits the exploration for the
current step to the part of the environment evaluated as more
interesting by the user without preventing the robot to explore
in further steps. The robot can communicate its uncertainty by
looking at multiple objects having similarly high probability of
being used.

Some modifications were required to the original study due
to the lack of implementation details in the original paper, one
of them being the use of a purely greedy action selection instead
of using softmax, due to the absence of parameters descrip-
tions. The reliance on human rewards and guidance limits the
importance of autonomous exploration, and thus, the greediness
of the algorithm should assist the learning by preventing the
robot to explore outside of the guided policy. Additionally, as
the environment is deterministic and the algorithm is greedy,
the concept of convergence is altered: once a trajectory has Q-
Values high enough on all state-action pairs, it will be reinforced
automatically.

4.2.2. SPARC
SPARC uses the gaze of the robot toward objects or locations

to indicate which action the robot is suggesting to the teacher.
Similarly to the guidance in IRL, the teacher can use the right
click of the mouse on objects to have the robot execute the action
associated to this object in the current state and this has been
extended to also cover locations. With SPARC, the command
covers all the action space: at every time step, the teacher can
specify, if desired, the next action executed by the robot. If an
action is not corrected, a positive reward of 0.25 is automatically
received (as it has the implicit approval from the teacher) and

2In Q-learning the update function is Q(st , at) ← Q(st , at) + α(rt+1 +

γ(max
a

Q(st+1, a)) − Q(st , at))
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while learning do
a = action with the highest Q[s, a] value
look at object or location used with a
while waiting for correction (2 seconds) do

if received command then
a = received command
reward, r = 0.5

else
reward, r = 0.25

end
end
execute a, and transition to s′

Q(st, at)← Q(st, at)+α(rt+1+γ(max
a

Q(st, a))−Q(st, at))

end
Algorithm 1: Algorithm used in SPARC.

if the teacher selects another action, a reward of 0.5 is given
to the correcting action (the corrected action is not rewarded).
That way, actions actively selected are more reinforced and
participants can still have give higher rewards when using IRL.
This system allows for the use of reinforcement learning with
implicit reward assignation, which simplifies the Human-Robot
Interaction.

4.3. Experimental design

Participants are divided into 2 groups and interact first either
with IRL or SPARC as shown in Figure 2. Before interact-
ing, participants receive a information sheet explaining the task
(describing the environment and how to bake a cake) and one ex-
plaining the system they are interacting with. Then they interact
for three sessions with the assigned system. Each session is com-
posed of a training phase and a testing phase. The training phase
is composed of as many teaching episodes as the participant
desires, a teaching episode ends when a success or failure state
has been reached which returns the environment to the initial
state. In the same way as in the initial experiment by Thomaz
and Breazeal, participants can decide to terminate the training
phase whenever they desire by clicking on a button labelled
‘Sophie is ready’, however it is also terminated after 25 minutes
to impose an upper time limit to the study. After the end of a
training phase, the robot will run a testing phase where the par-
ticipant’s inputs are disabled and which stops as soon as a ending
state is reached or the participants decide to stop it (for example
if the robot is stuck in a loop). This testing phase is used to
evaluate the performance of the participants for this session. The
interaction with a system consists of three repeated independent
sessions with their own independent training and testing phases
to observe how the interactions evolve as participants are getting
used to the system.

After participants completed their three sessions with the first
system, they are asked to interact for three more sessions with the
other system. This way, every participant interacts three times
with each system (IRL and SPARC) and the order of interaction
is balanced. Additionally, a demographic questionnaire is given
before the first interaction, a first post-interaction questionnaire
after the interaction with the first system, a second identical

one after the interaction with the second system and a final
post-experiment questionnaire at the end of the experiment. All
information sheets and questionnaires can be found online 3.

This experimental design prevents the risk of having an or-
dering effect by having a symmetry between conditions. Both
conditions having a identical experimental procedure only with
the order of interaction varying.

4.4. Participants
A total of 40 participants have been recruited using a tool pro-

vided by the university to reach a mixed population of students
and non-student members of the local community. All partici-
pants gave written informed consent, and were told of the option
to withdraw at any point. All participants received remuneration
at the standard U.K. living wage rate, pro rata. Participants were
distributed randomly between the groups whilst balancing gen-
der and age (age M=25.6, SD=10.09; 24F/16M). Participants
were mostly not knowledgeable in machine learning and robotics
(average familiarity with machine learning M=1.8, SD=1.14;
familiarity with social robots M=1.45, SD=0.75 - Likert scale
ranging from 1 to 5).

In addition to naive non-expert users, an expert user (one of
the authors) interacted five times with each system following a
strictly optimal strategy in both cases. These results from the
expert are used to evaluate hypothesis 2 and show the optimal
characteristics of each system (IRL and SPARC) when used by
trained experts such as therapist in a context of assistive robotics.

4.5. Metrics
4.5.1. Objective Metrics

We collected three metrics during the training phase: the num-
ber of times a participant reached a failure state while teaching,
which can be related to the risks taken during the training and
the teaching time (from 0 to 25 minutes) and the number of
inputs provided during the training, which can be seen as the
efforts invested in the teaching. The testing phase being only a
single run of the taught action policy ending as soon as the robot
reaches an ending state (failure or success) or if stopped by the
participants. We only use the performance achieved during this
single test as evaluation of the success of training. As not all
participants reached a success during the testing phase, we used
the six key steps defined in Section 4.1 as a way to evaluate the
performance ranging from 0 (no step has been completed) to 6
(the task was successfully completed) during this testing run: for
example a testing where the robot puts both ingredients in the
bowl but reaches a failure state before mixing them would have
a performance of 3.

4.5.2. Subjective Metrics
The post-interaction and post-experiment questionnaires pro-

vide additional subjective information to compare with the ob-
jective results from the interaction logs. Two principal metrics
are gathered: the workload on participants and the perception of
the robot.

3http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/esenft/

experiment2.html
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Fig. 2: Participants are divided into two groups. They first complete a demographic questionnaire, then interact for three independent sessions (with a training and a
testing phase each) with a system (IRL or SPARC). After a first post-interaction questionnaire, participants interact for another three sessions with the other system
before completing the second post-interaction questionnaire and a final post-experiment questionnaire.

Workload is an important factor when teaching robots. As
roboticists, our task is to make the teaching of the robot as unde-
manding as possible, meaning that the workload for user should
be minimal. Multiple definitions for workload exist and various
measures can be found in the literature. Due to its widespread
use in human factors research and clear definition and evaluation
criteria, we decided to use the NASA-Task Load Index (TLX)
(Hart and Staveland, 1988). We averaged the values from the
6 scales (mental, physical and temporal demand, performance,
effort and frustration) to obtain a single workload value per
participant for each interaction. So we have two measures for
each participant, after interaction with the first system (IRL or
SPARC) and after the interaction using the other system.

Finally, the perception of the robot has been evaluated in the
post-interaction and post-experiment questionnaires using sub-
jective questions (measured on a Likert scale), binary questions
(which robot did you prefer interacting with) and open questions
on preference and naturalness of the interaction.

5. Results

Most of the results are non-normally distributed. Both ceiling
and floor effects can be observed depending on the conditions
and the metrics. For the teaching time, some participants pre-
ferred to interact much longer than others, resulting in skewed
data. Likewise for the performance: often participants either
reached a successful end state or did not hit any of the sub-
goals of the task ending often in two clusters of participants:
one at a performance of 6 and one at 0. Similarly, some par-
ticipants who interacted a long time with the system did not
complete any step, while others could achieve good results in
a limited time. Due to the data being not normally distributed,
non-parametric statistical tests have been used. We use a combi-
nation of Friedman test for one way comparison with repeated
measures, Wilcoxon rank sum test for between subject com-
parisons and the Wilcoxon signed rank test for within subject
pairwise comparisons. Additionally, as each interaction consists
of three sessions, a Bonferroni correction has been applied to
pairwise comparison between sessions. A similar correction
was used when comparing between systems to account of the
two different groups. To apply the Bonferroni correction, we
multiply the p-values by the correcting factors, which allows us
to keep a global significance level at p = .05.

Initial results of the first interaction of the participants have
been reported in Senft et al. (2016).

5.1. Effectiveness and Efficiency with non-experts
Four objective metrics (performance, teaching time, number

of inputs used and number of failures) and one subjective metric
(workload) have been used to evaluate the efficiency of IRL and
SPARC.

5.1.1. Performance
Figure 3 presents the performance of participants during the

interaction. In the first three sessions participants interacted with
either IRL or SPARC, and swapped for the remaining three ses-
sions. There is a significant difference of performance between
systems; a Friedman test shows a significant difference between
systems during the first three sessions (χ2 = 50.8, p < .001) and
during the next three sessions (χ2 = 36, p < .001). Similarly, a
significant difference in performance is noted within participants
(Group 1: χ2 = 37.9, p < .001 - Group 2: χ2 = 55.3, p < .001).
So in all the cases, participants interacting with SPARC achieved
a significantly higher performance than those interacting with
IRL, regardless of the order in which they interacted (p < .05
for all pairwise comparison). No difference of performance has
been observed when using Wilcoxon signed rank test on the
three repetitions between participants when interacting with the
same system, so interacting for a second or third session with the
same system does not have a significant impact on participants’
performance.

It must be noted that in our study, only a limited number of
participants managed to teach the robot to complete the task
using IRL, this observation will be discussed in more details in
Section 6.
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Fig. 3: Comparison of the performance for the six sessions (three with each
system, IRL and SPARC, with interaction order balanced between groups). A
6 in performance shows that the taught policy leads to a success. The circles
represent all the data points (n=20 participants per group), the black horizontal
line the median and the top and bottom of the boxes the first and third quartiles.
The learning is consistently better when using SPARC.
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5.1.2. Teaching Time
The teaching times for all the interactions are shown in Figure

4. Regardless of the order in which they used SPARC or IRL,
participants needed significantly less time to teach the robot
when using SPARC than with IRL (Friedman test between par-
ticipants for the first three sessions: χ2 = 9.77, p = .0018 - next
three sessions: χ2 = 20.2, p < .001). Pairwise comparison also
show significance (p < .05) except for sessions 3 and 5 which
can be explained by the floor effect observed when teaching with
SPARC and a potential loss of motivation when using IRL.

Additionally, when interacting multiple times with the same
system, participants interacted significantly less in the second
interaction with a system than during the first one (cf. Table 1)
and only for SPARC the teaching time significantly decreases
again between the second and the third session.

Table 1: Medians of the teaching time. In the first three sessions, group 1
interacted with IRL and group 2 with SPARC and participants interacted with
the other system for the next three sessions.

X̃1 X̃2 X̃3 X̃4 X̃5 X̃6

Group 1 16.3 7.44 6.17 3.97 2.45 1.53
Group 2 8.97 3.57 2.49 9.36 5.18 3.01
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Fig. 4: Comparison of the teaching time (in minutes) for all the interactions.
Participants spent less time teaching the robot when using SPARC than IRL.

5.1.3. Number of Inputs
The number of inputs used in both system is presented in Fig-

ure 5. For IRL, this represents every time a participant provided
guidance or a reward to the robot, and for SPARC every time
a participant provided a command. The number of inputs used
is lower when teaching with SPARC than with IRL (Friedman
test between participants for the first three sessions: χ2 = 11.7,
p < .001 - next three sessions: χ2 = 11, p < .001). However
with pairwise comparisons only session 2 (p = .008) and session
4 (p < .001) present a significantly different number of inputs
used.

5.1.4. Number of failures
Figure 6 shows the number of failures observed with both

systems for every session. In all the interactions, participants
interacting with SPARC faced fewer failures during the training
of the robot than those interacting with IRL (Friedman test
between participants for the first three sessions: χ2 = 47.8,
p < .001- next three sessions: χ2 = 41.8, p < .001 - within
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Fig. 5: Comparison of the number of inputs used during the teaching phases.

participants in group 1: χ2 = 56.6, p < .001 - group 2: χ2 =

20.7, p < .001 - all pairwise comparison: p < .002).
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Fig. 6: Comparison of the number of failure states reached during the teaching
process. Due to the ability to stop the robot from executing a suggested action,
there are fewer failure states when using SPARC.

5.1.5. Workload
The average workload felt by participants after each interac-

tion with a system is shown in Figure 7. As the workload data
is normally distributed, a student t-test has been used. Partici-
pants interacting with IRL first reported an average workload
of 12.9 (S D=2.33), with SPARC first this was 8.95 (S D=3.02).
With SPARC after having interacted with IRL the reported work-
load was 7.44 (S D=3.33) and with IRL after SPARC it was
13.9 (S D=2.85). We found a significant difference between
the reported workload when interacting with IRL or SPARC
regardless of the order of interaction. This was also observed
between participants (interaction with system 1, independent
t-test: t(38) = 4.63, p < .001 - system 2, independent t-test:
t(38) = −6.5, p < .001 - Group 1, paired t-test: t(19) = 9.82,
p < .001 - Group 2, paired t-test: t(19) = −6.8, p < .001).
Regardless of the interaction order, participants rated SPARC as
having a lower workload than IRL.

5.1.6. Validation of the hypothesis
The objective data (performance, teaching time, number of

inputs and number of failures) show that despite spending a
shorter time interacting with SPARC and using less inputs, par-
ticipants reached a higher performance than with IRL whilst
facing fewer failures during the teaching. Additionally, when
interacting with SPARC, participants’ time required to teach
the robot decreased with successive sessions, without affecting
the performance. This indicates that after the first session, par-
ticipants understood the interaction mechanism behind SPARC
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Fig. 7: Comparison of the workload experienced by participants. SPARC was
perceived as having a lower workload. Results being normal, student t-test has
been used for the comparisons.

and consistently managed to achieve a high performance whilst
requiring less time to teach the robot the task. On the other hand,
when interacting with IRL, participants’ performance remains
low over the session, and their teaching time decreases between
session 1 and 2 but not between session 2 and 3. This might be
due to a loss of motivation after session 1 where often partici-
pants did not succeed to teach the robot, reducing the desire to
further interact in successive sessions.

The results suggest that teaching the robot using SPARC
allows the robot to achieve a higher performance than with IRL,
in a shorter time, without requiring more inputs, while making
fewer errors when teaching. These objective results are also
supported by subjective measures: the workload on the teacher
is lower when using SPARC than when using IRL. For these
reasons, H1 ( ‘Compared to IRL, SPARC can lead to higher
performance, whilst being faster, requiring fewer inputs and
less mental effort from the teacher and minimising the number
of errors during the teaching when used by non-experts.’) is
supported.

5.2. Safety with experts

To evaluate the safety offered by SPARC and IRL, an expert
(one of the authors) interacted five times with each systems. In
both cases, the expert followed a strictly optimal strategy. This
shows the expected behaviours in optimal conditions, the best
metrics achievable. Results of the interactions are presented in
Table 2. In both cases, the expert successfully taught the robot
(as indicated by a performance of 6), which indicates that both
systems can be used to teach a robot an action policy. However
the time required to teach the robot with IRL is significantly
higher than with SPARC.

Additionally, when using IRL, even an expert cannot prevent
the robot from reaching failure states during the training due
to the lack of control over the robot’s action. This is prevented
when interacting with SPARC, due to the full control and clear
communication, the teacher can ensure that only desired actions
are executed. So with sufficient knowledge, an expert can teach
the robot to behave safely without having to explore undesired
states. This has real world applications, as random exploration
is often impossible or undesirable, SPARC offers a way for the
teacher to stop the robot from executing actions with negative
consequences.

Similar results have been observed with the non-expert partic-
ipants: in their last interaction with SPARC, both groups had a
median of 0 failures for a performance of 6, meaning that more
than half of the participants taught the robot the task without
ever hitting a failure state. These results support H2 (‘SPARC
can be used by experts to teach an action policy safely, quickly
and efficiently’).

Table 2: Results of an expert interacting 5 times with each system following
an optimal strategy. Both IRL and SPARC reached a success during all the
testing phase, but the time required to teach SPARC was significantly shorter,
and unlike IRL, not a single failure was reached during the training with SPARC.
Data following a normal distribution, student t-test has been used.

IRL
M(SD)

SPARC
M(SD) t(8) p

Perf. 6 (0) 6 (0) NA NA
Time (mn) 4.5 (0.67) 0.60 (0.03) 13.1 < .001
# of Fail. 3.2 (0.84) 0 (0) 8.55 < .001

5.3. Control
One of the main differences between the two methods is the

way in which the concept of teaching is approached. With IRL
an exploratory individual learning approach is followed: the
robot has freedom to explore, and it can receive feedback on its
actions and hints about actions to pursue next from a teacher.
This is to some extent inspired by how children are taught, where
the learning process can be more important than the achieved
results. This is supported by the behaviours observed by Thomaz
and Breazeal: their participants gave motivational rewards to
the robot, just as one would to do to keep children motivated
during learning, despite the absence of effect or use in classical
reinforcement learning.

The post-experiment questionnaire included the open ques-
tion: ‘which robot did you prefer interacting with and why?’.
Almost all the participants (38 out of 40) replied that they pre-
ferred interacting with SPARC. Half of all the participants used
vocabulary related to the control over the robot actions (‘con-
trol’, ‘instruction’, ‘command’, ‘what to do’ or ‘what I want’)
to justify their preferences without these words being used in
the question. Furthermore, multiple participants reported being
frustrated to have only partial control over the robot’s actions
with IRL, they would have preferred being able to control each
action of the robot.

To the question ‘which interaction was more natural?’, 10
participants rated IRL as being more natural, using justifications
such as: ‘The robots thinks for itself’, ‘Some confusion in the
[IRL] robot was obvious making it more natural’, ‘More like real
learning’, ‘Because it was hard to control the robot’ or ‘People
learn from their mistakes faster’. But despite acknowledging
that IRL is more natural, closer to human teaching, participants
still preferred teaching using SPARC. This suggests that when
humans teach robots, they are focused on the results of the
teaching: can the robot do the new task requested. This relates to
the role of robots, they often interact in human-centred scenario
where they have to complete a task for their users. And due
to the absence of life-long learning for robots today, it is not
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worth investing time and energy to allow the robot to improve its
learning process or explore on its own. These comments from
the participants show support for H3 (‘Teachers prefer a method
providing more control over the robot’s actions.’).

6. Discussion

Despite not being originally designed to be used in combina-
tion with Reinforcement Learning, SPARC does achieve good
results. This shows that principles covered by SPARC (control
over the robot’s actions, communication and evaluation of inten-
tions and automatic execution of proposed actions) are agnostic
to the learning algorithm and promote efficient teaching. Further-
more, SPARC achieves a higher performance, in a shorter time
and facing less failures than IRL, whilst requiring a lower work-
load from the human teacher (supporting H1). Finally, when
used by experts, SPARC demonstrates that teaching can be safe
and quick: the full control over robot’s action in the teacher’s
hands ensures that only desired actions will be executed (validat-
ing H2). These results show an interesting feature of teaching;
as robots mainly interact in task oriented, human-centred en-
vironments, human teachers seem to prefer direct approaches
focused on commands rather than letting the robot explore on
its own (partial support for H3).

6.1. Comparison with original Interactive Reinforcement Learn-
ing study

Unlike in the original experiments evaluating IRL (Thomaz
and Breazeal, 2008), in the study presented in this paper most
of the participants did not succeed in teaching the robot the
full cake baking sequence using feedback and guidance. In the
Thomaz and Breazeal (2008) study, the participants were knowl-
edgeable in machine learning (M=3.7, SD=2.3 - range: 1 to 7),
but the population in the current study was drawn from a more
general public having little to no knowledge of machine learning
(M=1.8, SD=1.13 - range: 1 to 5). This can explain why a
much larger number of participants did not achieve success with
IRL in this study whereas Thomaz and Breazeal only reported 1
participant out of 13 failing the task. In our study, 12.5% of the
participants and the expert did manage to train the robot using
IRL. This seems to be largely due to participants not consistently
rewarding correct actions, preventing the reinforcement learning
algorithm from learning. This is why implicit rewards –every
action allowed by the teacher is positively rewarded– tend to
work better than explicit ones. This is consistent with Kaochar
et al. (2011) who note that feedback is not well suited for teach-
ing an action policy from scratch, but better for fine tuning. For
teaching the basis of the action policy, they recommend using
demonstrations, the method used by SPARC.

6.2. Advantages and limitations of SPARC

In the SPARC implementation for this study, SPARC repro-
duces actions selected by the teacher. So one can argue that no
learning algorithm is required, instead the actions could just be
blindly reproduced by the robot. However SPARC combined
with reinforcement learning does provide advantages: due to
the Q-Table, all the loops in the demonstration are removed

when the robot interacts on its own and it provides a way to deal
with variations in teaching. It also allows the robot to continue
from any state in the trajectory. And finally, due to the sugges-
tion/correction mechanism, the teacher can leave the robot to act
on its own as long as it attempts correct actions, and the human
to intervene only when the robot is about to execute an incorrect
action.

Over the 79 successful trials using SPARC, participants used
47 different strategies to teach the robot the task of baking a
cake. This shows how SPARC, as a single control mechanism,
allows for different action policies to be learnt depending on the
person teaching the robot. With SPARC the robot can adapt its
behaviour to the human it is interacting with, profiling the user
to find the desired way of behaving.

However SPARC also has limitations in the current implemen-
tation, related to the quality of the human supervised guidance. If
the teacher allows an action to be executed by mistake (through
inattention or by not responding in time), this action will be re-
inforced and will have to be corrected later on. This might lead
to loops when successive actions are cancelling each other (such
as move left, then right). In that case, the teacher has to step in
and manually guide the robot to break this cycle. Furthermore,
due to the automatic execution of actions, the teacher has to be
attentive at all times and ready to step in when a wrong action is
suggested by the robot.

In this version, SPARC has been applied to a scenario where
a clear strategy with optimal actions is present. The interaction
also takes place in a virtual environment with a discrete time.
Real HRI are stochastic, happen in real time and often there is
no clear strategy known in advance. However, we argue that
human experts in the application domain can know what type
of actions should be executed when, and which features of the
environment they used for their decision. As this knowledge
can not be available to the robot’s designers, robots should be
able to learn from a domain user in an interactive fashion. In
the current implementation, SPARC mainly receives inputs from
a teacher at predefined discrete times and still does not use the
human knowledge to it’s fullest: the learning algorithm is still
simple and with limited inputs, but as described in Section 6.4,
we are working on improving SPARC to suit real-world HRI.

Nevertheless, we argue that SPARC allows for easy and safe
teaching due to the presence and control by the teacher. And the
suggestion/correction mechanism with automatic execution of
actions allows for a smooth teaching process where the workload
on the teacher can decrease over time as shown in Senft et al.
(2015b). The workload of the teacher when starting is relatively
high, when the robot has no information on which actions to take
yet, and decreases over time requiring only limited intervention
by the teacher.

6.3. Recommendations for designing interactive machine learn-
ing for human-robot interactions

From observing the participants interacting with both sys-
tems, we derived four recommendations for future designs of
interactive learning robot. Although the study here used a simu-
lated robot, we believe these to be also relevant for real-world,
physical installations.
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6.3.1. Clarity of the interface
Algorithms used in machine learning often need precisely

specified inputs and outputs and require an internal represen-
tation of the world and policies. These variables are often not
accessible to a non expert: the weights of a neural network or
the values in a Q-table are not easily interpreted, if at all. The
inner workings of the machine learning algorithms are opaque,
and people only have access to input and output of the black
box that is machine learning. As such, care needs to go into
making the input and output intuitive and readable. For example,
in this study (following Thomaz and Breazeal’s original study),
the communication between the robot and the teacher occurred
through the environment: using clicks on objects rather than
buttons on a graphical user interface. This design decision has
important consequences as participants first have to familiarise
themselves with the interface: how to interpret the robot’s be-
haviour, what actions are available for each state and what is the
exact impact of the actions? This lack of clarity leads to a high
number of failures and high teaching time during the first session
in our study. So we argue that to avoid this precarious discovery
phase for the teachers, roboticists have to design interfaces tak-
ing into account results from the Human Factors community as
advocated by Adams (2002).

6.3.2. Limits of human adaptability
Human-Robot Interaction today is facilitated by relying on

people adapting to the interaction, often making use of anthropo-
morphisation (Złotowski et al., 2015). Roboticists use people’s
imagination and creativity to fill the gaps in the robot’s behaviour.
However, human adaptivity has its limits: in our study, often
participants adopted one particular way of interacting with the
system and they hold on to it for a large part of the interaction.
For example, participants clicked on an object requiring two
actions to interact with, assuming that the robot had planning
capabilities which it did not. Or when the robot was blocked in
some cycles (due to constant negative reward in IRL or due to a
loop created and not stopped with SPARC), participants kept on
trying the same action to break the loop, without really exploring
alternatives. For these reasons, if robots are to be used with a
naive operator, they need a mechanism to detect these ‘incorrect’
uses and either adapt to these suboptimal human inputs or they
need to inform the user that this type of input is not supported
and clarify what human behaviour is appropriate instead.

6.3.3. Importance of keeping the human in the learning loop
Other methods have been used to provide a robot with an

action policy, for example Liu et al. (2016) argue that instead of
having a human teach the robot, interactive behaviours can be
extracted from observing human experts interacting and by using
big data machine learning techniques on these observations. This
approach has shown some promise (Liu et al., 2014), but we
argue that an action policy for human-robot interaction should
be able to be modified online by a human. Furthermore, the
presence of a human in the loop can allow the machine learning
to deal with sensor errors or imperfect action policies. An expert
supervising the robot should also be able to prevent the execution
of specific actions or force the execution of others. This was one

of the important points we considered when proposing SPARC:
there is no distinction between a teaching and a testing phase,
they are merged into a single phase. The teacher can correct
the robot when needed and let it act when it behaves correctly.
Participants used this feature of SPARC in this study: many
participants corrected SPARC only when required rather than
forcing every action, 37.5% of the participants even let the
robot complete the task without giving a single command before
starting the test to be sure that the robot is ready. So SPARC
has been used as a tool to provide online learning to a robot
whilst keeping the teacher in control, but reducing the need of
intervention over time.

6.3.4. Keeping people in control
Most of the scenario where a robot has to learn how to interact

with humans are human-centred: the robot has to complete a
task to help a human (such as in socially assistive robotics). In
these scenarios, the goal of the learning is to ensure that the
robot can complete the task assigned to it, not to provide the
robot with tools to learn more efficiently in further interactions.
Similarly, participants in our study did not desire to have the
robot exploring on its own and learn from its experience, they
wanted to be able to direct the robot. Furthermore, a lack of
control over the robot’s actions can lead to frustration and loss
of motivation for the teacher. This human control is especially
critical when the robot is designed to interact with other people
as undesired actions can have a dramatic impact, such as causing
harm for the interaction partners or bystanders. For these reasons,
we argue that when designing an interactively learning robot
for Human-Robot Interaction in human-centred scenario, it is
critical to keep the human in control.

However, this control does not mean that the robot cannot
learn and become autonomous. We take a stronger inspiration
from Learning from Demonstration, using human input more
efficiently to guide the learning, speeding it up and making it
safer, especially in the early stages of the learning. The human
is in control mainly when the robot is prone to make exploratory
mistakes, and can prevent them before they occur, but once the
action policy is appropriate enough, the teacher can leave the
robot learn mostly on its own and refine its action policy with
limited supervision from a human.

6.4. Future work

We are currently working on a new experiment in which
people interacting with a robot in a continuous time and non-
deterministic environment. In this experiment, the teacher is
able to send commands to the robot, provide rewards and iden-
tify features in the environment they consider important. The
learning algorithm will take these inputs into account and com-
bine them with interaction metrics to learn. An approach could
be to use the actor-critic paradigm: the critic being an objective
evaluation of the action results (environmental rewards), and
the actor using results from the critic and teacher’s guidance to
update the action policy.
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7. Conclusion

SPARC has been proposed to address the problem of provid-
ing a robot with adaptive behaviour whilst guaranteeing that the
behaviour expressed by the robot remains suitable for task at
hand. To achieve this, a suggestion and correction system has
been used to allow a teacher to be in control of the robot at all
times whilst not having to manually select every single action.
This approach has been combined with reinforcement learning
and was compared to IRL, where the operator manually provides
feedback and guidance to the learning agent. The results from
a user study involving 40 participants show that SPARC can be
used to let naive participants successfully teach an action policy.
While doing so SPARC requires less teaching time and limits
undesired actions during the teaching phase when compared to
IRL. Additionally, the workload on users was lower when using
SPARC. Based on these results and other observations, we pro-
pose four guidelines to design interactive learning robots: (1) the
interface to control the robot has to be intuitive, (2) the limits of
human adaptability have to be taken into account (robots should
detect deadlocks in human behaviours and adapt their way to
be controlled or inform the human about it), (3) the operator
should be kept in the learning loop and (4) teachers should stay
in control of the robot behaviour when interacting in sensitive
environment. The first two points can be seen to apply to all
robot teaching methods, and should be addressed at the time
of designing the interface. By definition, SPARC aims to ad-
dress these last two points: maintaining the performance of an
adaptive system by remaining under progressively decreasing
supervision.

Acknowledgements

This work was supported by the EU FP7 DREAM project
(grant no. 611391) and EU H2020 Marie Sklodowska-Curie
Actions project DoRoThy (grant 657227).

References

Adams, J.A., 2002. Critical considerations for human-robot interface develop-
ment, in: Proceedings of 2002 AAAI Fall Symposium, pp. 1–8.

Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T., 2014. Power to the people:
The role of humans in interactive machine learning. AI Magazine 35, 105–
120.

Argall, B.D., Chernova, S., Veloso, M., Browning, B., 2009. A survey of
robot learning from demonstration. Robotics and autonomous systems 57,
469–483.

Billard, A., Calinon, S., Dillmann, R., Schaal, S., 2008. Robot programming by
demonstration, in: Springer handbook of robotics. Springer, pp. 1371–1394.

Cakmak, M., Thomaz, A.L., 2012. Designing robot learners that ask good
questions, in: Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction, ACM. pp. 17–24.

Chernova, S., Veloso, M., 2009. Interactive policy learning through confidence-
based autonomy. Journal of Artificial Intelligence Research 34, 1.

Chyzhyk, D., Ayerdi, B., Maiora, J., 2013. Active learning with bootstrapped
dendritic classifier applied to medical image segmentation. Pattern Recogni-
tion Letters 34, 1602–1608.

Fails, J.A., Olsen Jr, D.R., 2003. Interactive machine learning, in: Proceedings
of the 8th international conference on Intelligent user interfaces, ACM. pp.
39–45.

Fong, T., Nourbakhsh, I., Dautenhahn, K., 2003. A survey of socially interactive
robots. Robotics and autonomous systems 42, 143–166.

Gorostiza, J.F., Salichs, M.A., 2011. End-user programming of a social robot by
dialog. Robotics and Autonomous Systems 59, 1102–1114.

Hart, S.G., Staveland, L.E., 1988. Development of nasa-tlx (task load index):
Results of empirical and theoretical research. Advances in psychology 52,
139–183.

Hoffman, G., 2016. Openwoz: A runtime-configurable wizard-of-oz framework
for human-robot interaction, in: 2016 AAAI Spring Symposium Series.

Holzinger, A., 2016. Interactive machine learning for health informatics: when
do we need the human-in-the-loop? Brain Informatics , 119–131.

Kaochar, T., Peralta, R.T., Morrison, C.T., Fasel, I.R., Walsh, T.J., Cohen, P.R.,
2011. Towards understanding how humans teach robots, in: International
Conference on User Modeling, Adaptation, and Personalization, Springer. pp.
347–352.

Knox, W.B., Stone, P., 2010. Combining manual feedback with subsequent
mdp reward signals for reinforcement learning, in: Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems:
volume 1-Volume 1, International Foundation for Autonomous Agents and
Multiagent Systems. pp. 5–12.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature .
Liu, P., Glas, D.F., Kanda, T., 2016. Learning interactive behavior for service

robots the challenge of mixed-initiative interaction, in: Proceedings of the
workshop on Behavior Adaptation, Interaction and Learning for Assistive
Robotics.

Liu, P., Glas, D.F., Kanda, T., Ishiguro, H., Hagita, N., 2014. How to train your
robot-teaching service robots to reproduce human social behavior, in: Robot
and Human Interactive Communication, 2014 RO-MAN: The 23rd IEEE
International Symposium on, IEEE. pp. 961–968.

Olsen, D., 2009. Building interactive systems: principles for human-computer
interaction. Cengage Learning.

Riek, L.D., 2012. Wizard of oz studies in hri: a systematic review and new
reporting guidelines. Journal of Human-Robot Interaction 1.

Senft, E., Baxter, P., Belpaeme, T., 2015a. Human-guided learning of social
action selection for robot-assisted therapy, in: 4th Workshop on Machine
Learning for Interactive Systems.

Senft, E., Baxter, P., Kennedy, J., Belpaeme, T., 2015b. Sparc: Supervised
progressively autonomous robot competencies, in: International Conference
on Social Robotics, Springer. pp. 603–612.

Senft, E., Lemaignan, S., Baxter, P.E., Belpaeme, T., 2016. Sparc: an efficient
way to combine reinforcement learning and supervised autonomy, in: FILM
Workshop at NIPS’16.

Settles, B., 2010. Active learning literature survey. University of Wisconsin,
Madison 52, 11.

Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich, T., Sullivan, E., Drum-
mond, R., Herlocker, J., 2007. Toward harnessing user feedback for machine
learning, in: Proceedings of the 12th international conference on Intelligent
user interfaces.

Sutton, R.S., Barto, A.G., 1998. Reinforcement learning: An introduction.
volume 1. MIT press Cambridge.

Taylor, M.E., Suay, H.B., Chernova, S., 2011. Integrating reinforcement learning
with human demonstrations of varying ability, in: The 10th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2.

Thill, S., Pop, C.A., Belpaeme, T., Ziemke, T., Vanderborght, B., 2012. Robot-
assisted therapy for autism spectrum disorders with (partially) autonomous
control: Challenges and outlook. Paladyn, Journal of Behavioral Robotics 3,
209–217.

Thomaz, A.L., Breazeal, C., 2008. Teachable robots: Understanding human
teaching behavior to build more effective robot learners. Artificial Intelligence
172, 716–737.

Złotowski, J., Proudfoot, D., Yogeeswaran, K., Bartneck, C., 2015. Anthropo-
morphism: opportunities and challenges in human–robot interaction. Interna-
tional Journal of Social Robotics 7, 347–360.



Leveraging Human Inputs in Interactive Machine Learning
for Human Robot Interaction

Emmanuel Senft
Centre for Robotics and Neural Systems

Plymouth University, UK
emmanuel.senft@plymouth.ac.uk

Séverin Lemaignan
Centre for Robotics and Neural Systems

Plymouth University, UK
severin.lemaignan@plymouth.ac.uk

Paul E. Baxter
Lincoln Centre for Autonomous Systems

University of Lincoln, UK
pbaxter@lincoln.ac.uk

Tony Belpaeme
CRNS – Plymouth University, UK

imec - ID Labs – Ghent University, Belgium
tony.belpaeme@plymouth.ac.uk

ABSTRACT
A key challenge of HRI is allowing robots to be adaptable,
especially as robots are expected to penetrate society at
large and to interact in unexpected environments with non-
technical users. One way of providing this adaptability is
to use Interactive Machine Learning, i.e. having a human
supervisor included in the learning process who can steer
the action selection and the learning in the desired direction.
We ran a study exploring how people use numeric rewards
to evaluate a robot’s behaviour and guide its learning. From
the results we derive a number of challenges when design-
ing learning robots: what kind of input should the human
provide? How should the robot communicate its state or its
intention? And how can the teaching process by made easier
for human supervisors?

Keywords
Interactive Machine Learning; Autonomy; HRI

1. INTRODUCTION
One important challenges in HRI is to allow users, who

often have no technical expertise, to personalise the behaviour
of the robot they are using. It seems infeasible to expect
either users to be satisfied by a robot with a static behaviour
or for the robot’s designers to be able to anticipate all the
needs of the users and all the different environments a robot
could interact in. For this reason, we argue that robot
behaviour should be adaptive at run-time, and especially
that non-experts in technology should be able to teach a
robot new action policies.

Interactive Machine Learning (IML) is a field of research
which aims to include end-users in the machine learning
process [1, 3]. The idea is to move away from robots as
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Figure 1: Examples of positive (left) and negative (right)
reward in the robot cake baking task.

complex black boxes with inaccessible input and output, to
systems that can be intuitively (re)programmed by the users.
One advantage of this approach is it empowers users with
the ability to personalise their robot according to their needs
and desires.

IML has principally been tested on virtual agents. A good
example of IML is the TAMER framework [4] which predicts
the reward a human would give and use this prediction to
select a next action maximising the predicted reward.

2. EXPERIMENT

Methodology.
IML has not often been applied to robotics. An application

using virtual robots was presented in [6], which presented
a study where we compared two different methods used to
teach robots an action policy. The first, Interactive Rein-
forcement Learning (IRL), is derived from Reinforcement
Learning (RL) [7], the difference being that user now pro-
vides rewards, rather than the environment (cf. Figure 1).
In our implementation, the participant could evaluate the
robot’s actionsby moving a slider on a graphical interface,
the value of the slider acted as the reinforcement learning
reward. The second method, inspired by [5], uses a more
direct control method in which the robot communicates its
intentions to the participant who can either passively accept
the suggestion or actively select an alternative action.

In the task, inspired by Thomaz and Breazeal [8], a virtual
robot is in a kitchen and has to learn how to bake a cake. The
users know what the robot should do to finish the cake, but
multiple strategies can lead to success. The IRL algorithm
is similar to that used by [8].
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Figure 2: Distribution of rewards according to their numeric
value.

Participants were divided into two groups of 20, each group
interacting with a different system.

Results.
This paper reports how participants used the rewards in

the IRL condition. Figure 2 presents the distribution of
rewards given to the robot. In our case, the distribution
was tri-modal, with only three types of rewards given to the
robot. Over a total of 7364 rewards, we observe 899 with a
value of −1, 1337 with a value of 0 and 2653 of a value of 1.

This indicates that even if participants had the opportunity
to provide fine grained numerical rewards, they decided to
evaluate the robot’s actions either as bad, neutral or good. We
identify three reasons potentially explaining this behaviour.
The first one is related to the unambiguity of the expected
behaviour: when a desired strategy is clear, humans might
only use extremes to give feedback to the robot. Alternatively,
the tri-modality of the reward distribution can be due to
the interface used, a slider makes the use of extremes easier.
And lastly, as participants were time constrained (they only
had 2 seconds to evaluate the robot’s action) they might not
have taken the time to use a fine grained rewarding strategy.

3. DISCUSSION
From these results, we derive three challenges that robot

designers will face when allowing humans to teach robots.

Type of inputs.
The first challenge is to make human input efficient and

generalisable over different tasks. RL seems like a reasonable
approach: the user can provide numerical rewards to evaluate
the action executed by the robot. However, as the task
becomes more complex, the algorithm converges only after a
long series of trials and errors which is undesirable. Another
limit of numerical rewards is that they generally are assigned
after the execution of an action, and so do not allow the
supervisor to prevent the robot from making an error, even if
the supervisor could have known beforehand that this action
was not appropriate. Reward-based learning is general, but
it does not make good use of human domain knowledge and
tutoring competency.

Other types of inputs could be used; in [6], we propose
using commands rather than feedback. Commands allow
the user to have more control of the robot, but limit the
actions to a predefined set of actions. A way to generalise
commands to a larger set would be to use natural language
and ability to teach new actions associated to new commands.
A robot could also combine different types of inputs from the
human: both explicit (rewards or commands for example)
and implicit (such as the reactions of other humans).

Clarity of robot’s communication.
The robot should also provide the human with feedback

about its internal state, including its intentions, uncertainty,
learning progress and confidence. In [6], we argue that in-
tention communication is especially important when robots
are interacting in the real world, so as not to fluxom people
or execute undesired actions. Furthermore, if the robot has
planning abilities, the robot can also explain its actions and
communicate what its next actions will be.

Similarly to the content of the robot’s communication,
the medium is important. Humans have evolved to use
social signals, and robots should use these too. Speech
could be a good way of communicating more complex states,
intentions and plans, but it would be interesting to modulate
the sentences expressed by the robot in a way which is
socially acceptable and which does not annoy the long-term
user, avoiding repetitions and bluntness often associated with
robots.

Reduce the workload on human teachers.
A last important challenge is maintaining the user’s com-

fort when teaching. As explained in [2], a robot using the
same mode of communication without considering the human
it is interacting with could annoy the user. In our study,
many participants also reported frustration due to them of-
ten knowing what the robot should do, but not being able to
have the robot execute the desired action. Robots learning
from humans should reduce the workload on the teacher, and
give the teacher enough control of the robot’s actions while
taking into account the human’s state when learning.
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Abstract: Robot-Assisted Therapy (RAT) has successfully
been used to improve social skills in children with autism
spectrum disorders (ASD) through remote control of the
robot in so-calledWizard of Oz (WoZ) paradigms. However,
there is a need to increase the autonomy of the robot
both to lighten the burden on human therapists (who
have to remain in control and, importantly, supervise
the robot) and to provide a consistent therapeutic
experience. This paper seeks to provide insight into
increasing the autonomy level of social robots in therapy
to move beyond WoZ. With the final aim of improved
human-human social interaction for the children, this
multidisciplinary research seeks to facilitate the use of
social robots as tools in clinical situations by addressing
the challenge of increasing robot autonomy. We introduce
the clinical framework in which the developments are
tested, alongside initial data obtained from patients in a
first phase of the project using a WoZ set-up mimicking
the targeted supervised-autonomy behaviour. We further
describe the implemented system architecture capable of
providing the robot with supervised autonomy.
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1 Introduction
Autism Spectrum Disorder (ASD) is characterised by
impairments in social interactions and communication,
usually accompanied by restricted interests and repetitive
behaviour [1]. Most individuals with ASD require
professional care throughout their lives [2, 3], entailing a
significant financial and time (at least 15 hours per week)
commitment [4, 5].

Evidence-based psychotherapy necessitates both
clinical expertise and expertise in applying the results
of scientific studies. For ASD, one of the most efficient
ways of improving individuals’ abilities and reducing
their symptoms is through early (cognitive-) behavioural
interventionprograms [6]. Studies testing the effectiveness
of such interventions report significant results in
terms of language and social skill improvement,
decreased stereotypical behaviours, and acceleration of
developmental rates [7].
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Although behavioural approaches have demonstrated
effectiveness in reducing ASD symptoms, there is more
to be done in this field. It is important to improve the
efficiency of early behavioural interventions to ensure
progress at a later stage, allowing adults with ASD to
lead independent (or near-independent) lives [8]. Taking
into account that individuals with ASD tend to be
more responsive to feedback coming from an interaction
with technology rather than from an interaction with
human beings [9], and given the need for reducing costs
while increasing the effectiveness of standard (cognitive-
) behavioural therapies, studies have shown that robots
may be beneficial in ASD therapies as mediators between
human models and ASD children, see [9–11]. In the
Robo-Mediator approach [12], a social robot is used as a
means of delivering the standard treatment, elucidating
faster and greater gains from the therapeutic intervention
when compared to classical treatment. Several robots have
already been used in Robot-Assisted Therapy (RAT) with
children with ASD: the NAO robot, see [13–15] among
others; low-cost robots like AiSOY1 [16] or CHARLIE [17];
robots that use their touchscreens as part of the interaction
like CARO and iRobiQ [18]; or the robot Probo which has
beenused for social story telling [19], to improve play skills
[20], and to mediate social play skills of children with
ASD with their sibling (brother or sister) [21]. See [22] for
a complete survey detailing how RAT robots are mapped
to therapeutic and educational objectives.

1.1 Increasing autonomy in RAT

Typical work in RAT is performed using remote controlled
robots; a technique called Wizard of Oz (WoZ) [23, 24].
The robot is usually controlled, unbeknownst to the child,
by another human operator. This permits the therapists
to focus on achieving a higher level of social interaction
without requiring sophisticated systems reliant on high
levels of artificial intelligence. However, WoZ is not a
sustainable technique in the long term, see [25]. It is a
costly procedure as it requires the robot to be operated by
an additional person and as the robot is not recording the
performance during the therapy, additional time resources
are needed after the intervention.

It has been proposed that robots in future therapeutic
scenarios should be capable of operating autonomously
(while remaining under the supervision of the therapist)
for at least some of the time [26]. Providing the robots
with autonomy in this sense has the potential to lighten
the therapist’s burden, not only in the therapeutic session
itself but also in longer-term diagnostic tasks. Indeed,

as this paper will illustrate, the technical solutions
required to deliver adequate autonomous abilities can
also be used to improve diagnostic tools, for example
by collecting quantitative data from the interaction, or
automatically annotating videos of interactions with the
children (currently a manual process involving significant
time and effort by multiple therapists [25]). Diagnosis
might further be improved through automated behaviour
evaluation systems (required to allow the robot to choose
appropriate actions during autonomous behaviour).

A system capable of such data processing can help
therapists to administer personalised interventions for
each child, as the robot could infer intentions, needs, or
even the mood of the child based on previous interactions
[26]. A fully autonomous robot might be able to infer and
interpret a child’s intentions in order to understand their
behaviour and provide real-time adaptive behaviour given
that child’s individual needs. An autonomous robot could
attempt to (re-)engage the child should they lose interest
in the therapeutic task. Robots also need to respond
to high level commands from therapists, enabling the
latter to overrule the robot behaviour at any time. Such
a degree of autonomy would enable the development of
less structured interaction environments which may help
to keep the child engaged [27], e.g., by providing the
child with ASD the ability to make choices during the
interaction with the robot [28]. A high level of engagement
would be reinforced by explicit positive feedback as it
has been proven that children find rewards particularly
encouraging, see [29, 30]. This encouragement can be
given in the form of sensory rewards, such as the robot
clapping hands or playing some music.

In building more autonomous robots capable
of flexible social behaviour, the development of a
basic “intentional stance” [31] is important. In ideal
circumstances, this means that the robot should be able
to take a perspective on the mental state of the child
with whom it is interacting, i.e., it should be able to
develop a Theory of Mind (ToM) and be able to learn
from normal social signals in a manner that is similar
to the way humans learn to infer the mental states of
others. Full autonomy (in the sense that the robot can
adapt to any event during the therapeutic sessions)
is currently unrealistic and not desired as the robot’s
action policy will not be perfect and in a therapeutic
scenario, every single action executed by the robot
should be appropriate to the therapeutic goals, context
of the interaction, and state of the child. However it is
feasible to aim for a “supervised autonomy”, where the
robot user (the therapist, psychologist or teacher) gives
the robot particular goals and the robot autonomously
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works towards achieving these goals whilst allowing the
supervisor to override every action prior to execution
to ensure that only therapeutically valid actions are
executed.

Increasing the autonomy of robots will also bring
about a new set of challenges. In particular, there will be
a need to answer new ethical questions regarding the use
of robots with vulnerable children, as well as a need to
ensure ethically-compliant robot behaviour (e.g., to avoid
persisting with certain behaviour should the child refuse
to collaborate).

Architectures for controlling autonomous social
robots commonlyutilise behaviour-basedarchitectures, as
these systems are capable of mixing different behaviours
and being responsive to external sensory information [32].
However, these approaches operate in-the-moment and
are not capable of anticipating upcoming events, which
might be desirable when interacting with ASD children.
Few of the existing control architectures are tailored
to social robotics for therapeutic purposes. B3IA [33]
is a control architecture for autonomous robot-assisted
behavioural intervention for children with ASD. The
architecture is organised with different modules to sense
the environment and interaction, to make decisions based
on the history of human-robot interaction over time, and
to generate the robot’s actions. This architecture hasmany
merits but it has never been tested in a realistic, complex
scenario. It could also be improved through support of
non-reactive behaviours and behavioural adaptation to
that of the young user. In another approach, Cao et al.
propose a social behaviour control architecture capable of
adapting to different therapeutic scenarios to achieve the
goal of the interaction [34].

1.2 First steps towards Robot-Enhanced
Therapy

As has been argued above, there is a need for the next
generation of RAT – which we term Robot-Enhanced
Therapy (RET) – to go beyond current WoZ paradigms.
This approach is grounded in the ability to infer a child’s
psychological disposition and to assess their behaviour.
The robot is then provided with the information necessary
to select its next actions within well-defined constraints
under supervision of a therapist. The latter aspect is key,
as froman ethical perspective, there are strong indications
that a fully autonomous system is not actually desirable in
the context of interactionwith vulnerable children [35, 36].

Consequently, RET robots should adopt a compatible,
yet pragmatic approach concerning the desired level

of autonomy. This entails restricting the modelling of
psychological disposition to relatively simple emotions,
immediate intentions, and goals, and assessing the child’s
behaviour based on cues given through body movement,
facial expression, and vocal intonation. This will allow
the robot to react to the child’s requests in a contingent
manner, to record, and to give specific feedback to the
child. All elements would be conducted in a manner
consistent with the level of attention and competence
of the child. Such RET would not be entirely unlike
Animal-Assisted Therapy (AAT), but possesses the added
benefit that the robot can be instructed to behave in a
specific manner and can be programmed to recognise
situations where the therapist must resume control of the
therapeutic intervention. The robot’s autonomy therefore
remains supervised in the sense that the therapist provides
either high-level instructions for the robot or is called
upon by the robot to interpret situations or data which
it cannot reliably interpret itself. Thus, the aim of RET is
not to replace the therapist but rather to provide them
with an effective tool and mediator, embedded in a smart
environment of which they remain in full control.

There are some additional desiderata for RET. For
example, since RET will be an applied field where a
number of therapists might be working independently, it
is desirable to ensure that robot controllers developed
for such an application be as platform-independent as
possible. Also, children require therapy tailored to their
individual needs, andRET robotsmust be able provide this.
To achieve this, research in a clinical framework should
investigate how children with ASD behave and perform
during interactionswith a therapeutic robot compared to a
human partner, with respect to different social behaviours.

The EC-FP7 funded DREAM project [37] (Development
of Robot-Enhanced therapy for children with AutisM
spectrum disorders) is making progress in this direction.
The aim is to reduce the workload of the therapist by
letting parts of the intervention be taken over by the robot.
This includes, for example, monitoring and recording the
behaviour of the child, engaging the child when they are
disinterested, and adapting between levels of intervention.
This enables the therapist to oversee different children
and plan the required intervention for every child on an
individual basis.

The purpose of this paper is to highlight the steps
completed in developing DREAM, the first robot-enhanced
therapy project. Section 2 describes the clinical context
where the project is to be tested, defines the measured
variables, children and environmental conditions, and
reveals first results. We deepen the concept of supervised
autonomy in Section 3, detailing the control architecture.

Brought to you by | Vrije Universiteit Brussel (VUB)
Authenticated

Download Date | 3/29/19 3:25 PM



Supervised Autonomy Towards Robot-Enhanced Therapy for ASD Children | 21

Finally, we conclude with a synthesis of the lessons
learned and take-home messages in Section 4.

2 Clinical framework
In order to evaluate the effectiveness of RET robots for
improving social skills in children with ASD, several
specific behaviours were observed during therapy
sessions. These include: reciprocal turn-taking, shared
attention, social reciprocity, sustained interaction, eye-
gaze, spontaneous interaction, imitation of novel acts,
and more. These behaviours are core problems in autism,
representing both potential pathogenetic mechanisms
and clinical symptoms/signs (e.g., deficit in social
communication). In particular, we primarily target
the following behaviours: imitation, turn taking, and
joint attention, because we consider these to be the
mechanisms that underlie other clinical symptoms, such
as social and communication deficits.

From a clinical point of view, we aim to teach the
aforementioned behaviours during repeated sessions of
interactive games using social robots. This training is
expected to lay a foundation for developing a set of
implicit rules about communication; rules that will be
transferred to interactionswithhumanagents. The clinical
goal behind this project is to determine the degree to
which RET can improve joint attention, imitation and turn-
taking skills, and whether or not this type of intervention
provides similar, or greater, gains compared to standard
interventions. For this purpose, the project was divided
into two phases. During the first phase we employed RAT
robots under a WoZ system, while in the second phase we
will employ RET using a supervised autonomous system.
The results from the first phase can be used as a baseline
to compare the results of the second phase. Both phases
will be compared to Standard Human Treatment (SHT)
conditions.

In order to assess the effectiveness of both RET
for children with ASD, we use single case experiments,
more specifically, classic single-case alternative treatment
design. In both RET and SHT conditions, children have
6 to 8 baseline sessions (in which we measure their
initial performance on the variables under investigation),
8 standard therapy sessions and 8 RET sessions. Children
participate in SHT sessions and RET sessions in a
randomised manner to avoid ordering effects. In order
to confirm children’s diagnosis of autism and to assess
their social and communication abilities we have used
the ADOS instrument [38]. Apart from using ADOS as a

diagnosis instrument we also use it as a measurement
tool, in order to quantify differences in the obtained
scores before and after interventions. After the initial
ADOS application and baseline sessions considering the
therapeutic setting, children interact directly with either
a robot or human, with another person mediating the
interaction between the child and the interaction partner
in either condition.

Figure 1: The intervention table and location of different cameras
and Kinects.

All three tasks to be tested are implemented following
the discrete trial format, a commonly used approach
in early intervention programs for autism [39]. The
elements that characterise this approach are: the teaching
environment is highly structured; behaviours are broken
into discrete sub-skills, which are presented overmultiple,
successive trials; and the child is taught to respond to
a partner’s discriminative stimulus (e.g., “Do like me!”)
through explicit prompting, prompt fading and contingent
reinforcement [39].

To test our hypothesis, we use the humanoid robot
NAO which acts as a social partner in each task, initiating
behaviours like arm movements (for imitation purposes),
taking turns and triggering joint attention episodes. An
additional technological tool integrated in this research
is the electronic “Sandtray” [40]. The platform uses a
touchscreen and allows for social engagement through a
collaborative interaction platform. The hardware consists
of a 26-inch capacitive touchscreen and an associated
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Figure 2: Cohen’s d effect sizes for each comparison between the baseline, RET and SHT conditions. “*” indicates a statistically significant
difference. “NS” indicates a comparison that is not statistically significant.

control server, upon which a series of pictures can be
manipulated by dragging (on the part of the human
partner), or simulated dragging (on the part of the robot
partner).

In order to capture sensory information, we use
an intervention table (shown in Figure 1), which
accommodates ASD children interacting with the robot
NAO. It employs five individual sensors, including three
RGB cameras and two Microsoft Kinects, to capture the
data. The cameras are used for face detection and gaze
estimation. One Kinect has two functions: to capture both
RGB and depth images for 3D facial feature extraction
and 3D gaze estimation, and to detect skeleton joints for
action recognition and hand tracking. The second Kinect
is used to capture both RGB and depth images for robot
and objects detection and tracking, see Section 3.1 for
additional details. In order to keep the environment as
close as possible to the standard intervention setting, we
have used a small table and small chairs, also the distance
between the robot and the child or between the therapist
and the child was about 30 centimetres.

To assess the children’s performance in the task, we
measure two types of variables: primary and secondary.
Primary variables comprise the performance of the child
on the three tasks, based on task solving accuracy
(e.g., movement accuracy in the imitation task, following
instructions towait for his/her turn on the turn taking task,
andgazing in the joint attention task). Secondary variables
involve outcomes such as:
a) social engagement: eye-contact and verbal

utterances;
b) emotional level: positive and negative emotions;

c) behavioural level: stereotypical behaviours, adaptive
and maladaptive behaviours;

d) cognitive level: rational and irrational beliefs.

For each of the measured variables, we provide an
operational definition to be used as a basis for the learning
process thatmaps child behaviours. This set of behaviours
describes the child’s actions during the intervention tasks
in perceptual terms. This will provide the robot with the
necessary input to react congruently and autonomously
towards the child. Most of the variables are to bemeasured
in frequency (e.g., eye contact – how many times the
child looked at the upper part of the robot) except the
beliefs where we would analyse the speech of the child
and decide whether the phrase implies a rational or
irrational statement (according to the definition of rational
statement used in cognitive therapy).

Although several studies have been conducted
in this field, our studies use a rigorous methodology,
utilising an evidence-based paradigm, leading to the
use of standard designs that involve several baseline
measurements (e.g., single-case alternative treatments
design), standard instruments for diagnosis (e.g., ADOS),
and structuring the tasks developed based on empirical
validated intervention techniques (e.g., discrete trial).

We now present the results obtained after completing
the first phase of the project. Overall, the results of the
experiments conducted in the WoZ paradigm show mixed
results for the efficacy of RET, especially for primary
outcomes (task performance, based on solving accuracy).
The results differ from one task to another, such that in
the turn-taking task RET seems to be as good as or even
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better than SHT, especially for children with lower levels
of prior skills. This means that some of the participants
exhibit better performance when interacting with the
robot compared to standard treatment. Regarding joint
attention, the children’s performance was similar in both
conditions for the majority of the participants. However,
for the imitation task, RET seems less effective than SHT.
These results are important because they can help us
to understand the conditions under which robots can
be implemented in ASD therapy, and where the human
therapist should be the main actor.

In the case of secondary variables, some differences
are observed. In the imitation task, children looked more
at the robot compared to the human partner, meaning that
the childrenwere interested in the robot partner during the
entire intervention period. Regarding the emotional level,
positive emotions appeared more in the imitation and
joint attention tasks, where the robot was the interaction
partner. As for the behavioural level, the presence of
the robot in the task acts as a behavioural activator, so
that both adaptive and maladaptive behaviours seem to
appear more often in the RET condition compared to SHT
condition (Figure 2).

The outcomes of these studies can serve as a basis
for developing computationalmodels capable of detecting
inter-patient differences as well as tracking individual
progress throughout the therapy. These models represent
the foundation for developing a cognitive architecture
with supervised autonomy (Section 3.3).

3 Supervised Autonomy
Effective child-robot social interactions in supervised
autonomy RET requires the robot to be able to infer
the psychological disposition of the child and use it
to select actions appropriate to the current state of the
interaction. How does the child feel? Are they happy,
sad, disinterested or frustrated? Do they pay attention to
the robot? What does their body language communicate
and what are their expectations? Will they get bored in
the therapy? The disposition can be inferred from gaze
behaviours, body behaviours, and speech behaviours, see
Section 3.1. Another important consideration is so-called
“testing behaviour”, which is described as a systematic
variation of activity of the child while closely watching
the other partner. This is related to perceiving intentions
of others and to dynamics of imitation: role-reversal
behaviours, turn taking, initiation of new behaviours,
etc. Research towards supervised autonomymust develop

computational models that can assess the behaviour
of a child and infer their psychological disposition
(Section 3.2). As noted already, we view these goals as a
more pragmatic and less ambitious version of the well-
known Theory of Mind problem, a problem for which a
complete solution is not a realistic proposition in the near
future.

The core of supervised autonomy, as described above,
is a cognitive model which interprets sensory data (e.g.,
body movement and facial expression cues), uses these
percepts to assess the child’s behaviour by learning to
map them to therapist-specified behavioural classes, and
learns to map these child behaviours to appropriate
therapist-specified robot actions. Thus, theDREAMsystem
architecture has three major functional subsystems:
1. Sensing and Interpretation,
2. Child Behaviour Classification, and
3. Social Cognitive Controller.

The functional specifications of these three subsystemsare
derived from the different types of intervention targeted
in Section 2. These interventions are described as a
sequence of actions, each action comprising a number
of constituent movements and sensory cues linked to a
particular sensory-motor process. The motor aspect of
these processes provides the basis for the robot behaviour
specification to be implemented in the social cognitive
control subsystem. The sensory aspect provides the basis
for the sensory interpretation subsystems and also the
child behaviour classification subsystem. The functional
specification of the three subsystem components are
described in detail in Sections 3.1, 3.2, and 3.3, respectively.
The overall system architecture is shown in Figure 3.

In addition to the three subsystem components
identified above, there is a Graphical User Interface (GUI)
component to facilitate external control of the robot by
a user (either a therapist or a software developer) and
to provide the user with an easy-to-understand view on
the current status of the robot control (Figure 4). It also
provides a graphic rendering of the child’s behavioural
state, degree of engagement, and degree of performance
in the current intervention.

3.1 Sensing and interpretation

In pursuing the goal ofmulti-sensory data fusion, analysis,
and interpretation, RET cognitive controllers should target
the features that are required by the three scenarios
described in Section 2 (joint attention, imitation, and turn-
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Figure 3: Graphical illustration of the DREAM software architecture. Arrows represent communication between components through one
or more ports. Port names have been omitted for clarity. The three subsystems shown are: sensory interpretation (blue), child behaviour
classification (green), and social cognitive controller (orange).

taking), at different levels of interaction complexity. These
include:
1 Gaze analysis, including frequency and time of

fixation ondifferent parts of the robot, on other agents,
on objects that are in front of the robot (for joint
attention behaviours), and on faces in the peripheral
field of view during a social interaction or play.

2 Frequency and duration of movements (the distance
between the child and the robot, the position of
the child in the space, interaction gestures, contact
between objects and parts of the robot, and level of
general activity, i.e., how much the child moves).

3 Vocal prosody, to identify statistics on congruent
prosodic utterances between the child and the robot,
such as the number of words, the frequency of verbal
initiations and the length of the verbal speech during
an interaction sessions (individuals with autism have
difficulties in recognising and producing prosody
and intonation [41]) and speech recognition in order
to respond to the children’s responses during the
scenarios.

4 Vocal analysis of early speech measurement for key
acoustic parameters [42].

5 Emotional appearance cues, in order to make explicit
the dynamic processes that create, and are created by,
the relationships with others [43].

6 Stereotypical behaviours, including the level of
behavioural repetitiveness (such as shaking head,
waving hand).

Multi-sensory data is used to provide quantitative support
for the diagnosis and care/treatment of ASD children. This
section shows the conclusions obtained after investigating
methods and solutions for multi-sensory data perception
and interpretation, with a focus on the complexity
of extracting meaningful information about the ASD
children. Specifically, techniques of gaze estimation,
skeleton joint-based action recognition, object tracking,
face and facial expression recognition, and audio data
processing are presented.
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Figure 4: Graphical User Interface (GUI) component used by the therapist to control the robot. On the left side, the script of the intervention
protocol is listed. On the right side, a set of robot actions available to overrule the autonomous behaviour.

3.1.1 Gaze estimation

The main challenges of gaze estimation involved in RET
for ASD children are large head movement, illumination
variation and eyelid occlusion. Although the designed
multi-sensor system can successfully capture the child’s
face with large head movement, it is also a challenge to
determine which camera can obtain the best view of the
frontal face. To remedy this, we have proposed a multi-
sensor selection strategy to adaptively select the optimal
camera, see [44]. In the proposed strategy, all sensors
are calibrated and used to capture the sensory data in
parallel. In order to perform optimal camera selection, a
face confidence score of each camera is defined. This score
is acquired bymeasuring the variation of facial landmarks
of a detected face with respect to facial landmarks of a
predefined frontal face. The camera with the highest face
confidence score will be selected as the optimal camera.

Once the face is detected, a Supervised Descent
Method (SDM) trained with a database as described in
[45] is employed to locate the feature points in the face
and an object pose estimation method (POSIT) [46] is
utilised to calculate the head pose. Then we propose an
improved convolution based integro-differential method
to localise the iris centres of the child [47, 48]. Compared
with the conventional integro-differentialmethod [49], the

improved method is computationally much faster and it
also achieves higher accuracy even in challenging cases
of partial eyelid occlusion occurs or illumination varies (as
shown in Figure 5).

Based on the obtained head pose and iris centres,
we have proposed a two-eye model based method to
estimate the final point of gaze of the ASD child. The
proposed method averages the gazes of both eyes for a
final gaze estimation. Moreover, we calculate the personal
eye parameters by approximating the visual axis as a line
from the iris centre to the gaze point. Experimental results
show good performance of the proposed gaze estimation
method (as in Figure 6).

3.1.2 Human action recognition

In the intervention task of imitation, either the ASD child’s
actions or the therapist’s actions should be recognised
when the child interacts either with the therapist or with
the robot. Early proposed approaches mainly recognise
human action from 2D sequences captured by RGB
cameras [50–52]. However, the sensitivity to illumination
changes and subject texture variations often degrades the
recognition accuracy. These problems can be solved by
using depth information acquired from a depth sensor
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Figure 5: Images obtained from the intervention table localising the
iris centres of the child.

since images from depth channel can provide another
dimensional information.

The main idea is to represent the movement of the
body using the pairwise relative positions of the skeleton
joint features that can be extracted by a Kinect. We have
utilised the Kinect SDK for acquiring the skeleton data (as
shown in Figure 7). For each child, ten joint positions are
tracked by the skeleton tracker. The position coordinates
are then normalised so that the motion is invariant to the
initial body orientation and the body size. We have also
presented a novel skeleton joint descriptor based on 3D
Moving Trend and Geometry (3DMTG) property for human
action recognition, see [53]. Specifically, a histogram of 3D
moving directions between consecutive frames for each
joint is constructed to represent the 3D moving trend
feature in the spatial domain. The geometry information
of joints in each frame is modelled by the relative motion
with the initial status. After creating thedescriptor, a linear
Support Vector Machine (SVM) classification algorithm
[54] is used for action recognition. We have evaluated the
proposed method on a publicly available dataset MSR-
Action3D [55] and the results demonstrate that ourmethod
can achieve high recognition rates on both similar actions
and complex actions.

(a)

(b)

(c)

Figure 6: Gaze estimation results on an ASD child recorded from
intervention table. The white line denotes the gaze direction.
(a) Estimation with camera0. (b) Estimation with camera1. (c)
Estimation with camera2.

Based on the detected skeletal joints,we can also track
the 3D position of a hand, frame by frame. Hand tracking
can assist in estimating the location of object to grasp and
is a key step for gesture recognition [56]. This will be used
to analyse which object is grasped by the ASD child and to
help with the activity classification.

Figure 7: Skeleton joints detection for ASD children.

3.1.3 Facial expression recognition

We have used the Local Binary Patterns feature extraction
method on Three Orthogonal Planes (LBP-TOP) to
represent facial appearance cues and applied the SVM
for identity and facial expression classification [57].
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Local Binary Patterns (LBP) is a non-parametric
method and has proven to be a powerful descriptor
in representing the local textural structure [58]. The
main advantages of LBP are the strong tolerance against
illumination variations and the computational simplicity.
This method has successfully been used in both spatial
and spatio-temporal domains in face recognition and
facial expression recognition.

The LBP-TOP has been validated as effective for
facial expression recognition as well as dynamic texture
analysis, see [59]. The challenges in LBP-TOP are face
registration and identity bias. LBP-TOP needs each frame
in an image sequence to be in the same size, or at least the
subregions of each frame to be in the same size. Any in-
plane or out-plane rotation will degrade its performance.
An effective LBP-TOP operator is highly dependent on face
registration. The problem of identity bias generally exists
in low-level features, which means that the extracted
features reserve more information about identity rather
than expressions.

To solve the above mentioned problems, we have
proposed an approach to automatically recognise
emotions using local patch extraction and LBP-TOP
representation.Wefirst detect point-based facial landmark
bymeans of SDM and then extract local patches according
to fiducial points. By doing so, the effect of identity
bias can be better mitigated since the regions around
fiducial points preserve more expression-related cues.
Moreover, within all the frames in a sequence, the location
of subjects (e.g., eyes, nose) are more stable and facial
texture movements are more smooth. In each patch of
sequence, block-based approach is exploited where LBP-
TOP features are extracted in each block and connected to
represent facial motions.

3.1.4 Object tracking

Numerous object detection and tracking algorithms have
been proposed in the literature. This functionality is
necessary to detect and track the objects (toys) on
the intervention table and finally to judge whether the
objects are picked up by an ASD child or not. The main
challenges are object variety, illumination and occlusion.
To effectively detect and track objects in real time, a
blob based Otsu object detection method [60] is firstly
employed to detect the objects. Then the GM-PHD tracker
[61] is employed to track the objects over time due to
its good performance in multi-object tracking. In the
object detection stage, we have used the Otsu algorithm
for adaptively image binarisation and employed the blob

algorithm to detect the regions of the objects. The centre
of each blob is regarded as the position of each object.

Object detection can find all the locations of objects
on the table at each frame. To correctly associate the
objects in consecutive frames, an efficient GM-PHD tracker
is utilised for object tracking. In the object tracking
stage, we have utilised an entropy distribution based
method [62] to estimate the birth intensity of the new
objects. Moreover, we have handled the partial occlusion
caused by hand grasping based on a game theoretical
method [63]. By doing so, objects in consecutive frames
can be successfully and accurately tracked with correct
identities. Figure 8 shows the results of object detection
and tracking when a ASD child is interacting with a
therapist. The results illustrate that our method can
successfully detect and track objects even when they are
occluded by hands. To obtain the 3D locations of the
objects, a 2D-3D correspondence method [64] according to
the depth information captured by the Kinect has been
incorporated.

Figure 8: Object detection and tracking results.

3.1.5 Audio processing

The audio processing in RET must include speech
recognition, sound direction recognition and voice
identification. The speech recognition method is based
on Microsoft Kinect SDK. We have utilised the trained
model provided by the SDK to recognise the speech. To
make the speech recognition individually independent,
a dictionary is designed to store the predefined key
words and related short sentences. The dictionary is
fully customisable, which provides the convenience of
recognising what sentences the subject has said by key
words. The system starts to recognise the speech and

Brought to you by | Vrije Universiteit Brussel (VUB)
Authenticated

Download Date | 3/29/19 3:25 PM



28 | Pablo G. Esteban et al.

returns a textual representation on the screen when the
subject speaks.

The direction of a sound is identified based on the
different locations ofmicrophones in theKinect. Generally,
the sound arrives at each of the microphones in a
chronological order as the distances are different between
microphones and the sound source [65, 66]. A signal
with higher-quality sound will be produced by processing
the audio signals of all microphones after calculating
the source and position of the sound. Two significant
properties, which are the sound angle and the confidence
of the sound angle, are identified and then the system
outputs the direction of the most crucial sound. We use
a confidence score to represent the strength of the sound
from the output direction. The larger the score is, themore
confidence in accurately locating the sound.

Identity recognition remains a critical premise of
autonomous perception in diagnostic support aimed
at children with ASD. Among various off-body sensory
modules for identity recognition, voice identification
differentiates the subjects according to their acoustic data,
which provides reliable identification without suffering
from constraints of varying posture or behaviour. The
identity logs of the child and the therapist are checked
against the task specification and expectation, so that
the response order matching or mis-matching will be
further used for evaluation and diagnosis. Classifiers like
Gaussian Mixture Model (GMM) and Vector Quantification
(VQ) in combination with Mel Frequency Cepstrum
Coefficients (MFCC) and Linear Predictive Coding (LPC)
features are adopted in this project [67] to label the voice
signal generated by the therapist and children with ASD.

3.1.6 Remaining challenges in sensing and
interpretation

The proposed methods from Sections 3.1.1 to 3.1.5 are not
without limitations. Below we describe some practical
challengeswhich do not currently inhibit the performance
of the therapy but would ideally be solved in future
developments:
– Regarding themethods developed for gaze estimation,

subjects are required to face the intervention table,
described in Section 2, within the ranges of 120
degrees vertically.

– For human action recognition mechanisms in
Section 3.1.2, large-scale body overlap would cause
error in body joints tracking, and further lead to
inaccurate human action recognition.

– In the case of facial expression recognition, large
head post causing face distortion would influence
the facial expression recognition accuracy. Moreover,
face expression recognition works better for ‘happy’
detection compared to others, due to similarities in
facial appearances for these expressions.

– The integrated object-tracking algorithm is limited to
track objects in the context of a clear background (i.e.,
a white table).

– For audio processing (Section 3.1.5), speech
recognition only supports English, and sound
direction is limited from -50 degrees to 50 degrees
horizontally (this is an assumption about where the
sound would be expected).

3.2 Child behaviour classification

To operate in a supervised-autonomymode, it is necessary
to appraise the current behaviour of the child. This
brings together the strands previously discussed in
Sections 2 and 3.1. This appraisal happens in two stages
(Figure 9). In the first stage, the data collected from the
sensory interpretation setup (Section 3.1) is mapped onto
the behaviours identified as relevant by the therapists
(Section 2). This mapping draws on process knowledge
from therapists, used to create and annotate training
and validation sets of example child-robot interactions.
The outcome of this process is not a winner-takes-all;
rather, the classifiers – here, we use support vector
machines trained on trajectories of the child’s skeleton
joints (Section 3.1) – identify the probability that a given
behaviour is currently observed, for all behaviours.

This set of behaviours and probabilities are fed into
the second stage. Here, the system attempts to derive the
child’s level of engagement, motivation, and performance
on the current task, based on the interaction history
(as derived from the first stage classifications). This
is a challenging task, drawing heavily on therapists’
semantic interaction knowledge, which provides insights
into expected patterns given certain levels of engagement,
motivation, and performance.

At both stages, the classifiers can be understood as
generating real-time annotations of a therapy session
of a similar type that therapists would normally create
by recording such a session and annotating the files
using ratings frommultiple therapists. It follows from this
insight how classifiers can be validated: auto-generated
annotation files from (recorded) sessions that function
as training data can both be submitted to therapists
for verification. They can also be compared to existing
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Figure 9: Child behaviour analysis flow.

annotations from therapists using standard inter-rater
agreement measures.

Overall, it is worth noting that access to the therapists’
knowledge is crucial for the success of this part of the
work. It also clearly scopes the ambitions. There have
been previous attempts at deriving general models of
engagement (for a review, see [68]). However, we seek to
build a system that operates to the specific requirements
of the therapists.

The classifiers are explicitly allowed to report failures
(in the sense that no defined behaviour could be defined
and/or assessed). In any event, the outputs are fed into the
cognitive controller of the robot (see next section), which
decides future actions of the robot based on the classifier
outputs (including the possibility that the classifiers
failed to provide useful information). In addition to
allowing supervised-autonomous operation of the robot,
the developed classifiers offer other benefits:
– It allows a quantified evaluation of the evolution of

a child’s performance both within a single therapy
session and over longer durations covering multiple
sessions. Such quantifications might provide useful
in future evaluation of therapeutic, as well as for
assisting therapists in diagnostic tasks.

– The availability of such automated identification
of psychological disposition can relieve therapists
of some of their burden since it could be used,
for instance, to automatically annotate videos of
interactions with the children. To date, therapists are

required to do this manually. As noted above, this
reverse process forms, in fact, part of the validation
exercise for the classifiers.

3.3 Social cognitive controller

Traditionally, cognition has been organised in three levels
[69, 70]: the reactive, the deliberative and the reflective. In
this section, we describe how these levels map onto our
social cognitive controller.

The aim of the cognitive controller is to provide social
robots with a behaviour underlying social interaction,
which permits the robot to be used in RET in a supervised
autonomous manner. This involves both autonomous
behaviour and behaviour created in supervised autonomy,
whereby an operator requests certain interventions, which
are then autonomously executed by the robot. The
cognitive controller is platform independent: rather than
controlling actuators and modules specific for a robot
platform, the cognitive controller sets parameters in
descriptions and representations that are common across
all platforms. This platform independence and high level
representation of action allow this cognitive controller to
operatewith different robots inmultiple therapy scenarios,
see [34], entertaining or educating the child for limited
periods.

The autonomous controller is composed of a number
of subsystems which interact (Figure 10) and combine
their suggested actions to produce a coherent robot
behaviour, in the context of constraints laid down by the
therapist (for example, the script to be followed, types
of behaviour not permissible for this particular child
because of individual sensitivities, etc). The cognitive
controller architecture further defines the control that the
supervising therapist can exert over the behaviour of the
robot (effectively a limited ‘remote control’ functionality).

3.3.1 Socially reactive subsystem

The reactive level constitutes low-level processes which
are genetically determined and not sensitive to learning
in natural systems. This level is essential in social
robots as it creates the illusion of the robot being alive,
acting as a catalyst for acceptance [71]. The role that
the reactive subsystem plays in generating the executed
robot behaviour depends on the processing within the
deliberative subsystem, and the oversight of the therapist
(through the self-monitoring subsystem as interacted with
through the system GUI). This means that, as with other
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Figure 10: Description of the cognitive controller subsystems and
how information flows from one subsystem to another.

layered control architectures (e.g., subsumption), the
reactive subsystem contributes to, rather than completely
specifies, the overall robot behaviour.

A general high level description of the reactive
subsystem is shown in Figure 11. This describes how,
given the sensory information and the inputs from the
deliberative subsystem, the robot reacts to the current
situation.

Figure 11: High level description of the reactive subsystem.

The reactive subsystem is composed of a number of
modules as follows (see [72] for further details). Changes
in balance may end up in a fall. In such cases, all active
behaviours are interrupted, and a damage avoidance
behaviour that fits the situation is triggered, see [73] for a
case of minimising damage to a humanoid robot, and [74]
for a case of a NAO robot that modifies its falling trajectory
to avoid causing injuries in people in front of it.

In social situations, multiple verbal and non-verbal
interactive encounters may occur. The child may or may
not behave favourably towards the robot. These situations
may be conflicting and special attention is required given
the potential audience of this project. If it would be the
case of a regular social robot, for both situations the robot

may appropriately react, but under these circumstances,
the reaction is simplified to facial expressions and speech
acts, always under the supervision of the therapist.

The acceptability of the robot can be further increased
if the robotmimics human blinking behaviour. Simulating
blinking behaviour requires a human-level blinking
model that should be derived from real human data.
Several works have considered the dependencies of
human eye blinking behaviour on different physiological
and psychological factors. Ford et al. proposed the
“blink model” for Human-Robot Interaction (HRI), which
integrates blinking as a function of communicative
behaviours [75]. For this reason, we adopt Ford et al.’s
model to cover our needs and to provide accurate data for
implementing the model.

Along with social reactions, the cognitive controller
includes an attention subsystem to allow the robot to know
the relevant stimulus in the scene [76]. This subsystem is a
combination of perceptual attention, in which perceptual
stimuli (reported by, for example, sound localisation;
Section 3.1) that are particularly salient in the current
context have to be selected, and attention emulation (from
the deliberative subsystem) directs the robot’s attention
and gaze. These inputs provide the robot with a locus of
attention that it can use to organise its behaviour.

Given the context in which this subsystem is
implemented, attention behaviour has been divided
between scripted (where the attention is determined by
the requested scenario) and non-scripted interactions.
Within scripted interactions, the highest priority is given
to the deliberative subsystem outputs. Therefore, each
time attention emulation is triggered, the point of interest
is where the robotwill look at, unless the therapist decides
to override such behaviour.

Within non-scripted interactions, the attention model
seeks the next point of interest to look at. For this purpose
we have built a target selection algorithm adapted from
[77] where the authors present a bottom-up attention
model based on social features. Some simplifications
of the model were applied to adapt it for our context.
Other approaches like [78] were taken into account. This
approach merges top-down and perceptual attention in
an efficient manner. However, for the sake of simplicity
we opted for adapting Zaraki et al.’s model due to
implementation ease.

3.3.2 Deliberative subsystem

The deliberative subsystem is the primary locus of
autonomous action selection in the cognitive controller
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(Figure 10). This subsystem takes as input sensory data:
child behaviour information, information on what step
should be next executed from the therapy script, and
higher-level direction from the therapist. It then proposes
what action should be taken next by the robot. A central
aspect of the cognitive controller is its ability to follow
intervention scripts as defined by the clinicians for both
diagnosis and therapy. These scripts describe the high-
level desired behaviour of the robot, and the expected
reactions and behaviours of the child, in a defined order.
In a normal script execution context, the deliberative
subsystem is the primary driver of behaviour, whichwould
typically propose the next script step. There are however
a number of circumstances in which this is not the most
appropriate action to perform. For example, if the child
is detected to have very low engagement with the task
(as determined from the child behaviour analysis, and/or
information from the sensory system saying the child is
looking away for example), then it would be appropriate
to attempt to re-engage the child with the robot/task prior
to executing the next stage in the therapy script. In this
case, the deliberative subsystemcan choose to depart from
the behaviour defined in the script, and instead propose a
different behaviour.

The script manager itself, see Figure 10, separates the
logic necessary to manage progression through the script
(by taking into account the available sensory feedback
after actions for example) from the script itself. Thismakes
it straightforward to add new scripts or modify existing
scripts as required. This logic management has in the
first instance been achieved using a Finite State Machine
(FSM).

There is currently no algorithm in the literature
completing all the desiderata for our Action Selection
Mechanism: keeping a supervisor in control whilst
providing autonomy and adaptivity to the robot. Classical
learning algorithms (such as classical Reinforcement
Learning [79]) rely on exploration which could end with
the robot executing actions that have a negative impact on
the child. Algorithms such as Deep Learning [80] require
large datasets to be able to learn (which do not currently
exist for this application domain). An alternative for RET
is to use the knowledge of the therapist to teach the robot
appropriate actions using Interactive Machine Learning
[81, 82] by allowing the human to provide input at run
time to guide the robot action selection and learning.

Algorithms used in Interactive Machine Learning
frameworks often only use the human to provide feedback
on the robot actions to bootstrap the learning. Whilst
allowing the robot to learn faster, these approaches
do not use the human inputs to their maximum.

We take stronger inspiration from the Learning from
Demonstration community [83, 84] and give control
of every action executed by the robot to the therapist.
Following this approach, a new method was developed,
termed SPARC (Supervised Progressively Autonomous
Robot Competencies) [85, 86]. As shown in Figure 12, the
goal of SPARC is to provide the robot with online learning,
reducing theworkload on the therapist whilstmaintaining
high performance throughout the interaction.

Wizard of Oz Autonomous Learning SPARC

Workload Performance Autonomy

Constant High Performance 

Reduced Workload

Constant High Performance 

Reduced Workload

Constant High Performance 

Reduced Workload

Figure 12: Comparison of expected ideal behaviours for three
control approaches for RET on the robot’s autonomy, robot
performance, and workload on the therapist. The aim is to maintain
high performance throughout the interaction while keeping the
workload on the therapist as low as possible. By using Interactive
Machine Learning and providing the therapist with control, SPARC is
expected to meet these two key considerations.

SPARC relies on a suggestions/correction mechanism,
by which the robot proposes actions to the supervisor
who can passively accept the action or actively correct
it. The resulting action is executed by the robot and the
supervisor decision is fed back to the learning algorithm
to improve the suggestion for the future (Figure 13). The
states used for the learning are comprisedof internal states
of the robot and external states in the social and physical
environment, including the child. Using the therapist’s
commands and correction, SPARC gradually builds up
a state-action model, and as the interaction progresses,
suggests more appropriate actions to the therapist.

SPARC is agnostic of the algorithm used; studies
have been conducted using a neural network [85] and
reinforcement learning [87] but there is no indication that
it could not be used with other world representations or
learningalgorithms. In thefirst study, the results show that
when the robot is learning, theworkload on the supervisor
is lower. This supports the idea that using learning
algorithms to learn from a therapist controlling a robot in
RET could lead to a reduction of workload. The therapist
could subsequently focus more on the child behaviour,
rather than having to focus only on controlling the robot.
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Learning algorithm selects an action 
based on the current state of the 

interaction.

Action proposed to the supervisor

Supervisor 
selects an other 
action in a short 

time window

Execution of the action proposed Execution of the action selected

Decision fed back to the 
learning algorithm

Update of the action policy

Yes

No

Figure 13: High-level action selection and learning flow used in
SPARC.

The second study compared a SPARC based reinforcement
learning to Interactive Reinforcement Learning [88], a
more classical approach where rewards from the human
are simply combined to environment rewards. Results
have shown that SPARC allows faster and safer learning
and that the control given to the supervisor prevents the
robot from executing undesired actions whilst providing
enough inputs to learn an efficient action policy.

3.3.3 Self-monitoring subsystem

As explained above, the social robot will always be under
the supervision of a therapist or teacher. However, the
controller should aim to act autonomously for as long as
possible. A self-monitoring system plays the role of the
reflexive level of the robot and has been designed as an
alarm system [89]. An internal one is used when the robot
detects that it cannot act because of a technical limitation
or an ethical issue. An external alarm is one where the
therapist overrules the robot behaviour selection.

This subsystem is always on and normally does
nothing but monitor processes. When the alarm system
switches on, an appropriate behaviour of the robot is
initiated as it is undesired that the robot simply freezes
its motions, which may look unnatural to the child. If an
internal process creates the event, the robot switches to
neutral interaction and asks for therapist help.

Through the reflexive level, the social cognitive
controller manages possible ethical limitations. DREAM
is concerned about the ethics of robotics and specifically,
with how exactly the supervision or overruling will be
implemented. Discussions includewhether any overruling
of the robot’s behaviour by the therapist needs to be
explicit (so that the child can understand that the

behaviour of the robot is overruled by the therapist; it can
also make errors just like any other social agent) or needs
to be hidden (for instance, through previously defined
codewords, so the child does not recognise that the robot’s
behaviour is being modified).

The ethics of technology draws on fields in the social
studies of science and technology and the philosophy and
anthropology of technology [90, 91]. Moreover, in the last
decade a specialised field entirely dedicated to ethics in
machines and robots has grown out of philosophy [92].

We have conducted a survey [35] to understand the
opinions of parents and therapists about social robots, and
whether they believe robots can and should be used for
ASD therapy for children, in order to inform roboticists,
therapists, and policy makers about the ethical and social
issues involved in RAT. One important finding in the
survey was the positive acceptability of robots for helping
childrenwith autism comparedwith the negative feedback
given in the Eurobarometer [93]. The survey included
responses from parents of children with ASD (22%), and
therapists or teachers of children with ASD (16%), the
rest of the cohort was made up of students of psychology
or people involved in organisations. Questions presented
to the stakeholders were wide-ranging and included the
following “Is it ethically acceptable that social robots
are used in therapy for children with autism?" Of which
the majority of interview respondents agree (48%) and
strongly agree (37%). “Is it ethically acceptable to use
social robots that replace therapists for teaching skills to
children with autism?" With only 18% (agree) and 08%
(strongly agree). This survey indicated the importance of
stakeholder involvement in the process, focused around
specific health care issues.

3.3.4 Platform independent flavour

The cognitive controller outputs the social actions of the
robot, including non-verbal (facial and body) and verbal
expressions. Such a controller needs to be independent of
the robotic platform, as generic methods are required to
control the robot’s expressions, gestures andmobility. The
goal of the actuation subsystem is to translate the actions
of the social behaviour into readable social verbal and
non-verbal cues, especially for our particular audience
of young users with ASD. This subsystem determines
which combination of low-level actions the robot should
execute next, and how these actions are to be performed.
Suggestions for actions to take come from the other
subsystems. Along with this, it is assumed that the
supervising therapist, through the GUI, will determine
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(either beforehand or in real-time) the aspects of robot
behaviour that should be executed, from which relative
priorities will be determined for the three subsystems.

A number of robots capable of gesturing have been
developed to study different aspects in HRI. Gestures
implemented in robots are however, until now, subject
to two important limitations. Firstly, the gestures
implemented in a robot are always limited to a set of
gestures necessary for the current research, and often
limited to one type of gestures, see [94] for an example.
The reason for this can be found in the second limitation:
gestures aremostly preprogrammedoff-line for the current
robot configuration. The resulting postures are stored in
a database and are replayed during interaction. This is
the case for, among others, Robovie [95], HRP-2 [96] and
Kobian [97]. Since the postures are dependent on the
morphology, they cannot be used for other robots with
other configurations. The result is that, when working
with a new robot platform, new joint trajectories to reach
the desired postures need to be implemented, which can
be time consuming. It would however be much more
efficient to make the implementation of gestures more
flexible and to design a general method that allows easily
implementing gestures in different robots.

Our method divides the robot embodiment in three
areas: the face expression, developed to provide the
behaviours with natural and emotional features; the
overall pose, developed to calculate gestures whereby the
position of the main parts of the body is crucial; and
the end effector, developed for pointing andmanipulation
purposes.

Different robots use the Facial Action Coding System
(FACS) by Ekman [98] to abstract away from the physical
implementation of the robot face. FACS decomposes
different human facial expressions in the activation of
a series of Action Units (AU), which are the contraction
or relaxation of one or more muscles. We have already
implemented the FACS methodology in Probo to express
emotions [99]. The NAO robot does not possess the facial
expressibility that Probo has, as it has 0 DOF in the
face and the only mechanism that it has to express
facial gestures is through the change of colors in its eyes.
For such reason, an eyebrows system that will help to
understand better emotional expressions on NAO’s face
has been developed, see [100] for further details.

In a similar way, Body Action Units (BAU) have
been defined together with a Body Action Coding System
(BACS), where the different gestures are decomposed
in the activation of BAUs. This system avoids pre-
programming of robot-dependent body poses and actions,
which is relevant since humans are able to recognise

actions and emotions frompoint light displays (sowithout
body shape) [101]. The physical actuation of AUs will
depend on the morphology of the robot: a mapping will
be needed between AUs and the degrees of freedom, and
thus to the joints of the robot, thismappingwill be specific
to a robot platform. To ensure a realistic and readable
overall posture, it is necessary to take into account the
relative orientations of every joint complex the robot has in
commonwith a human. A base humanmodel was defined,
and the target postures were quantitatively described by
the orientation of the different joint complexes in the
model using the BACS. While the Facial AUs are defined
as a muscle or a muscle group, our BAUs are based
on the human terms of motion. The units are grouped
into different blocks, corresponding to one human joint
complex, such as the shoulder or the wrist. These blocks
can subsequently be grouped into three body parts,
namely the head, body and arm, which we refer to as
chains. In that way, a base human model was defined,
consisting of four chains; the head, the body, the left
arm and the right arm. Although the leg movements also
contribute to the overall performance of the gesture, for
a first validation of the method we decided to focus only
on the upper body movements. This method has been
successfully validated on the virtual model of different
robots through a survey. See [102] for further details on the
method and validation.

To calculate pointing and manipulation gestures,
another strategy is used. In some situations, for example
when reaching for an object, the position of the end-
effector is important and specified by the user. For
pointing towards an object, several end-effector poses are
possible to achieve a pointing gesture to the specified
target. In that case, an optimal pose of the end-effector
is chosen, according to a cost-function minimising the
deviation from a defined set of minimum posture angles.
This specified end-effector pose then serves as input to
calculated the corresponding joint angles, using the same
inverse kinematics algorithm as used for the calculation
of emotional expressions. Figure 14 shows the calculated
end posture for a reaching gesture at (34, −34, 38) for
three different configurations. The first column shows the
joint configuration, while the second column shows the
calculated posture for that configuration. The desired end-
effector position is visualised by a sphere. In the top
row, a 9 DOF human arm is shown, consisting of a two
DOF clavicle, 3 DOF shoulder, 1 DOF elbow and 3 DOF
wrist (virtual model comes from the RocketBox libraries
[103]). Configuration 2 shows the ASIMO robot [104]. As for
the human model, the targeted end-effector position was
reachable, and a suitable end posture could be calculated,
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as shown in the second row. Configuration 3 is that of
the NAO robot. NAO is considerably smaller than the
previous models, and as a result, the maximum reachable
distance is smaller. The desired position is located out of
the range of the robot. Therefore, the pointing condition
is activated, and a suitable posture for a pointing gesture
towards the specified point is calculated. See [105] for
further information.

Figure 14: Results of the method for different arm configurations.
The first column shows the joint configuration, while the
second column shows the end posture for a place-at gesture at
(34, −34, 38).

4 Conclusion
Robot-Assisted Therapy is increasingly being used to
improve social skills in children with ASD [106]. However,
as discussed at the outset, there is a need for robots
to move beyond the reliance on WoZ control of robots
in therapeutic settings in a new paradigm that we term
Robot-Enhanced Therapy. Section 1.1 discussed some of
the challenges that researchers in RAT will face in these
forthcoming developments. In particular, we highlighted
the need for increasing the autonomy of the robot to
improve therapeutic experiences.

To tackle these challenges, we recast them as
practically solvable problems under a certain clinical
framework in which therapeutic interventions are to be
conducted. In Section 2, we described the measured
variables and the clinical framework itself, providing

us with a baseline to compare the performance of RET
robots with RAT robots and to SHT conditions. Moreover,
this framework functions as the starting point in the
development of supervised autonomy systems.

As an insight into our first clinical study, we consider
this work to provide a baseline to conduct second phase
clinical studies with RET robots, although the results from
this first phase showed mixed outcomes. There are still
some limitations of using robots in clinical frameworks,
such as delays due to the slow reaction time of the
robot or connectivity problems between the robot and
the therapist’s computer. While we do not think they
could have a strong impact on the performance of the
child, they should be addressed in forthcoming projects.
Overall, work such as that described here has the potential
to impact clinical practices in therapy for children with
ASD. The use of technology in the diagnosis process
and interventions for individuals with ASD will ease the
workload of the therapist and lead to more objective
measurements of therapy outcomes.

Based on ethical studies concerning the acceptance
of autonomous robots in therapies with children with
autism, we suggest that a fully autonomous robot is not
desirable, and aiming to achieve it is unrealistic. For this
reason, a supervised autonomy approach is preferred. In
Section 3, the supervised autonomy architecture is divided
into three blocks: sensory information, child behaviour
classification and social cognitive controller.

Sensory information collects, analyses and interprets
data targeting the required features described in the
clinical framework. We have successfully developed
mechanisms for gaze estimation, human action
recognition, facial expression recognition, object
detection and tracking, speech recognition, voice
identification and sound direction recognition, although
constrained to specific application areas. These
limitations are described in Section 3.1.6.

Realising that a full Theory of Mind is currently not
realistic in RAT or RET scenarios, we reduced the problem
to the identification of well-defined indicators of the
child’s level of engagement, motivation and performance
on the current task. This classification is then used by the
social cognitive controller, which allows the robot to act
appropriately, given both its own autonomous behaviour,
and behaviour defined by therapists. Given the conditions
in which this architecture has been implemented, the
robot behaviour has been divided between scripted and
non-scripted interactions. Within scripted interactions,
there is no room for the robot to be socially reactive
and its behaviour is limited by the intervention protocol.
However, the deliberative subsystem proposes actions to
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the supervisor and learns from the therapist’s choices
building a state-action model. In non-scripted scenarios,
the robot is being responsive to verbal and non-verbal
interactive cues and suggests possible actions to re-
engage the child in the intervention protocol. Robot
actions must be expressed independently of the robotic
platform therapists decide to use. Therefore, a platform
independent method to implement these actions in robots
with different sets of DOF is described.

To summarise, this paper described the insights
gained from progress in the DREAM project so far,
highlighting how the many elements involved in the
solution of this complex problem come together. In
particular, we have tackled some of the challenges
underlying supervised autonomy in RET and described
possible approaches to overcome them.
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Abstract

To broaden the adoption and be more inclusive, robotic tutors need to tailor their
behaviours to their audience. Traditional approaches, such as Bayesian Knowledge
Tracing, try to adapt the content of lessons or the difficulty of tasks to the current
estimated knowledge of the student. However, these variations only happen in a limited
domain, predefined in advance, and are not able to tackle unexpected variation in a
student’s behaviours. We argue that robot adaptation needs to go beyond variations in
preprogrammed behaviours and that robots should in effect learn online how to become
better tutors. A study is currently being carried out to evaluate how human supervision
can teach a robot to support child learning during an educational game using one
implementation of this approach.

1 Introduction 1

Compared to lectures, tutoring has been showed to increase the learning gains of 2

humans [4]. In particular, one-to-one tutoring enables a more inclusive teaching, by 3

adapting the content of the lesson and the style of interaction to the needs and 4

preferences of the student. As such, tutoring presents numerous opportunities for social 5

robots in education: teaching language [3], how to write [9], maths or sciences [7]. 6

To be as effective as human tutors, robots should not deliver a one-size-fits-all 7

teaching content; they need to adapt their behaviour to the student they are teaching. 8

Traditional methods of developing adaptable robot tutors have either used predefined 9

behaviours that the robot can switch between or have adapted the difficulty of a class 10

to meet the estimated knowledge of the user. But we are convinced that to thrive, robot 11

tutors need to go beyond and learn how to behave efficiently within each situation. 12

Furthermore, we also wish to empower the teachers who are ultimately leading the 13

teaching and who know their students best. Robots should remain tools in the hands of 14

the teachers, and teachers should have the freedom to shape the robot into their own 15

personalised teaching assistant. To this end, we rely on the teacher to demonstrate to 16

the robot the desired tutoring behaviour using a Wizard of Oz (WoZ) approach. As the 17

robot is exposed to these demonstrations, it learns and starts producing its own 18

suggestions of actions to support the students. Using human feedback and commands, 19

the robot’s action policy improves over time and when the teacher deems this behaviour 20

to be adequate, the robot can take over the tutoring session, interacting autonomously 21

(if desired) with the students and freeing the teacher to work with other students. 22

1/6



2 Related Work: Adapting Teaching Strategies in 23

Robots for Learning 24

To increase the amount of learning children gain from the tutoring setup, robots can 25

adapt their behaviour to suit the preferences and requirements of the student they are 26

teaching. One solution, as used in [8], is to have different empathic strategies such as: 27

encouraging comments, scaffolding, offering help or intentionally making errors. By 28

modelling the child’s preferences and reactions to these strategies the robot can select 29

the most efficient one for each specific child. Other methods use Bayesian Network and 30

Knowledge Tracing to estimate the learner’s knowledge and provide advice on missing 31

skills [10], or select a task and a difficulty level which will maximise the learning 32

gain [6, 11]. Alternatively, if the task requires mainly practice of poor skills (such as 33

handwriting), every aspect of the child’s knowledge can be continuously monitored and 34

training examples can be selected to encourage the practice of these poor skills [9]. 35

One method which goes further than simple adaptation and allows the robot to 36

tackle previously unseen or unanticipated child behaviours as a human tutor would, was 37

introduced by Sequeira et al. in [15]. The authors proposed the restrictive-perception 38

Wizard of Oz: the robot starts as non-autonomous; controlled by a human. Then an 39

autonomous controller is developed from the human demonstrations and hand-coded 40

rules before being deployed to interact autonomously and replicate the human 41

demonstrations. 42

However, in [12] and [13], we argued that the learning of an action policy should 43

occur online, with human supervision. This reduces the workload of the wizard, 44

allowing them to monitor the robot’s learning while ensuring that even in the learning 45

phase, the robot’s behaviour is efficient. While this method originated from the Robots 46

in Therapies field, we are convinced that Robots in Education is an area which would 47

greatly benefit from such an approach. 48

3 Progressive Autonomy for Robots in Education 49

3.1 A teacher-led learning process 50

Developed to reduce the workload on a robot’s supervisor in a therapy scenario, the 51

Supervised Progressive Autonomous Robot Competencies (SPARC) [12] uses online 52

learning from demonstration combined with suggestions from the robot and potential 53

corrections from the teacher to rapidly learn and improve a robot’s action policy. 54

Figure 1. Interaction setup:
the teacher (one of the au-
thors) on the left uses a GUI
on a tablet to control and
teach the robot how to inter-
act with the child until reach-
ing a good action policy.

One advantage 55

of such a technique is that it empowers the 56

end-users, the teachers. They can control 57

the robot’s behaviour in a teaching phase, 58

ensuring that the robot reacts properly to 59

the different behaviours expressed by the 60

child while monitoring the progress of the 61

robot’s learning (Figure. 1). As the robot 62

learns a better action policy, the teacher 63

can step back and focus more on the 64

child’s behaviour while letting the robot 65

progressively take over the tutoring session, freeing the teacher to take care of other 66

children. Keeping the human in the loop and in control of the robot’s actions provides 67

the algorithm access to efficient demonstrations and ensures that incorrect actions due 68

to missing knowledge are corrected before being executed, which ensures quick and 69

efficient learning [13]. Having been demonstrated to work only in simple or discrete (in 70
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space and in time) environments, this method has not yet been evaluated in a 71

real-world, complex environment such as tutoring. 72

3.2 A high-dimensional example: a robot tutor to learn about 73

food chains 74

SPARC for creating a teachable tutor has been implemented in a teaching scenario and 75

is currently being tested with children (source code available 1 2 3). 76

In this study, children are invited to learn about food chains in a gamified and open 77

learning environment. The setup, as shown in Figure 1, uses the Sandtray paradigm [2] 78

whereby a child is interacting with a robot through a large touchscreen sitting between 79

them. The game presents movable animals and passive plants and the goal is to keep 80

the animals alive as long as possible. Animals have energy that decreases as time goes 81

by and the students have to make them interact with other animals or plants to feed 82

them and replenish their energy. As the students learn how to feed animals to keep 83

their energy high, by extension, they can learn what food each animal eats. 84

To support this learning, the robot can provide advice (move an animal to, toward 85

or away from other animals or plants), verbal feedback (remind rules, provide 86

congratulation and encouragement) or draw the child’s attention to an animal. 87

Figure 2. GUI used for su-
pervising: the teacher moves
the bird close to the fly and
selected both of them as rel-
evant feature for this action
(blue and orange circles).
Buttons at the bottom are
used to have the robot pro-
vide feedback.

The teacher uses a tablet running 88

a supervisor GUI replicating the state 89

of the game as it is currently being played on 90

the touchscreen. This GUI allows for remote 91

control of the robot’s actions (highlighting 92

features to speed up the learning by providing 93

relevant dimensions for the algorithm [14]) 94

and receives suggestions from the robot 95

about what action to do next (cf. Figure 2). 96

The robot has access to 655 discrete output actions and an abstracted representation 97

of the state of the game and the interaction through a 210 dimensional vector of values 98

bounded between 0 and 1 (distances between the elements, time since the child touched 99

each elements, time since robot’s actions or time since other interaction events). The 100

system must therefore find a correct mapping between a 210 dimensional input vector 101

to a 655 exclusive output one. Many algorithms can learn in such an environment, but 102

traditional Reinforcement Learning algorithms would take a prohibitive amount of time, 103

exhausting many children as the robot would at first be behaving randomly and 104

providing incoherent messages. As such, a method like SPARC offers an opportunity to 105

quickly learn a useful action policy despite the complexity of the environment. 106

To learn fast, the algorithm used is a variation of the Nearest Neighbours 107

algorithm [5] where actions are defined on a sliced version of the general space [14]. This 108

algorithm allows fast, lightweight and online learning with transparency as the algorithm 109

can highlight which features of the space have been used to make the suggestion. 110

At the start of the first interaction, the database the algorithm has access to is a 111

blank sheet without any actions, and as the supervisor selects actions, the database of 112

demonstrations is filled, associating actions with the value of the state on a subset of 113

the dimensions. As the database becomes richer, the robot suggests a larger number of 114

correct actions, reducing the workload on the teacher until reaching a point where the 115

teacher only has to correct/select a low number of actions to fine-tune the robot’s policy. 116

This setup is currently being tested in primary schools in the UK with children in 117

1https://github.com/emmanuel-senft/freeplay-sandbox-ros-sparc/tree/task
2https://github.com/emmanuel-senft/freeplay-sandbox-qt/tree/food-chain
3https://github.com/emmanuel-senft/freeplay-sandbox-qt-supervisor
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Years 4 and 5 (8-10 years old) with one of the authors (a PhD student in Psychology 118

naive to the algorithm) acting as a teacher. 119

4 Discussion 120

4.1 Future work 121

The current implementation has several limitations that should be tackled in future 122

work. Firstly, for now, the algorithm can only take demonstrations (and negative 123

feedback) as input. It would be interesting to start with a set of rules defining a 124

baseline of behaviour, which could then be refined online by adding either new rules or 125

demonstrations. Additionally, currently the algorithm only reproduces a demonstrated 126

action policy and does not have the opportunity to learn from its interaction with the 127

world. Future work could focus on designing a system which adds the prediction and 128

use of rewards in reaction to environmental events (such as with Inverse Reinforcement 129

Learning [1]) and techniques to model a child’s knowledge to potentially learn an action 130

policy more efficient than the demonstrated one. 131

While allowing the robot to learn faster using initial knowledge from a human, 132

including a supervisor in the action selection loop also limits the time-scale of the 133

interaction. Allowing the human enough time to correct a suggested action requires the 134

addition of a few seconds between the suggestion of an action and its auto-execution, 135

which implies that the rate of action selection has to be below 1 Hz. This delay can 136

reduce the optimality of an action between its suggestion and execution, slowing down 137

the learning process. Future work could explore teaching at different levels of 138

abstraction, giving the teacher time to override only high level actions where exact 139

timing is less critical. 140

4.2 Opportunities 141

The goal of the approach is to provide teachers with a way to create their own 142

personalised robotic tutors, which can be controlled by the teacher and taught how to 143

interact with children according to the teacher’s personal preferences. The robot learns 144

from the first demonstration, and to obtain a correct autonomous action policy the 145

teacher would need to spend enough time to cover the required actions in the domain of 146

application. The time dedicated to teach the robot varies with the complexity of the 147

policies from a few minutes for simple ones to more than one hour for complex ones. 148

However, it needs to be pointed out that while the teacher is teaching the robot how to 149

interact, s/he does also actively support students in their learning in a different, while 150

similar, way than traditional human-to-human tutoring. 151

The mixture between WoZ, learning and autonomy additionally allows the teacher to 152

take a more active supervisory stance for children with more difficulties to offer them an 153

experience tailored to their specific needs, or to select a special (previously taught) 154

action policy for the robot. If the study is successful, we would have demonstrated a 155

way to teach a robot online, an efficient action policy to interact with humans in a 156

complex (high dimensional), indeterministic (children are highly stochastic) 157

environment. This or similar methods could be applied to other domains ranging from 158

personal robotic assistants at home to collaborative manufacturing. 159
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Abstract

Social interacting is a complex task for which machine learn-
ing holds particular promise. However, as no sufficiently ac-
curate simulator of human interactions exists today, the learn-
ing of social interaction strategies has to happen online in the
real world. Actions executed by the robot impact on humans,
and as such have to be carefully selected, making it impossi-
ble to rely on random exploration. Additionally, no clear re-
ward function exists for social interactions. This implies that
traditional approaches used for Reinforcement Learning can-
not be directly applied for learning how to interact with the
social world. As such we argue that robots will profit from hu-
man expertise and guidance to learn social interactions. How-
ever, as the quantity of input a human can provide is limited,
new methods have to be designed to use human input more
efficiently. In this paper we describe a setup in which we
combine a framework called Supervised Progressively Au-
tonomous Robot Competencies (SPARC), which allows safer
online learning with Reinforcement Learning, with the use of
partial states rather than full states to accelerate generalisation
and obtain a usable action policy more quickly.

Introduction
Human-Robot Interaction (HRI) studies how people and
robot can co-exist in society, and how they can interact so-
cially in different environments and contexts. Robot are ex-
pected to behave appropriately regardless of the domain of
interaction. However, it is impossible to foresee all possible
interaction outcomes in dynamic and open social domains,
as such the robot’s responses cannot be implemented in the
robot before its deployment in the real world. Similarly to
people, robots need to be able to learn how to complete
tasks through creating and optimising action policies. This
includes learning social norms and how to make sense of the
social world.

For a robot, interacting in the real world often requires
taking in a diverse and large range of sensory inputs, which
results in a high-dimensional sensory space. The robot then
is required to select actions based on its current state in sen-
sor space. However, parts of the state can be irrelevant to
the current goal, and as such should not be taken into ac-
count when selecting the current action. Often, only a lim-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ited number of features in the space are important. To inter-
act efficiently, a robot has to learn to identify these salient
features and associate them with appropriate actions.

In previous work (Senft et al. 2015; 2017), we introduced
the Supervised Progressively Autonomous Robot Compe-
tencies (SPARC) as a way to teach a robot an action pol-
icy while interacting based on a human supervisor interven-
ing and correcting actions before they were executed by the
robot. In this paper, we propose to extend this approach to
allow the supervisor to highlight features in the environment
relevant for the selected action. During the action selection
phase, the robot can compare these features, defined as par-
tial states, with the current state to select an action. The se-
lected action is presented to the human supervisor, who can
either correct the proposed action or approve it for execu-
tion.

Background
Reinforcement Learning
The main framework for an agent to learn how to interact in
an environment while interacting is Reinforcement Learning
(RL) (Kober, Bagnell, and Peters 2013; Sutton and Barto
1998). In RL, an agent interacting in an environment re-
ceives numerical rewards in reaction to its actions. The agent
subsequently learns an action policy to maximise the ex-
pected cummulative discounted reward.

In many cases where RL achieves success, the agent has
access to a virtual environment where the only real cost of
exploring is computational effort: the agent can interact as
long as needed to gather enough information on the envi-
ronment and the result of its actions on the environment in
order to find a sufficiently optimal action policy. Using sim-
ulation RL can achieve impressive results, as shown in RL
learning to play Backgammon in the 90s (Tesauro 1995) to
the more recent success in mastering the game of Go (Silver
et al. 2016). Even when a virtual environment is available,
but especially when it is not, human knowledge and effort is
required during the design of the algorithm or the learning
phase before the learning can be successful.

Human impact on Reinforcement Learning
Initial knowledge is often crucial to allow an algorithm to
learn an efficient action policy. This knowledge, originating



from human expertise, can be exploited in many ways.

Design decisions: Initial knowledge has to be used in the
design of the algorithm, the representation of the state and
actions spaces and the reward funtion. For example, only
carefully crafted features allowed Tesauro to improve its al-
gorithm for Backgammon from a intermediate-level player
to super-human level (Tesauro 1995). Similarly, the design
of complex neural networks for state generalisation, the rep-
resentation of actions as motor primitives rather than raw
motor angles or adding additional information in the reward
function have important impacts on the ability of the robot to
reach a successful policy (Kober, Bagnell, and Peters 2013).

Demonstrations: Initial knowledge can be provided to the
agent through demonstrations. These demonstrations can be
used to create an initial policy which is sufficiently efficient
to start interacting in the environment and gather informa-
tion to improve over time. This initial policy, required to re-
ceive meaningful feedback from the environment can be im-
possible to reach by relying only on random exploration and
feedback from the environment. For example the game of
Go in its larger board size contains more than 10210 states,
so exhaustive search is not possible. Silver et al. (Silver et
al. 2016) started with supervised learning from Go masters’
games to learn a decent enough policy and then proceeded
using deep learning, self play and tree search to achieve
super-human capabilities and the capacity to beat the best
human players.

These demonstrations can also be used to learn a reward
function. With Inverse Reinforcement Learning, the agent is
not provided with a reward function, but derives it instead
from a set of expert demonstrations. The agent can then ex-
plore around the demonstrated policy to optimise the reward
function. With this approach, Abbeel and Ng achieved bet-
ter than human control for a robotic helicopter (Abbeel and
Ng 2004) based on demonstrations from experts and further
exploration and autonomous learning.

Guiding the learning: Rather than solely providing initial
knowledge to the agents, humans can also guide the agent
during its learning, a method more resembling human teach-
ing.

A first approach consists in sequencing the tasks the robot
will face. This approach, known as “scaffolding” (Saunders,
Nehaniv, and Dautenhahn 2006), progressively increases the
difficulty and complexity of the task as the robot is learning
to reach policies which would take prohibitively long with-
out scaffolding.

Agents learning in environments providing rewards can
also benefit from additional rewards from human teach-
ers. Depending on the task and the environment, different
ways exist to combine rewards from multiple sources, and
studies show that augmenting rewards from the environ-
ment by human ones can speed up the learning and reduce
the number of undesired behaviours (Griffith et al. 2013;
Knox and Stone 2010; Judah et al. 2010).

When environments do not supply rewards, they can be
replaced by human ones. For example, the TAMER frame-
work (Knox and Stone 2009) derives a reward function from

the human feedback and uses this function to evaluate the
current behaviour. In a similar approach, MacGlashan et al.
proposed COACH in (MacGlashan et al. 2017). COACH as-
sumes that human rewards represent the advantage function,
i.e. how much the current action is better than the current
policy, allowing to adapt the reward function to the strate-
gies used and the current state of the learner.

Another approach to guide the learning is to bias the ac-
tion selection. In (Thomaz and Breazeal 2008), the authors
propose using a human supervisor to supply an agent with
both rewards and potential guidance indicating what the
agent should pay attention to, or what action it should take
next. They show that giving the power to the supervisor to
bias the action selection can improve the learning, making it
faster and safer.

In (Senft et al. 2015), we introduced the Supervised
Progressively Autonomous Robot Competencies (SPARC).
SPARC relies on a supervisor with the ability to control the
robot’s actions. This supervisor is presented with the action
the robot is about to execute. He can then choose to cancel
it, allow it to be executed, or can select an alternative ac-
tion. Based on the supervisor’s decisions, the robot learns
which actions are desired and can as such refine its policy
over time, thus progressively reducing the need for the su-
pervisor to correct or select an action.

SPARC gives control of the robot’s actions to an expert,
who can guide the exploration in the desired part of the envi-
ronment which ensures the robot’s behaviour is consistently
appropriate. As the exploration is guided, and all the actions
are useful, the learning can be faster than autonomous learn-
ing or learning based on human feedback as illustrated in
Figure 1. In Autonomous Learning, the agent has first to dis-
cover its environment to start gathering relevant feedback,
leading to a low initial performance and a slow improvement
in early stage of learning. With teaching based on human
feedback, the teacher can quickly provide information on ac-
tions to reach an efficient policy more quickly. However, as
the teacher only provides feedback and cannot prevent the
agent making mistakes, the initial performance can be poor.
On the other hand, SPARC, with the control of the teacher
over the executed actions, can prevent the agent from mak-
ing mistakes in early stages, achieving a high performance
even at the start of the learning.

Compared to similar algorithms (Chernova and Veloso
2009; Walsh et al. 2010), which allow the agent to request
demonstrations and/or the teacher to provide demonstrations
to correct mistakes made by the robot, SPARC allows the
teacher to correct any action before its execution, thus re-
ducing importantly the risk of the agent making errors. The
total blending between autonomous execution of actions and
demonstrations and the control over every actions executed
by the agent are the specificities of SPARC.

In (Senft et al. 2017), we presented a way to combine
SPARC and RL, by assigning a positive reward to every
action executed by the robot, making the assumption that
every action has been explicitly or implicitely approved by
the supervisor. However this method directly mapped a sin-
gle (state, action) pair to a reward without making use of
any kind of generalisation. As such it was not applicable to



        Autonomous learning               Teaching based on Human Feedback SPARC
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Figure 1: An illustration of the evolution over time of the
performance, autonomy and human workload for an au-
tonomous learner, an approach using human feedback, and
SPARC.

environments with a continuous or high dimensional space
or non-deterministic transitions from one state to another,
elements which are typically present in social interactions.
Similarly to TAMER or COACH, this approach allows to re-
produce an action policy from a teacher even in the absence
of a reward function, but as the teacher has control over the
robot actions, the learning can be faster and safer.

Partial State Supervised Reinforcement
Learning

To make RL applicable in high dimensional or continuous
states, the algorithm requires a way to generalise knowledge
to unseen states. A classic approach is to use a feed-forward
neural network or deep learning to learn a the value func-
tion generalising to unseen states. Neural networks rely on
having a large number of datapoints to converge toward a
good function approximator. Alternatively, Cobo et al. pro-
posed in (Cobo et al. 2011) to abstract features automatically
from demonstrations to learn faster. But even in this case,
the number of datapoints required is still high (around 1000
samples per participant). However, in many applications and
especially in HRI, these amounts of data are not available or
obtainable due to practical constraints. Furthermore, human
responses are often noisy and lack consistency, so methods
are needed which can generalise from a low number of noisy
data points.

In this paper we propose to use a human user to highlight
the relevant features of the environment to reduce the state
dimension of the points only to relevant information. We in-
troduce the concept of a partial state, a sliced version of the
state defined only on a subset of the dimensions of the state.
This shifts the (state, action) pair paradigm to (partial state,
action) and in the case of RL, the tuple (state, action, reward)
to (partial state, action, reward). This allows a comparison of
the current state and the datapoints only on relevant features
for action selection. With this instance-based method (Aha,
Kibler, and Albert 1991), the algorithm can have a state ab-
straction allowing it to generalise even with a few datapoints
instead of the large numbers normally required to abstract
features from examples.

Learning algorithm
An expert supervises the agent actions, and can assign re-
wards to actions and highlight the parts of the states which
are relevant to assigning this reward to this partial state.

As the supervisor can estimate the future impacts of an
action, the problem of credit assignment for delayed rewards
can be ignored which allows us to consider only a myopic
approach in a fashion similar to TAMER (Knox and Stone
2009).

For this paper, we will reuse the formalism of rewardless
Markov Decision Process to identify the different elements
of our system. The agent has access to a set of actions A
and a state S ∈ [0, 1]n. We also define the partial states
S ′ ∈ [0, 1]n

′
with n′ ≤ n as a slice of S, a subset of S

where some dimensions have been removed.
When the agent executes an action a in state s, it re-

ceives the reward r associated with the partial state s′.
For example, a state s could be defined in 4 dimensions
such as s = [1, 0.2, 0, 0.5], and s′ in two dimensions with
s′ = [−, 0.2, 0,−] with symbol ’−’ reprensenting the di-
mensions removed. For the learning algorithm, this means
that the action a has been evaluated r in the partial state s′.

To each action a ∈ A we can associate a set Ca of pairs
(s′, r) representing the rating done by the supervisor to ac-
tion a with features highlighted for the multiple s′. When
adding a new pair (s′, r), we can discard potential previous
pairs with an identical s′ to represent the evolution of the
policy evaluation by the supervisor.

Algorithm 1: Algorithm for selecting an action based on
the previous (partial state, action, reward) tuples and the
current state.

inputs : Current state s, set of (a, s′, r)
output: selected action π(s)
foreach a ∈ A do

foreach p = (s′, r) ∈ Ca do
compute similarity ∆ between s and s′:

∆(p) = 1−
∑n′

i (s′(i)−s(i))2
n′

find closest pair p̂:
p̂ = argmaxp∆(p)
compute expected reward r̂(a) for taking a in s:
r̂(a) = ∆(p̂) · r(p̂)
with r(p) the reward r of the pair p = (s′, r)

Select the action with the maximum expected reward:
π(s) = argmaxar̂(a)

When facing a new state s where an action has to be se-
lected, the agent can select an action following Algorithm 1
in a instance-based learning fashion. For each action a ∈ A,
we take the pair (s′, r) with the closest s′ to the current state
(as defined by the average quadratic distance over the nor-
malised dimensions where s′ is defined). That way, each ac-
tion a can be associated to an expected reward defined by
the product between the similarity of the closest partial state
known for a and the reward obtained for executing a in that
partial state. Finally, the action with the highest expected re-
ward can be selected.

The normalisation of each dimension of the state allows
distances to be comparable as values on all dimensions have
the same range. Additionally taking the average quadratic
distance over each defined dimension allows to compare
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Figure 2: Interaction setup: the child and the robot are inter-
acting on the touchscreen and a supervisor can control the
robot using a GUI on a tablet.

similarities even when states are defined on a different num-
ber of dimensions.

Combination with SPARC
SPARC has been shown to be compatible with RL in (Senft
et al. 2017), and can also be easily combined with the ap-
proach presented in this paper using partial states. For exam-
ple, when selecting an action for the robot to be executed, the
supervisor can also select which features in the environment
should be selected as the partial state, and this associates the
reward to this action in this partial state. Similarly, when an
action is proposed to the supervisor the features represented
by the dimensions of the closest partial state for this action
can be exposed to the supervisor as a way to explain why this
action has been selected. Facing this, the supervisor can: (1)
not react, allowing the action to be executed and associating
a reward of +1 to the partial state and the action proposed,
(2) change the partial state to correct the features related to
this action or (3) cancel it, preventing the execution and as-
sociating a reward of -1 to the partial state identified by the
robot or the supervisor.

Application scenario
An example of an application is a social robot which in-
teracts with children in an educational scenario. The robot
plays an educational game with children to teach them no-
tions about diverse topics according to the needs of the
teacher. For this example, a child and a robot are playing a
game about the food web, teaching which animals eat which
ones on a Sandtray (Baxter, Wood, and Belpaeme 2012). In
addition to the child and the robot, an adult supervises the
robot using a tablet with a Graphical User Interface (GUI)
to teach the robot how to interact with the child as shown in
Figure 2.

The GUI (Figure 3) is an augmented version of the game
itself, which can be use to make the robot move items on the
game by dragging them on the GUI or which can display ac-
tions proposed by the robot with a cancel button to refuse an
action. For example in Figure 3 the robot proposes to move
the eagle to the rat, and highlights (as shown by blue circles)
the eagle and the rat. This indicate that features relevant to
the eagle and the rat have been used to select this action.

Figure 3: Interface for the supervisor with an action being
proposed, moving the eagle to the rat highlighting both the
eagle and the rat.

In the current implementation, the state is defined by the
distance between each animal and their energy. With these
features selected, the partial state transmitted to the user is
the distance between the eagle and the rat, the eagle’s energy
and the rat’s energy. Similarly, when selecting an action, the
supervisor can select features in the state relevant to the ac-
tion.

The main limitations of the approach reside in the differ-
ence of representation of the state and action spaces between
the supervisor and the algorithm and the limit in communi-
cation. For example a user could try to move an animal close
to another one, and depending on the representation of the
actions on the algorithm side, the action might not be un-
derstood in the same way. Similarly, features used by the
supervisor to select actions might not be represented in the
state used by the algorithm. And lastly, in the case of im-
plicit selection of features, a single case of features repre-
sentation (for example highlighting two animals) might not
be perceived in the same way by observers.

Future work
The system presented in the previous section will be im-
proved and evaluated in the real world with children in the
next months.

The current work could also be extended to allow the
agent to continue to improve its behaviour even in the ab-
sence of a supervisor, progressively exploring around the
learnt policy improving its behaviour beyond the demonstra-
tions. This could be done by allowing the supervisor to pro-
vide rewards during the learning phase and combine these
rewards with the demonstrations to learn a reward func-
tion in a fashion similar to Inverse Reinforcement Learn-
ing (Abbeel and Ng 2004) or TAMER (Knox and Stone
2009). This could also use partial states associated to these
rewards to ease the generalisation of the reward function
with only a low number of datapoints. However, without the
supervisor, the assumption that only a myopic action selec-
tion is sufficient would not hold anymore and the problem
of delayed rewards would have to be tackled.
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From Evaluating to Teaching:
Rewards and Challenges of Human Control for Learning Robots

Emmanuel Senft1, Séverin Lemaignan2, Paul Baxter3 and Tony Belpaeme1,4

Abstract— Keeping a human in a robot learning cycle can
provide many advantages to improve the learning process. How-
ever, most of these improvements are only available when the
human teacher is in complete control of the robot’s behaviour,
and not just providing feedback. This human control can make
the learning process safer, allowing the robot to learn in high-
stakes interaction scenarios especially social ones. Furthermore,
it allows faster learning as the human guides the robot to the
relevant parts of the state space and can provide additional
information to the learner. This information can also enable the
learning algorithms to learn for wider world representations,
thus increasing the generalisability of a deployed system.
Additionally, learning from end users improves the precision
of the final policy as it can be specifically tailored to many
situations. Finally, this progressive teaching might create trust
between the learner and the teacher, easing the deployment
of the autonomous robot. However, with such control comes a
range of challenges. Firstly, the rich communication between
the robot and the teacher needs to be handled by an interface,
which may require complex features. Secondly, the teacher
needs to be embedded within the robot action selection cycle,
imposing time constraints, which increases the cognitive load
on the teacher. Finally, given a cycle of interaction between the
robot and the teacher, any mistakes made by the teacher can be
propagated to the robot’s policy. Nevertheless, we are are able
to show that empowering the teacher with ways to control a
robot’s behaviour has the potential to drastically improve both
the learning process (allowing robots to learn in a wider range
of environments) and the experience of the teacher.

I. INTRODUCTION

Interactive Machine Learning (IML) [1], [2] differs from
Classical Machine Learning (CML) in the fact that the
learning process is not one single monolithic step leading to a
static classifier or robot behaviour, but a continuous iterative
improvement of the behaviour. IML relies on a series of
small learning steps progressively leading to a complete and
autonomous system. Additionally, IML makes use of humans
in the learning loop, to direct the learning process, making it
at the same time faster, more adequate to the task and more
efficient.

IML can take two forms: human supported classifiers
(closer to semi-supervised learning) or agents learning to
interact from human guidance (supervised reinforcement
learning). A classical example of the first category is Active
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Learning, a learning process giving to the learner the op-
portunity to take a more active stance in the process, asking
questions and querying labels from an oracle, often a human
being [3]. The second category relates to agents learning to
interact in an environment and profiting from humans inputs
to improve the learning process. In this case, the learner is not
in control of the datapoints it has to classify as those come
directly form the environment; in fact, the agent interacts in
an environment reacting to its actions and it requires a policy
leading to a successful outcome in the task. The human
can provide additional information to support the agent in
developing its policy.

This work is focused on the second category, agents learn-
ing from human supervision to interact in an environment.
An example is presented in Figure 1, where a robot is taught
to interact with a child, supporting them in an educational
activity. Compared to CML, IML holds the promises of faster
and more flexible learning leading to a policy more adapted
to current task [1], [2].

Teacher /
Supervisor

Teaching
Interaction

Application
Interaction

Machine 
Learning

Control over action

Application
Target

Fig. 1. Example of a human teaching a robot to interact with a child in
an educational scenario.

In the context of agents learning to interact, a classical
approach is to use a human to provide rewards on the
robot’s behaviour [4]. The scenario is similar to Reinforce-
ment Learning (RL) [5], where an agent interacts in an
environment providing rewards and where the agent has
to maximise a notion a cumulative reward. Compared to
traditional RL, using humans to distribute rewards possesses
many advantages: no explicit reward function has to be
provided, the human can anticipate the impacts of actions,
reducing the challenge of credit assignment, and finally, the
teacher can scaffold their reward distribution to help the
agent to progressively improve its action policy [6]. This



way to support agent learning is attractive as it already
provides advantages compared to classic RL and requires
a simple interface between the teacher and a robot: the
teacher only needs to be able to observe the robot’s behaviour
and provide a scalar evaluation of the learner’s behaviour.
However, as shown by [2], [7], [8], human teachers desire to
have more control over the robot’s behaviour and this control
can improve drastically the learning.

This paper will present a definition of human control in
the context of IML, as well as the advantages and challenges
faced when applying it to teach robots or agents to interact in
an environment. Throughout this paper, examples and results
will be presented from a study exploring how a robot can be
taught to support child learning in a educational task. The
setup was presented in [9]. The study compared 3 conditions,
a supervised robot interactively learning to support children,
an autonomous robot re-enating the demonstrated policy and
a passive robot providing no support to children and serving
as a control condition. Final results are yet to be published.

II. HUMAN CONTROL

Robot learning possesses a unique opportunity compared
to human learning in that the teacher can be fully in control
of the learner’s behaviour. This power over the learner
provides many opportunities for agents learning from hu-
mans. Instead of simply providing feedback or labels as one
would do for animals teaching for example [4], the teacher
can actively decide the learner’s behaviour, for example
by demonstrating an efficient way of acting. Methods such
as Learning from Demonstration (LfD) [10], [11] leverage
this opportunity, often in manipulation scenario, to reach
quickly an efficient behaviour. LfD has also been applied for
interactive agents [12], [13], with offline learning. However,
interactive learning with partial control for the teacher [7],
[14], [15] hold significant promises as it would allow to
deploy robots as blank slates and simply let the end user
set the desired behaviour.

However, this partial control can be pushed further and
we define ‘human control’ as the capacity for the teacher to
ensure the robot executes a desired behaviour. This control
can be achieved through a mixed-initiative control, where
the robot behaves autonomously, while being supervised by
the teacher and learning from this supervision. This semi-
autonomous control needs to allow the teacher to select
actions for the robot to execute, while letting the human
prevent incorrect actions to negatively impact the world.
This mixed-initiative control could for example follow the
approaches proposed by [16] or [17], where a teacher can
select actions for the robot to execute, and the robot can
propose actions to the human. Depending on the method and
the context, the proposition would be executed straightaway,
with a short delay or only after approval by the teacher.
Having the robot involved in the action loop might reduce
the requirements on the teacher and the human in the loop
ensures that the robot behaviour is correct at all time, even
when the robot starts to learn to interact, a feature absent
from methods such as RL.

In the study considered as example, the human control was
provided using SPARC [17], a method allowing a teacher
to select actions for a robot to execute. Based on these
demonstrations, a learning algorithm creates a policy and
each action is submitted to the teacher before an automatic
execution. This allows the teacher to ensure that only useful
actions are executed while not having to manually enforce
each action required from the robot.

III. ADVANTAGES

This human control leads to several advantages compared
to autonomous learning or feedback based teaching: the
learning can be safe, fast and generalise more easily to
different tasks. Additionally, trust can be built between the
learner and teacher.

A. Safety
One of the main advantages of providing control over the

robot’s action to the teacher is safety. By ensuring that a
human can prevent incorrect actions to have an impact on
the real world, the policy executed by the agent is safer. This
feature is especially interesting as many environments where
artificial agents should be able to learn might present physical
risks for the agent itself and surrounding humans, or risks
of emotional harm. As the learner starts with an imperfect
policy, incorrect actions are susceptible to be executed, but
should be avoided at all costs. By providing control over the
learner’s actions to a human, such methods ensure a safe
robot behaviour, thus increasing the range of environments
where agents can learn and applications where they could be
deployed.

In the study, the teacher could teach a robot in-situ an
interactive policy to interact with children. Even in the first
interactions, the teacher’s oversight allowed the robot to
display a behaviour suited to the interaction and supporting
children in their learning task.

B. Speed
By indicating which actions an agent should take, a teacher

can both lead the agent to an efficient policy and ensure
the agent only explores parts of the environment that are
relevant to the current task. Furthermore, if provided with
an adequate interface, the teacher can provide the agent
with additional details explaining the demonstrations or their
choices, helping the learner to obtain more information about
the environment than solely the demonstration. These three
effects making a fuller use of the teacher, beyond simply
labeling actions, can drastically quicken the learning process.

Despite learning only from 25 interactions with children
(resulting in around 1 hour and half of teaching), in the
study the teacher managed to inculcate the robot with
a policy leading to a similar distribution of actions (cf
Figure 2) and impact on the children in the autonomous
and supervised conditions. It should be noted that as the
interaction involved children, the resulting environment was
non-repeatable, stochastic, social and sensitive; but despite
these challenges, the results showed a successful teaching,
demonstrating the efficiency of SPARC.
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Fig. 2. Distribution of actions executed by the autonomous and the
supervised robot.

C. Generalisation

Additionally, providing control to the teacher allows them
to specify precisely the desired agent policy. This, combined
with the faster learning would allow agents to learn policies
tailored to a specific task from a generic definition of the
world. This implies that robots could have access to a world
representation with a large number of dimensions, allowing
for a wide range of policies and tasks, and from this generic
representation of the world, learn a policy directly suited to
an application context.

Using guidance from the teacher, the algorithm created
an efficient policy mapping a state in 210 dimensions to
an action space composed of 655 discrete actions, thus
demonstrating that from a large state and action spaces,
this type of interaction allows to create a policy tailored to
a specific task. Other tasks and policies could have been
covered with the same representation of the world, interface
and algorithm, but were not evaluated in that study.

D. Trust

By progressively teaching an agent to behave, a human
teacher can build a model of the agent and create expecta-
tions on the agent’s behaviour. This accumulated knowledge
might lead to a trust between the teacher and the learner: by
supervising the agent interacting in the world, the teacher can
estimate the performance of the displayed policy. This trust
and knowledge about the agent’s capabilities might then ease
its deployment to interact autonomously in the real world.

In a report written by the teacher while she was super-
vising the robot, she reported: “robot was often suggest[ing]
good things” and “[I] Need to trust the robot more”. In later
post-study interviews she reported that she started to trust the
robot in the last interactions, even if this trust never reached
a level of full trust.

IV. CHALLENGES

While giving human teachers control over the learner’s
actions provides advantages, it also raises challenges in the
design of the interaction, the communication between the
learner and its teacher, and in the application to specific time
sensitive tasks.

A. Interface

The interface between the learner and the human teacher
is key when designing and implementing IML applications.
To provide enough control on the robot’s behaviour ensure
that the behaviour executed is safe for the agent and the sur-
rounding partners, and reach an efficient policy, the teacher
needs to be able to pre-empt any actions about to be executed
by the robot before they negatively impact the environment.
Additionally, the teacher needs to be able to select any action
for the agent to execute. This implies that the interface needs
at the same time to communicate the robot’s intentions, allow
the teacher to evaluate them and select actions to be executed
if required.

Human-robot interactions rely on the robot displaying
appropriate social behaviours, which requires often a large
set of sensory inputs to interpret human behaviours and a
large number of actions available to the robot. For example,
in the study, the robot had access to 655 actions. Giving
access to the teacher to such a large action space can be
challenging. However, depending of the application, ways
can be found to enable it. For example, for the study we
used a Graphical User Interface (GUI) and we inferred the
exact action selected by the teacher from her interaction with
a representation of the world on the GUI instead of providing
655 buttons.

B. Human Time

Providing the robot’s intentions to the teacher early enough
to allow them to prevent actions to impact the world can be
a challenge too, especially as some environments are time-
critical. For example, a car driving semi-autonomously and
detecting an obstacle requiring emergency breaking might
not have the opportunity to wait for an explicit approval
from the teacher. On the other an inappropriate emergency
breaking is also highly dangerous as it would confuse and
surprise other drivers. Consequently, the timing of actions
and the way to ensure human oversight is a serious challenge
when designing semi-autonomous agents.

A second challenge lies in the pace of the interaction.
Today, a large part of the progress in ML relies on large
quantities of data; however, when a human is included
in the action loop, gathering data is a slow and tedious
process. Even if datapoints arrive at 1Hz, the time required
to accumulate the millions of examples required for methods
such as Deep Learning [18] can be prohibitive (more than
250 hours). As such, systems relying on single humans
to interactively provide demonstrations need data-efficient
algorithms able to make better use of each datapoint.

The first challenge, time for reaction, can be mitigated by
having different types of actions, corresponding to different
ways of being communicated and approved. The second
point was addressed in the study by requiring the teacher
to specify features of the environment she used to select her
actions. This additional information provided crucial details
allowing the algorithm to make better use of demonstrations,
learning a policy from only a limited number of demonstra-
tions.



C. Human Limits

The last consideration is human limits. People are sensitive
to workload and putting them under too much pressure will
lead to human errors that will have to be corrected. When
using human teachers, their workload needs to be minimised
and ways need to be provided to recover from errors. This
recovery needs to handle two sides: the learning algorithm
needs to be informed about inaccurate demonstrations, and
on the other hand, the impact of the erroneous actions on the
environment needs to be corrected if possible. For example,
a robot interacting with humans would need to be able to
apologise in case of errors in order to maintain the trust
surrounding humans have in it and allow the interaction to
continue without friction.

In the study, the teacher reported herself making a few
errors throughout the teaching process. She had access to
a button to remove datapoints from the learning algorithm
and thus correct the algorithm side of the error. However
we didn’t plan for error recovery in case of incorrect robot
behaviour as we initially assumed the human behaviour
would be constantly correct. In future implement, we will
implement ways to recover from erroneous actions on the
environment side too (such as apologies).

V. DISCUSSION

The position defended in this paper is as follows:
When teaching robots to interact, human teach-
ers should not be simply evaluating an au-
tonomous behaviour, but should be able to
control precisely the robot behaviour when
required.

The robotics and IML communities need to give a more
complete role to the teachers, moving away from acting as
simple oracles who label datapoints, and towards the incorpo-
ration of all facets of social learning, while taking advantage
of the unique opportunities that artificial learners offer. More
specifically, a learning robot should leverage people’s natural
skills at teaching humans and animals (transparency of the
teaching process, scaffolding of the teacher’s feedback/tasks
and constant feedback from the learner), while also profiting
from the features only available to artificial agents such
as perfect memory, absence of tiredness or boredom, but
especially the opportunity to control exactly the learner’s
behaviour.

Providing humans with this control can be a challenging
task given the complexity of the problem. However, we con-
tend that the gains outweigh these limitations dramatically
compared to autonomous learning, learning from demon-
stration or retrospective evaluation of the robot’s actions.
Consequently, we suggest that research in HRI and IML
should dedicate more effort towards this goal.
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R obot-Assisted Therapy (RAT) has shown po-
tential advantages to improve social skills
for children with Autism Spectrum Disor-

ders (ASD). This paper overviews the technology
development and clinical results of the EC-FP7
funded DREAM project that aims to develop the
next level of RAT in both clinical and technologi-
cal perspectives – which we term Robot-Enhanced
Therapy (RET). Within the project, a supervised
autonomous robotic system is collaboratively de-
veloped by an interdisciplinary consortium, includ-
ing psychotherapists, cognitive scientists, roboti-
cists, computer scientists and ethicists, allowing
the robot control to go beyond the classical remote
control methods (Wizard of Oz – WoZ) while ensur-
ing safe and ethical robot behavior. Rigorous clin-
ical studies are conducted to validate the efficacy
of RET. Current results indicate that RET can ob-
tain equivalent performance compared to human

*H. -L. Cao and P. G. Esteban contributed equally to this work.

standard therapy for children with ASD. We also
discuss the next steps of developing RET robotic
systems.

Towards Robot-Enhanced Therapy

Autism Spectrum Disorders (ASD) are identified by
widespread abnormalities in social interactions and
communication together with restricted interests and
repetitive behavior [1]. For children with ASD, these
symptoms can be efficiently reduced through early
(cognitive-)behavioral intervention programs ideally
starting at the preschool age [2]. This type of interven-
tion is taught on a one-to-one basis in school and/or
at home by caregivers (therapists, teachers, parents)
and need to be both intensive and extensive [2, 3].
This process requires a significant amount of human
workload to carry out therapeutic sessions as well as
to manage child’s performance data.
The use of robots in autism therapy has received



Figure 1: Different robot control paradigms: Wizard of Oz, full autonomy, and supervised autonomy.

attention over the past two decades, with a significant
increase in the past one [4]. Similar to animals and
computers, robots can provide simple and predictable
interactions, in which people with ASD generally feel
comfortable, but with several advantages compared to
classical therapies [5], as repeatability of the medium’s
behavior, the embodiment of the medium and the hy-
gienic safety. Robot-Assisted Therapy (RAT) enables
embodied interactions that are appealing for many
children with ASD, increasing their engagement and
attention, and decreasing social anxiety [6]. During
child-robot interaction, RAT robots can simultaneously
provide social cues while maintaining simplicity and
predictability [7]. These robots are diverse in appear-
ance from mobile platforms to humanoid robots. Al-
though RAT robots have shown advantages, most of
the studies are exploratory and have methodological
limitations [4] such as low participant number or nu-
merous protocol breach.

Regarding the technology development, most of RAT
studies are limited to the Wizard of Oz (WoZ) tech-
nique in which the robots are remotely controlled, un-
beknown to the child, by a human operator (Figure
1-left) [2, 7]. The WoZ technique allows human thera-
pists to achieve a high level of social interaction without
a complex robotic system. However, it requires a signif-
icant amount of human workload and is not suitable
in the long term [8]. There is a need to increase the
level of autonomy of robots in RAT research both to
lessen the human workload and to deliver consistent
therapeutic experiences [2, 3]. Full autonomy (Fig-
ure 1-middle) indicates that the robot makes decisions
and adapts its actions to any situation by itself. This is
not feasible at this point as the robot’s actions must be
compliant with the therapeutic goals, the interaction
context, and state of the child while its action policies
cannot be perfect. Further, fully autonomous robotic
systems can raise some critical ethical concerns and
are not socially accepted by the general public in the
context of interaction with children [9, 10]. However,
a “supervised autonomy” is feasible to achieve in which
the robot works autonomously towards achieving given
therapeutic goals under a supervisor’s guidance (Figure

1-right). When necessary the supervisor can override
the robot’s actions before execution to ensure that only
therapeutically valid actions are executed.

DREAM Project

The DREAM project aims at implementing Robot-
Enhanced Therapy (RET) – the next generation of RAT
– for children with ASD. This approach calls for the
robot’s ability to assess a child’s behavior by inferring
the child’s psychological disposition andmap the behav-
ior to appropriate actions within specified constraints
under supervision of a therapist (i.e. supervised au-
tonomy). The therapist thus is not replaced but rather
takes full control of the therapeutic environment with
an effective tool and mediator [3].
This paper overviews the technology development

and validation of a supervised autonomous robotic sys-
tem for ASD therapy. The project consortium includes
cognitive scientists, roboticist, computer scientists, psy-
chotherapists and ethicists who are collaboratively in-
volved in the development of the system following re-
quirements from different perspectives. The system is
validated in a clinical study to assess the effectiveness
of socially assistive robots in enhancing social skills i.e.
imitation, turn taking, and joint attention. Most impor-
tantly, no full-scale randomized clinical trials haven’t
been carried out in previous research. This has been
one of the main goals of the DREAM project. In this
project, we also investigate the therapists’ attitudes
toward the DREAM system and ethical issues related to
using (supervised) autonomous robots in ASD therapy.

Requirements for RET systems

The use of robots in social therapies requires a highly
interdisciplinary collaboration. In the DREAM project,
all parties (i.e. psychotherapists, engineers, ethicists)
have been involved throughout the system develop-
ment process in a concurrent manner. A robotic system
used in RET should meet requirements from both ther-
apeutic and robotic perspectives. Key elements of the
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Figure 2: Elements that a RET robotic system should consider
to generate robot behaviors [11].

requirements are illustrated in Figure 2 and summa-
rized as follows, see [11].
First, the system should enable the robot to generate

task-based and social behavior to achieve therapeutic
goals, which is the ultimate goal of using robots in
therapeutic contexts. Second, the robot control should
be shared with human therapists to ensure safe and
ethical behaviors. Third, the system should be applica-
ble to various therapeutic scenarios and robot platforms
to reduce engineering workload e.g. reprogramming
robot’s actions. Lastly, the system should provide and
analyze data (e.g. user’s performance and performance
history, robot operation) recorded in structured forms
to different parties.
These requirements serve as guidelines as well as

evaluation criteria for RET systems. Some system de-
sign principles to obtain these requirements can be:

multi-layer behavior organization for generating social
and task-based behavior, personalization for provid-
ing personalized interaction, and modularity for the
ease of applying the system to different scenarios and
robot platforms [12]. Under the development of the
DREAM project, we have adopted some of these de-
sign principles to develop a supervised-autonomous
system for different tasks in autism therapy (see Sec-
tion Supervised-Autonomous System).

Clinical framework

To assess the socially assistive robots’ effectiveness in
enhancing social skills in children with ASD, certain
behaviors have been frequently targeted by therapeu-
tic interventions. Among them, for the specific goal of
the DREAM project, we have targeted the following
behaviors: imitation, turn taking, and joint attention.
These behaviors could be considered as possible mecha-
nisms underlying the general clinical picture including
communication and social interaction deficits, and will
be taught by a social robot during repeated therapy
sessions of interactive games.

Supervised-Autonomous System

Controlling a robot to deliver a therapy is a complex
task, and in the case of supervised autonomous RET
it requires ways to: sense the state and performance
of the child, select and execute an action for the robot

Figure 3: DREAM system architecture. Arrows represent communication between components.
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(according to a therapeutic plan) while providing over-
sight of the robot’s behavior to the therapist. This
process is engineered by an interconnected network
of components as depicted in Figure 3. These com-
ponents are responsible for sensing and interpreting
the surrounding environment, classifying child behav-
ior and controlling robot behavior. The system also
provides an intuitive Graphical User Interface (GUI) al-
lowing the therapist to supervise the system operation
and ensure an efficient robot behavior, see Figure 6.
All system components are released1 under the GNU
GPL v3 license and documented allowing researchers
to replicate, modify or expand the DREAM system for
different target applications.

Sensory System

An advanced sensory system interprets multi-sensory
data into meaningful information about the interac-
tion between children and the robot e.g. gaze, child’s
movement, vocal prosody, emotion expression, ASD
stereotypical behaviors. Different techniques have been
applied on raw images captured by RGB cameras and
Microsoft’s Kinect sensors for gaze estimation, skele-
ton joint-based action recognition, face and facial ex-
pression recognition, object tracking and audio data
processing.
Gaze estimation is significantly important to iden-

tify shared attention in child-robot interaction for joint
attention tasks. Challenges for gaze estimation that
emerge during therapeutic sessions are related to large
head movement, illumination variation, and eyelid oc-
clusion. Feature points on the face are located by a
Supervised Descent Method based on the best view
of the child’s frontal face. Head pose is calculated by
an object pose estimation method. Iris centers are lo-
calized by a hierarchical adaptive convolution method
(see red dots in Figure 4a). The final point of gaze is
calculated based on the obtained head pose and iris
centers by a two-eye model-based method (see the
white line in Figure 4a) [13].

Human action recognition, i.e. child’s actions during
interaction, plays a key role in evaluating the child’s
performance in imitation tasks. A novel skeleton joint
descriptor based on 3D Moving Trend and Geometry
property is applied on skeleton data extracted from
Kinect depth sensors (Figure 4b) [14]. The descriptor
is then used to recognize actions (e.g. waving, touch-
ing his/her head with two hands, moving the arms
imitating an airplane or covering his/her eyes) by a
linear Support Vector Machine (SVM) classification
algorithm.
Facial expression recognition provides an understand-

ing of the child’s emotion i.e. anger, disgust, fear, happi-
ness, sadness, and surprise. This is achieved by using a
frontalization method to recover frontal facial appear-
ances from unconstrained non-frontal facial images

1https://github.com/dream2020/DREAM/wiki

Figure 4: Performance of the advanced sensing system. Images
obtained from the interventions.

followed by a Local Binary Patterns feature extraction
method on Three Orthogonal Planes to represent facial
appearance cues. Finally, we applied an SVM to iden-
tify and classify those facial expressions [15] achieving
a recognition rate of 63.71% within real-life conditions.
We found quite difficult to achieve a clear partition of
emotions as children tend to perform a combination
of emotions. However, we obtained better results than
other state-of-the-art algorithms.
Object tracking helps to observe the child’s behav-

ior regarding the toys on the intervention table, i.e. a
plane, a flower, and a cup. A blob based Otsu object de-
tection method is first employed to detect the objects.
Then, a Gaussian Mixture Probability Hypothesis Den-
sity (GM-PHD) tracker is used to effectively detect and
track objects in real time, even when being occluded
by hands (Figure 4c) [16].
Audio processing provides information for the robot

to perform social attention and evaluate the child’s ver-
bal response. Speech recognition and sound direction
are based on Kinect SDK. Voices from the therapist and
the child are labeled by classifiers such as Gaussian
Mixture Model, and Vector Quantification in combi-
nation with Mel Frequency Cepstrum Coefficients and
Linear Predictive Coding features [17].

Child Behavior Assessment

Aiming at achieving a supervised autonomous system,
the current behavior of the child needs to be appraised.
Within this project, this happens in two phases as illus-
trated in Figure 5.
Data is collected from the Sensory System and

mapped onto the identified child behaviors during the
first phase. This mapping is based on training and vali-
dation sets of child-robots interactions that were pre-
viously annotated by knowledgeable therapists. From
this process the classifiers provide the probability that

4 / 10



Figure 5: Child behavior analysis flow.

each behavior, among all of them, is currently observed.
These probabilities are used into the second phase,
where, based on the interaction history, the system
attempts to infer the child’s level of engagement, moti-
vation and its performance on the task in hand. This
second phase relies heavily on the semantic interaction
knowledge of the therapists to provide insights into
expected patterns.
Classifiers within this system aim at generating

real-time annotations of a therapy session as thera-
pists would normally create. Therefore, these auto-
generated annotation files might be submitted to ther-
apists for verification and be compared to existing an-
notations from therapists using standard inter-rater
agreement measures. Outcomes of these classifiers
are fed into the Robot Behavior Controller allowing the
supervised-autonomous operation of the robot.
Additionally, these classifiers might offer other bene-

fits, as being used as a diagnostic tool, relieving ther-
apists of some of their burden. Similar developments
have been published but as a binary classification (e.g.
non-ASD vs. ASD) [18]. Intermediate degrees of sever-
ity of ASD should be accurately identified ranging from
“typical of the general population” to “severely atypical”.
Within the DREAM project, we have started the devel-
opment of a diagnostic tool based on these classifiers
using neuro-computational mechanisms that can be
used for learning a large number of dynamical patterns
named as conceptors [19].

Robot Behavior Controller

The robot behavior controller enables the robot to gen-
erate task-based and social behaviors, and share the
robot control with the human therapist in a super-
vised autonomous manner. The behavior generation
is organized in three layers i.e. attention-reaction, de-
liberative and self-monitoring, see right side of Fig-
ure 3. Behaviors and therapeutic scripts are abstract
and non-robot-specific, and later translated into robot-
specific motor commands. This allows the system to
be platform-independent and scenario-independent.
The whole system operation is supervised by a human
therapist via a GUI (Figure 6).
The attention-reaction system provides the robot with

life-like behaviors e.g. eye blinking, micro-motions,

Figure 6: A Graphical User Interface allows human therapists
to supervise the system operation.

gaze [20]. These behaviors are essential in social
robots. In this system, state information coming from
the sensing system is immediately acted upon with
appropriate motor outputs. The system also allows the
robot to react to the relevant stimulus in the surround-
ing environment by directing its gaze towards their
source. This is achieved by a combination of percep-
tual and task-related attention, and a target selection
algorithm.
The deliberative system is responsible for producing

task-based behaviors following therapeutic scripts de-
fined by therapists. These scripts describe step-by-step
the high-level desired behaviors of the robot. There are
however circumstances that the interaction does not
go as planned and the proposed script-based action is
not the most appropriate one to perform. For instance,
if the child has a low level of engagement with the task,
the script following process is paused. The robot seeks
for appropriate actions for re-engagement and then
returns to the script following process.
In case the action autonomously decided by the robot

is not proper, the therapist can deny the suggested ac-
tion and manually select a more appropriate one. We
have proposed a Learning from Demonstration method
called SPARC (Supervised Progressively Autonomous
Robot Competencies) so that the robot can learn from
the manual actions of the therapist and improve its
suggested actions next times [21]. As shown in Fig-
ure 7, SPARC aims at maintaining high performance
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Figure 7: Expected ideal behaviors over time of SPARC in comparison with Wizard-of-Oz (WoZ) and Autonomous Learning (AL)
on therapist’s workload, robot’s performance and autonomy.

throughout the interaction (as in WoZ) while keeping a
low therapist’s workload (as in Autonomous Learning).
The self-monitoring system aims to overcome possible

technical and ethical limitations. The system currently
acts as a logging mechanism and is connected with
the therapist’s supervision interface. The therapist can
overrule the robot’s proposed actions via the GUI. As
future developments, it would act as an alarm system
to be triggered when the robot detects technical limi-
tations and ethical issues based on a set of rules. This
system also provides recorded data, e.g. child’s perfor-
mance, robot operation, for therapists and engineers
to evaluate the efficacy of a RET system.

Clinical experiments and results

From a clinical perspective, this project seeks to de-
termine how much RET can improve joint attention,
imitation and turn-taking skills in ASD children, and
how the gains obtained within these interactions com-
pare to standard interventions. Therefore, the clinical
experiments were divided into two phases: one using
RAT robots under a WoZ system, and another one us-
ing RET with a supervised autonomous system. Both
phases have been compared to Standard Human Treat-
ment (SHT) conditions.
The experiments were conducted using a classic

single-case alternative treatment design. Children par-
ticipated in six to eight baseline sessions followed by
eight SHT sessions and eight WoZ or RET sessions.
Within the baseline sessions, the child interacts with
a human partner who does not offer any feedback re-
garding the performance of the child. The purpose of
these sessions is to identify the initial level of skills and
its variability before the child receives any of the two
interventions (SHT or RET, where either the human or
robotic partners give feedback that is contingent to the
performance of the child).
Conditions were randomized to mitigate the order-

ing effect. After baseline sessions, the order for each
intervention session (either SHT or RAT/RET) was es-
tablished based on a random schedule which contained
a random sequence indicating which session should be
performed next. The schedule was different for each
child.

Figure 8: The intervention platform used in DREAM. A child
sits in front of a robot and an interactive screen.

Before the baseline session, we used the ADOS instru-
ment [22] to confirm children’s diagnosis of autism and
to assess which were their social and communication
abilities. We also employed ADOS as a measurement
tool, to quantify, before and after interventions, the
differences in the scores.
Once the initial ADOS measures were taken and the

baseline session finished, children interacted with ei-
ther a robot or a human, always keeping an additional
person as a mediator between the child and the interac-
tion partner. The tasks to be tested were implemented
following the discrete trial format: highly structured
environment, behaviors broken into discrete sub-skills,
and child taught to respond to explicit prompting (e.g.
“Do like me!”).

We have employed the humanoid robot NAO2 to as-
sess our hypothesis. For certain tasks, we used the
electronic “Sandtray” [23], a 26-inch capacitive touch-
screen and an associated control server, where images
can be manipulated by dragging (on the side of the
human partner), or simulated dragging (on the side
of the robot partner). Moreover, an intervention table
was designed to capture sensory information (shown
in Figure 8) employing three RGB cameras and two
Microsoft Kinect sensors.
Children’s performance was assessed in the task by

measuring their performance based on task solving
accuracy (e.g., accuracy in the imitation task, correct
gazing in the joint attention task, appropriate pauses
during the turn-taking task).

2https://www.softbankrobotics.com/emea/en/robots/nao
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First phase

As stated above, within the first phase of the ex-
periments we used RAT robots being remotely con-
trolled under a WoZ setup. Results from these experi-
ments were used as a basis for the development of the
Supervised-Autonomous System. For this phase, eleven
participants with ASD aged between three and five
years old were recruited from the Autism Transylva-
nian Association.
After completing this first phase, we obtained mixed

results. These results were different depending on
the task in hand. During the turn-taking task, the WoZ
setup seemed to achieve gains as good as or even better
than under SHT condition, especially for children with
lower levels of prior skills. Regarding joint-attention,
RAT and SHT yielded similar outcomes for the majority
of the participants. Specific to the RAT intervention,
the results have also pointed that the level of prompting
offered by the robot mediator has a direct impact on
the performance of ASD children, with more prompt
increasing the performance [24]. For imitation task,
most of the children had already good performances in
baseline sessions and the RAT condition did not lead
to an improvement in these skills.

Second phase

In the second phase of the experimental investigations,
we are comparing the efficacy of RET and SHT us-
ing a randomized clinical trial design3. For such pur-
pose, twenty-seven children have been recruited to par-
ticipate from different organizations and institutions,
which provide educational and/or psychotherapeutic
services to children with autism, most of them in the
city of Cluj-Napoca. Twenty-one have completed the
full protocol at the moment.
Results on the Last Observation Carried Forward

scores have indicated both groups showed signs of
improvement, with a significant time effect, Wilks’
Lambda=.62, F(8,16)=3.19, p=.023, η2p=.62, and
no significant group or interaction effects. Univari-
ate analysis indicated that scores have improved for
imitation (F(1,25)=21.79, p<.001, η2p=.47) and for
each of the turn-taking tasks (sharing information
about what one likes, F(1,25)=4.50, p=.044, η2p=.15;
completing a series of figures following a pattern,
F(1,25)=10.22, p=.004, η2p=.29; and categorizing
items, F(1,25)=11.61, p=.002, η2p=.32), but not for
joint attention, where baseline differences favoring
the SHT group were observed, F(1,23)=6.66, p=.017,
η2p=.23. However, post-test differences between groups
were not significant for joint attention, even when con-
trolling for baseline scores. In future studies, this out-
come will be carefully monitored and more children
and sessions might change it in the expected direc-
tion. Both interventions had also a positive impact
on the clinical ASD symptoms, with children who had

3ClinicalTrials.gov ID: NCT03323931

completed the final assessment reporting lower ADOS
severity scores at the end of the treatment in both
groups, t(5)=3.50, p=.017 in SHT, and t(4)=3.25,
p=.031 in RET.

Therapists’ attitudes toward the
system

We conducted an interview to investigate the therapists’
attitudes toward the DREAM system. We recruited four
therapists that have been working with the system for
six months on average. We invited the therapists for
an interview via email. During the interview, we used
open-ended questions and a short usability survey. A
screen-shot of the GUI was used to elicit memories
about their experiences with the system.
The DREAM system was generally appreciated by

the therapists (n=4). According to the questionnaire
results (5-point Likert scale), the therapists showed pos-
itive attitudes toward the system i.e. useful (M=4.1,
Min=4.0, Max=4.1), satisfying (M=3.6, Min=2.4,
Max=4.0), easy to use (M=4.2, Min=4.2, Max=4.4),
and easy to learn (M=3.8, Min=2.0, Max=5.0). They
found that the interface of the GUI is easy to use and
helps them deliver an intervention that is both attrac-
tive and effective. The automatic detection of the be-
haviors was useful for the treatment of ASD children
as it reduced the burden of the intervention for them
as therapists. They also found the system as safe and
acceptable. Yet, some improvements would be needed
i.e. increasing the accuracy of the recognition, reduc-
ing the technical complexity of the system, simplifying
of the GUI. Regarding the possibility to use the sys-
tem for other types of therapies, they suggested having
customized GUIs for different applications.

Ethical perspective

Lately, research in the area of ethics of social robotics
has seen significant growth in interest, more specifically
in the areas of health-care and children [25].
What are the particular problems raised by au-

tonomous interaction with mentally disabled children?
How can we protect children from exploitation? What
if the robot gets the behavior assessment of the child
wrong? How and when does the therapist need to over-
rule the behavior of the robot when needed? These
questions all raise important ethical concerns. Within
the DREAM project, we have conducted several studies
to explore this and other ethical issues.
In one of these studies, Coeckelbergh and colleagues

aimed at understanding the opinions of parents and
therapists about the appropriateness and benefit of so-
cial robots being used in therapy for children with ASD
[9]. An important finding was the high acceptability
of these robots for helping children with autism (85%).
During the study, among the 416 subjects, 22% were
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parents of children with ASD and 16% were therapists
or teachers of children with ASD. They were surveyed
with questions as “Is it ethically acceptable that social
robots are used in therapy for children with autism?”
or “Is it ethically acceptable to use social robots that
replace therapists for teaching skills to children with
autism?” This survey indicated the importance of stake-
holder involvement in the process with a focus on spe-
cific health care issues.
In another study developed within DREAM, Peca and

colleagues explored whether age, gender, education,
previous experience with robots, or involvement with
persons with ASD influences people’s attitudes about
the use of robots in RET [10]. Results show that these
social-demographic factors have a relevant impact on
how social robots are perceived e.g. men seem to have a
higher level of ethical acceptability compare to women,
younger participants seem to be more open to accept
the use of social robots in RET for ASD compared to
older participants. In terms of the involvement of the
participant with children with ASD and the use of social
robots in RET, the study show that parents who are
not involved directly with ASD children have a higher
ethical acceptability level than those who are directly
involved.
Finally, Richardson and colleagues have addressed

a debate to discuss the risks and challenges of devel-
oping research by a multidisciplinary research team
with a vulnerable population as children with autism
[26]. Given the different backgrounds, research goals,
assumptions, and practices, each multidisciplinary re-
search team would approach the research topic from
different perspectives: experimental, clinical, engineer-
ing, philosophical, and anthropological. Each disci-
pline counts with its own history, terminology, methods
and preferences, so that synthesizing these approaches
can be challenging.

Discussion and Conclusions

With the DREAM project, we aimed at implementing
Robot-Enhanced Therapy in children with autism in-
terventions. In this paper, we have highlighted the
technical development and clinical validation of this
approach.
Given the sensitive environment where RET takes

place, the DREAM system was developed taking into ac-
count requirements from both therapeutic and robotic
perspectives, see Section Requirements for RET sys-
tems. The supervised-autonomous system follows a
multi-layer behavior organization for generating so-
cial and task-based behaviors. It was engineered fol-
lowing a modular approach so that, along with being
open-source software, the system might be easily used,
adapted and/or extended by other research teams to
different therapeutic scenarios and robotic platforms.
Our system reaches a performance in par with hu-

man therapies commonly used today in clinical stud-

Figure 9: Control panel on teacher tablet.

ies. Despite the mixed results obtained during the
single-case experiments, these studies offered valuable
insights about the variability of the response of ASD
children to RET and pointed to some important issues
that should be accounted when developing such inter-
ventions (e.g. the need for personalized interventions
that match the level of skills of each child). Further
exploration needs to be done using variables involved
in outcomes such as social engagement; positive and
negative emotions; adaptive and maladaptive behav-
iors; and rational and irrational beliefs [27]. These
variables have already been studied for the first phase
of the clinical trial. In terms of social engagement, the
children showed more interest in the robot partner
for the duration of the intervention. Positive emotions
appeared more often while interacting with the robot
during the imitation and joint attention tasks. The pres-
ence of the robot usually acts as a behavioral activator,
so that both adaptive and maladaptive behaviors seem
to appear more often in the WoZ condition compared
to SHT condition. The same study is currently being
done for the second phase, and it will offer better an-
swers regarding the relative efficacy of RET and ASD
interventions. Future investigations should aim for new
research questions beside concerning to whether RET
is more or less effective than standard treatment e.g.
is RET faster than therapist mediated interventions,
which children could benefit most from RET interven-
tions and under which conditions. As a final clinical
conclusion, and supported by the data obtained during
the experiments, we can say that RET is a promising
approach that could be as efficient as (or even more
efficient than) classical interventions for a large variety
of outcomes in the case of children with ASD.
Given the technical requirements of this project, un-

fortunately, very few end-users might benefit from the
system developed in this project. For that reason, a
simplified version of the DREAM system has been im-
plemented as one of the Ask NAO4 Tablet applications
(Figure 9). Its functionality is as follows. The care-
giver uses the application as an administrator (which
allows him/her to monitor NAO’s activities and to ac-

4https://asknao.aldebaran.com/
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cess the control panel), and the child uses another
tablet, that can only interact with the information that
NAO sends. This way, the caregiver never has to phys-
ically move away from the child and the robot to set
up activities. This solution facilitates the ability of the
caregiver, being an observer, to retrieve answers and
send encouragement messages, while the robot is in-
teracting with the child. Currently, thirteen Ask NAO
Tablet applications have been developed in the DREAM
project. These applications will be tested with children
with ASD following the testing protocol created by our
therapists. Results and feedback from therapists after
this testing will be used to update the Ask NAO Tablet
applications.
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“Hmm, Did You Hear What I Just Said?”:
Development of a Re-engagement System for

Socially Interactive Robots
Hoang-Long Cao, Paola Cecilia Torrico Moron, Pablo Gómez Esteban, Albert De Beir, Elahe Bagheri, Dirk

Lefeber and Bram Vanderborght

Abstract—Although socially interactive robots are engaging,
people can easily drop engagement while interacting with robots.
This paper presents a re-engagement system which applies
different strategies through human-like (non-)verbal behaviors
to regain user’s engagement taking into account user’s attention
level and affective states. The robot control software is accessible
to avoid replication problems in human-robot interaction re-
search. We conducted a usability test to demonstrate and validate
re-engagement ability of the system as well as to investigate
people’s perception and performance when interacting with a
robot with re-engagement ability. Our system validation results
show that the system is able to maintain user’s engagement and
performance in a robot storytelling scenario. People participated
in the experiment also rated the robot with re-engagement ability
higher on several dimensions i.e. animacy, likability, perceived
intelligence. Participants through open-ended questions also gave
positive comments to the robot with this ability.

Index Terms—socially interactive robots, re-engagement, gaze,
user’s performance, user’s perception.

I. I NTRODUCTION AND BACKGROUND

SOCIALLY interactive robots are designed to interact with
people by perceiving the complex surrounding environ-

ment and expressing verbal and nonverbal behaviors using
speech, facial expressions, paralanguage and body language
[1], [2]. These robots are expected to be present in many
domestic applications including education [3], [4], healthcare
[5]–[7], museum guides in museums [8], [9] because of their
abilities to engage, entertain, and enlighten people [1]. These
social abilities enable the robots to be perceived as trusting,
helpful, reliable, and importantly engaging [10], which are
essential for a harmonic human-robot coexistence and an
effective human-robot interaction [11].

Although robots with social abilities can provide engaging
interaction with people, maintaining engagements of differ-
ent kinds of users is important but challenging [12]–[14].
For example, people interacting with robots ‘in the wild’
can disengage with the robots at any time compared to
in-laboratory settings [13]. In child-robot interaction, many
authors found that children’s social engagement gradually
declines as time progresses e.g. [15]–[17]. There are different
factors influencing people’s engagement while interacting with
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robots. Moshkinaet al. [18] found that people are engaged
to robots in public places if the robots produce human-like
actions and social cues. Ivaldiet al. [19] found that people’s
personality influences the tendency and the length of human-
robot conversation in assembly task. Kunoet al. [20] and
Sidner et al. [21] discovered that robot’s gaze heightened
human-robot engagement. Yamazakiet al. [22] found that co-
ordination of verbal and non-verbal actions in the robot affects
visitor engagement at museums and exhibitions. Corriganet
al. [23] suggested that users’ perception of the robots’ char-
acteristics (e.g. friendliness, helpfulness, attentiveness) might
lead to sustained engagement with both the task and robot
in task-oriented human-robot interaction. Therefore, human-
robot interaction should not follow pre-defined sequences and
the robot should apply re-engagement strategies.

Some studies developed different strategies to improve
people’s engagement, mainly in maintaining conversation. The
first strategy isgenerating human-like behaviors. Sidner et
al. [24] created an engaging robot by mimicking human
conversational gaze behavior in collaborative conversation.
Bohus and Horvitz [25] explored the use of linguistic hes-
itation actions (e.g.uhm, hmm) to manage conversational
engagement in open-world, physically situated dialog systems.
The second strategy isadapting robot behaviors to user’s
affective states. Ahmad et al. [14] showed that emotion-
based adaptation is the most effective way to sustain social
engagement during long-term children-robot interaction. Chan
and Nejat [26] implemented a method to promote engagement
in cognitively stimulating activities taking into account the
user’s affective states. In child-robot interaction, Mubinet al.
[27] also suggested using user states adaptation to sustain
engagement. Leiteet al. [28] found that including empathy
is beneficial for chilren’s long-term engagement with robots.

Most of the previous studies in developing re-engagement
systems fell intoreplication problemsin human-robot interac-
tion research, as summarized by Baxteret al. [29]. Some robot
platforms are rare, expensive or difficult to access (e.g. Mel
[21], [24], Robovie [9], [22], Wakamaru [30]) and the robot
control software is often not open-source [29]. Many studies
used external sensors (e.g. external cameras [23], Kinect [19],
[25], EEG [30]) or video coding (e.g. [18], [22]) to assess
user’s engagement and affective states. These issues limit the
studies to be replicated by other research groups and the
possibility of running the developed systems in public spaces.

In this paper, we present the development of a re-
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engagement system to investigate the ability of regaining
user’s attention of a socially interactive robot when interacting
with people by applying the two re-engagement strategies
mentioned above. The system was implemented on SoftBank
Robotics Pepper humanoid robot1, one of the first mass-
produced personal and service robots [31]. Specifically, the
system uses built-in sensors to measure user’s engagement
and affective states without external sensory devices. The
system then applies different re-engagement behaviors through
verbal and non-verbal behaviors to attract attention when the
engagement is lost. We conducted an experiment comparing
user’s engagement, performance, and perception when people
interact with a robot using re-engagement strategies to those
when interacting with a robot without this ability. The robot
control software is available for researchers to replicate the
system.

The rest of this paper is organized as follows. Sect.II
presents the system development and system implementation
on Pepper robot. The system is demonstrated in Sect.III . Our
discussion and conclusion are given in Sect.IV.

II. SYSTEM DEVELOPMENT

Our system helps a robot to produce social and task-
based behaviors with re-engagement ability during human-
robot interaction taking into account user’s engagement and
affective states. These information influence the robot’s in-
ternal affective state – which is used to trigger different re-
engagement strategies.

A. Design Principles

Our design principles are derived from the system require-
ments i.e. generating human-like behaviors, adapting robot
behaviors to user’s affective states, and minimizing replica-
tion problems. First, the robot control system architecture is
organized inlayers in order to generate different types of
behaviors (task-based and social) [32]–[35]. Depending on
user’s affective states, the robot can switch between behavior
layers to maintain a effective human-robot interaction. Second,
behavior layers aremodularfor the ease of prioritizing actions

1https://www.softbankrobotics.com/emea/en/robots/pepper

Fig. 1: Relationships between design principles and system
requirements.

in each layers as well as reproducing/improving the control
system. Finally, the system implementation should becompact
(i.e. all modules are implemented completely on a robot
without adding external sensing devices) andopen-sourceto
minimize replication problems. The mapping between design
principles and system requirements are illustrated in Fig.1.

B. System Architecture

The system architecture was designed following the multi-
layer behavior organization approach. The information pro-
cessing model is shown in Fig.2 in which environment
information gathered by thePerceptual system(e.g. touch,
sound, vision) is used to vary the robot’s internal affective
state and produce abstract behaviors (social and task-based).
These behaviors are executed on the robot platform by the
Actuation system.

C. System Components

1) Internal Affective System:This subsystem computes the
robot’s internal state taking into account two parameters:
user’s attentionand user’s affective state. The output of
this system is used to produce robot’s affective behaviors
e.g. adapting speech and gestures. User’s attention strongly
depends on user’s gaze, compared to speech and facial ex-
pression. Gaze is the mostly used factor to access engagement
in human-robot communication [36], [37]. User’s affective
state includes mood (from negative to positive and emotion
expressions (e.g. happy, sad, angry, surprised).

Raffect(t) = Raffect(t − 1) + αUattention+ βUmood+ γUemotion

Robot

User
INTERNAL AFFECTIVE SYSTEM

BEHAVIOR GENERATION SYSTEM

 sensory inputs

behavior outputs

information flow

Perceptual system

Actuation system

User attention

User affective state

Robot affective state

Interaction script

Re-enagement strategies

DeliberationReaction - Attention

Fig. 2: System architecture of the re-engagement system for socially interactive robots. Arrows denote connections between
system components.
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Algorithm 1: Behavior Generation Mechanism in the Delib-
eration Layer
Input : User’s attention

Robot affective state
Interaction script
Re-engagement strategies

Output : Deliberative behavior
1 while not at end of Interaction scriptdo
2 from Interaction scriptget current behavior;
3 switch User’s attentiondo

// Normal mode
4 caseengaged
5 perform current behavior;
6 end

// Re-engagement mode
7 caseLevel 1: slightlylow
8 adapt current behaviorwith pause of

movement;
9 adapt current behaviorwith speech

connectors and pausing;
10 perform current behavior;
11 end
12 caseLevel 2: moderatelylow
13 adapt current behaviorwith emphasize while

speaking;
14 adapt current behaviorwith change way of

speakingconsider Robot affective state;
15 adapt current behaviorwith hand gestures

consider Robot affective state;
16 perform current behavior;
17 end
18 caseLevel 3: significantlylow

// Pause Interaction script
19 while User’s attention is significantly lowdo
20 perform ask questions;
21 end

// Resume Interaction script
22 end
23 endsw
24 go to next step inInteraction script;
25 end

where α, β, γ are the influences of attention, mood, and
emotion on the robot’s affect respectively. These influences
depend on the the types and intensities of the events. If the user
is paying attention to the robot or having a positive affective
state (e.g. happy), these events will positively influence the
robot’s affect - as the robot is performing well in getting the
user’s engagement. Consequently, the robot’s internal affective
state does not simply mimic user’s affective state but allow the
robot to behave as a personal character.

2) Behavior Generation System:This subsystem generates
human-like behaviors using two behavior layers:reaction-
attention anddeliberation. The reaction-attention layer gener-
ates social behaviors e.g. gazing, eye blinking, micro-motions.
These behaviors allow the robot to react instantly to external

stimuli and create the illusion of the robot being alive [38]–
[40]. The deliberation layer generates task-based behaviors.
When the user is engaged to the interaction, this layer gen-
erates behaviors following the interaction script e.g. a story,
a lesson, a guidance. When the engagement is lost, the robot
applies different strategies to regain user’s attention. In case the
user’s attention is significantly lost, the script-based interaction
is paused and resumed after the attention is regained. The
whole process of behavior selection in the deliberative layer
is summarized by Algorithm1.

The robot’s re-engagement behaviors are inspired by hu-
man’s re-engagement behaviors which are usually used un-
consciously [21]. Our system adopted some human’s re-
engagement strategies summarized in a study by Richmond
et al. [41] which have been used in many robotic studies
e.g. [30], [42]–[44]. These verbal and non-verbal behaviors in-
clude pausing movement, using speech connectors and pauses,
emphasizing while speaking, changing speaking styles, using
hand gestures, and asking questions. These behaviors and their
intensities are dependent on the level of user’s engagement and
the robot’s affective state. For example, if the user slightly
loses attention, the robots pauses its movement and uses filled
pauses (e.g. ‘uhm’, ‘ehem’) to regain attention. If the attention
is significantly dropped, the robot pauses the script-based
interaction and asks different kinds of questions (e.g. ‘Did
you hear what I just said?’, ‘What did I just said?’).

D. System Implementation

The system was implemented on Pepper robot of SoftBank
Robotics using Python NAOqi SDK2 in Choregraphe3. Unlike
studies using external devices to access user’s engagement
and affective states, our system runs completely on Pepper
robot using the built-in sensors (2D and 3D cameras) to
understand user’s behavior. All functions of the system i.e.
sensing, decision-making, executing are managed by NAOqi
API e.g. ALGazeAnalysis, ALMood, ALFaceCharacteristics,
ALAnimatedSpeech, ALSpeakingMovement. Fig.3 shows our
developed software containing Choregraphe built-in boxes for
sensing and developed Python boxes for different computa-
tions. The system is modular since the code of each system
component was developed in a separate Choregraphe box. This
allows complex algorithms to be developed while keeping the
software structure intuitive and understandable.

The software can be packed and run totally on the robot
platform without installing external dependencies or setting up
external sensory devices. The software is accessible through
our GitHub project4. The system implementation process
guarantees the replicability of the system.

III. SYSTEM VALIDATION

We conducted a usability test in which participants interact
with Pepper robot in a storytelling scenario to demonstrate the

2NAOqi is the main software running on Pepper (also NAO and Romeo)
to control the robot.

3Choregraphe is a desktop application which is used to create robot’s
behaviors from basic to complex actions.

4https://github.com/hoanglongcao/Pepper-Re-engagement
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Behavior generation algorithmsRobot's internal affect computation

Choregraphe built-in boxes for detecting user interaction information

Packed and Installed
pepper

+

+

Affective St. Wait

+

Face Detect Tactile Head Speech Reg.

+ + +

Behavior Ma.

+

+

Fig. 3: System implementation using Choregraphe built-in boxes and developed Python boxes. The software is packed and run
completely on the Pepper robot platform.

gazegaze

Pepper

Participant

gazegaze

Camera

Fig. 4: Experimental setup. A user interacting with Pepper
robot with the re-engagement system implemented.

system technical performance and its ability to regain user’s
attention during interaction.

A. Participants

We recruited ten people from different backgrounds includ-
ing six men and four women. Their ages range from 22 to
34 years (M=27.5, SD=3.4). Participants did not have prior
experience with robots. Fig.4 shows our experimental setup
in which a participant sits in front of a robot. A camera was
used to record the interaction.

B. Usability Testing Design

We designed a 2×1 between-participant study in which
participants are divided randomly into two groups. Each group
consists of five participants which is sufficient for usability
testing [45]–[47]. In the first group, participants interact with
a Pepper robot with the re-engagement mode activated. In the
second group, the re-engagement mode was deactivated. The
interaction scenarios are the same in two groups.

C. Interaction Procedure

We asked participants to sign a consent form and gave them
a brief introduction about the experiment before interacting
with the robot. The robot first introduced itself and followed

by giving information about social robots and their applica-
tions. Afterwards, participants were asked to answer a post-
experiment questionnaire about the information given by the
robot, their perceptions toward the robot, and open questions
about impression and interaction experience with the robot.
Finally, participants were compensated with a small gift for
their time. The entire session lasted about 10 minutes.

D. Quantitative Measurements and Open Questions

We measured user’s affective state and gaze (times, du-
ration) during interaction to evaluate the system’s ability
to regain user’s attention. The post-interaction questionnaire
include 8 questions about the information given by the robot to
measure user’s performance and 24 items from the Godspeed
questionnaire to access user’s perception toward the robot i.e.
anthropomorphism, animacy, likability, perceived intelligence,
perceived safety [48]. We also asked three open questions to
have some qualitative insights to understand user’s attitude
toward the robot and the interaction i.e. role of the robot,
impression, interaction experience.

E. Results

1) Technical Performance:In Fig. 5, we present two sub-
sets of interactions with the re-engagement ability activated to
demonstrate the system technical performance. Two selected
cases represent two main types of users i.e. low engage-
ment level and high engagement level. In both cases, when
user’s attention dropped, the system applied three levels of
human-like re-engagement behaviors to bring attention back.
Specifically, the system observes user’s attention level to
decide which level of re-engagement level should be applied.
While level 1 applies slight changes in verbal behaviors and
level 3 uses direct questions, level 2 requires adaptation to
user’s affective state by expressing re-engagement behavior
according to the robot’s internal affective state. As mentioned
in the system development, the robot’s internal affective state
does not merely imitate user’s affect states but taking into
account user’s mood and emotions. Therefore, the robot still
behaves as an independent and personal character.

In the high engagement case (Fig.5a), since the attention
level slightly dropped a few times, the system only applied
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Fig. 5: Subsets from two interactions. (a) Re-engagement ability deactivated. (b) Re-engagement ability activated to perform
different strategies to regain user’s attention.

the first level of re-engagement behaviors and user’s attention
quickly resumed. In the low engagement case (Fig.5b), the
system tried to applied all three levels of re-engagement
behaviors. Although user’s attention was not brought back to
fully engaged level, user’s attention level slightly increased
every time re-engagement behaviors were applied.

2) User’s engagement, performance, and perception:Since
all participants did not have prior experience with robots, most
of them were high interested and engaged to the interaction.
However, results of between-group comparisons show some
positive differences as summarized in TableI. When the re-
engagement ability was activated, users seemed to be more
engaged into the interaction compared to when this ability
was deactivated by having a higher mean time gazing at
the robot (66.71%/43.04%) and a higher mean duration of
each gaze (22.99s/17.25s). In this condition, participants also
recalled correctly more information given by the robot during
interaction (45.0%/32.5%).

Godspeed questionnaire results show that when the re-
engagement ability was activated, participants perceived the
robot with higher scores in animacy, likability and perceived
intelligence. This can be explained by the human-like behav-
iors and the awareness of user’s attention the robot expressed
during the interaction. In two conditions, the robot (Pepper)
and the interaction script were the same, there was no differ-
ence in the other scales i.e. anthropomorphism and perceived
safety.

3) Open questions:In both condition, there was no dif-
ference in perception of the robot’s role, seven participants
(3+4) considered the robot as a friend. Three other participants
considered the robot as a teacher, a neighbour and a stranger.

TABLE I: Results of quantitative measurements between two
conditions: Re-engagement deactivated and activated.

Deactivated (n=5) Activated(n=5)

Age 28±4.38 27±1.79
Gender (Male/Female) 3/2 3/2
Engagement
Time gazing at the robot (%) 43.04± 26.39 66.71± 16.37
Each gaze duration (s) 17.25±12.23 22.99±1.84

Correct answers(%) 32.5 45.0
User’s perception
Anthropomorphism 3.72±0.52 3.76±0.56
Animacy 3.50±0.51 3.97±0.49
Likability 4.24±0.29 4.44±0.39
Perceived intelligence 3.88±0.60 4.04±0.53
Perceived safety 3.87±0.65 3.80±0.75

However, participants provided interesting answer about im-
pression and interaction experience.

Table II and III listed all answers about impression of the
robot and their interaction experience. In general, participants
gave quite positive responses in in both conditions (i.e.nice,
impress(ive), gesture(s)since they did not have prior expe-
rience interacting with robot. However, participants in the
activated condition clearly noticed some human-like behavior
from the re-engagement strategies of the robot even without
seeing the other condition. They mentioned that the robot is
friendly, lively and lifelike. They also realized that the robot
could expressemotions, identified my[user’s] reactions, under-
stood my[user’s] response, social interactiveness. Participant 9
described the interaction aspleasantand would like tointeract
longer with the robot.

In the deactivated condition, participants showed less im-
pression and comments mainly about the robot’sgestures
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TABLE II: Participants’ impression of the robot in two con-
ditions: Re-engagement deactivated and activated.

Impression of the robot

Deactivated
(n=5) P1: First surprised, then a little bit depressed be-

cause I have no conversation with him.
P2: It was really trying to impress me and I could
feel his try which was wonderful. But his hand
motion seems too much and didn’t permit me to focus
on his speaking which I prefer he pays attention and
adjusts it.
P3: I like the hand movements and the way it looks
around curiously.
P4: It was nice and good gesture.
P5: [No impression]

Activated
(n=5) P6: I found it friendly and nice.

P7: It was very lifelike, it was hard to remember it
is a robot.
P8: Friendly.
P9: Impressive the way to show emotions, through
emotions. Nevertheless, in time the movements be-
come somehow monotonous and predictable.
P10: A lively social robot with nice hand gestures.

TABLE III: Participants’ interaction experience with the robot
in two conditions: Re-engagement deactivated and activated.

Interaction experience

Deactivated
(n=5) P1: Not at all.

P2: It was really unique and wonderful; but a bit
monologue! it was much better if i also could speak
with him and see his realtime interaction abilities.
P3: Good.
P4: Responsive interaction.
P5: Communication.

Activated
(n=5) P6: I felt comfortable and I wanted to share more,

and Pepper identified my reactions super fast which
was surprising for me.
P7: He asked questions and understood my re-
sponses.
P8: Nice and friendly.
P9: It was a pleasant experience. I would have like
to interact longer.
P10: It feels nice to know pepper. It enlightened me
about how robots are handling social interactiveness.

and hand movements. Participant 2 mentioned that the robot
gestures influence his/her focus on the story, possibly because
there was no awareness of the user’s attention and affec-
tive state. Participant 5 did not have impression. They also
gave short and less positive answers about the interaction
experience. Participant 1 did not appreciate the interaction
experience. Since a storytelling scenario was implemented,
participants felt that the robot talk more and listen, especially
in the deactivated condition.

IV. D ISCUSSION ANDCONCLUSION

We propose in this paper the development of a re-
engagement system for socially interactive robots to main-
tain user’s attention during the human-robot interaction. The
system was developed and implemented on Pepper robot
following three designed principle i.e. generating human-like

behaviors, adapting robot behaviors to user’s affective states,
and minimizing replication problems.

For system validation purpose, a storytelling scenario was
implemented with two groups of users. One group interacted
with the robot when the re-engagement ability was activated
while this ability was deactivated in the other group. Quantita-
tive and qualitative results show that the system to some extent
could regain user’s attention while interacting with the robot.
The system also showed its potential to help user achive higher
performance and were rated with higher scores in animacy,
likability and perceived intelligence. However, as in human-
human interaction, applying different re-engagement strategies
might not guarantee to bring attention back to fully engaged
level. User’s attention strongly depends on user’s interest and
willingness to interact with the robot. Other possible influ-
enced factors includes interaction scenario, user’s background
and the quality of robot behavior realization. Our future works
focus on applying the system on different types of users (e.g.
children, students) with various interaction scenarios.
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in Psychology from the Université Libre de Bruxelles. He is currently a
Ph.D. researcher at the Multibody Mechanics and Robotics research group,
Vrije Universiteit Brussel, Belgium. His research interest focuses on the
development of artificial intelligence for social robots.

Elahe Bagheri is currently a Ph.D. researcher at the Multibody Mechanics
and Robotics research group, Vrije Universiteit Brussel, Belgium.

Dirk Lefeber received a degree in Civil Engineering in 1979 and a Ph.D. in
Applied Sciences in 1986 from the Vrije Universiteit Brussel. Currently, he
is full professor, former head of the department of Mechanical Engineering
and head of the Robotics and Multibody Mechanics Research Group, Vrije
Universiteit Brussel, which he founded in 1990. The research interests of the
group are new actuators with adaptable compliance, dynamically balanced
robots, robot assistants, rehabilitation robotics and multibody dynamics, all in
the context of physical and cognitive human robot interaction with emphasis
on improving the quality of life of human.

Bram Vanderborght focused his Ph.D. research on the use of adaptable
compliance of pneumatic artificial muscles in the dynamically balanced biped
Lucy. In May-June 2006, he performed research on the humanoids robot
HRP-2 at the Joint Japanese/French Robotics Laboratory (JRL) in AIST,
Tsukuba (Japan) in the research ‘Dynamically stepping over large obstacles
by the humanoid robot HRP-2’. From October 2007-April 2010 he worked
as post-doc researcher at the Italian Institute of Technology in Genova (Italy)
on the humanoid robot iCub and compliant actuation. Since October 2009,
he is appointed as professor at the Vrije Universiteit Brussel. He has an
ERR starting grant on SPEA actuation concept. He is member of the Young
Academy of the Royal Flemish Academy of Belgium for Science and the Arts.
His research interests include cognitive and physical human robot interaction,
social robots, humanoids, robot assisted therapy and rehabilitation/assistive
robotics. He is current EiC of IEEE Robotics & Automation Magazine.
















































	Executive Summary
	Principal Contributors
	Revision History
	Overview of WP6 Architecture
	The Deliberative Subsystem
	Overview
	Core Deliberative Components
	Script Manager
	Deliberative Subsystem
	Sandtray Server and Event
	User Model
	System GUI

	Action Selection Mechanism
	Context
	State of the Art
	Proposed Solution

	Planned Work

	Script Following
	Increasing Robot Autonomy
	Period 1 Annexes
	Senft, E. et al. (2015), When is it better to give up? Towards autonomous action selection for robot assisted ASD therapy
	Baxter, P. et al. (2015), Technical Report: Organisation of Cognitive Control and Robot Behaviour
	Baxter, P. et al. (2015), Technical Report: Sandtray Wizard-of-Oz System for Turn-taking Intervention
	Esteban, P.G. et al. (2015), Technical Report: Manual for the use of Choregraphe boxes in Wizard of Oz experiments

	Period 2 Annexes
	Baxter, P. et al. (2015), Touchscreen-Mediated Child-Robot Interactions Applied to ASD Therapy
	Senft, E. et al. (2015) Human-Guided Learning of Social Action Selection for Robot-Assisted Therapy
	Senft, E. et al. (2015) SPARC: Supervised Progressively Autonomous Robot Competencies
	Senft, E. et al. (2016) Providing a Robot with Learning Abilities Improves its Perception by Users
	Baxter, P. et al. (2016) Cognitive Architectures for Social Human-Robot Interaction
	Baxter, P. (2016) Memory-Centred Cognitive Architectures for Robots Interacting Socially with Humans

	Period 3 Annexes
	Kennedy, J. et al. (2017), Technical Report: A Guide to Using systemGUI
	Lemaignan, S. et al. (2016), Towards ``Machine-Learnable'' Child-Robot Interactions: the PInSoRo Dataset
	Kennedy, J. et al. (2017), Technical Report: WP6 Full Port Descriptions
	Senft, E. et al. (2016), SPARC: an efficient way to combine reinforcement learning and supervised autonomy.
	Senft, E. et al. (2016), Supervised Autonomy for Online Learning in Human-Robot Interaction
	Senft, E. et al. (2017), Leveraging Human Inputs in Interactive Machine Learning for Human Robot Interaction
	Esteban, Pablo G., et al. How to build a supervised autonomous system for robot-enhanced therapy for children with autism spectrum disorder.

	Period 4 Annexes
	Senft, E. et al. (2017), Toward Supervised Reinforcement Learning with Partial States for Social HRI
	Senft, E. et al. (2018), Robots in the classroom: Learning to be a Good Tutor
	Cao, Hoang-Long et al. (2018), An End-User Interface to Generate Homeostatic Behavior for NAO Robot in Robot-Assisted Social Therapies
	Cao, Hoang-Long et al. (2018), A Collaborative Homeostatic-Based Behavior Controller for Social Robots in Humanâ•ﬁRobot Interaction Experiments
	Cao, Hoang-Long et al. (2018), A personalized and platform-independent behavior control system for social robots in therapy: development and applications

	Period 5 Annexes
	Senft, E. et al. (2018), From Evaluating to Teaching: Rewards and Challenges of Human Control for Learning Robots
	Cao, Hoang-Long and Esteban, Pablo G., et al. Robot-Enhanced Therapy Development and Validation of a Supervised Autonomous Robotic System for Autism Spectrum Disorders Therapy.
	Cao, Hoang-Long et al. (2019), â•œHmm, Did You Hear What I Just Said?â•š: Development of a Re-engagement System forSocially Interactive Robots
	Bagheri, Elahe et al. (2019), Robots that can increase your emotional energy: an autonomous cognitive empathy model responsive to users' facial expressions


