
Development of Robot-enhanced Therapy for
Children with Autism Spectrum Disorders

Project No. 611391

DREAM
Development of Robot-enhanced Therapy for

Children with Autism Spectrum Disorders

Grant Agreement Type: Collaborative Project
Grant Agreement Number: 611391

D3.1 System Architecture

Due date: 1/10/2014
Submission Date: 1/10/2014

Start date of project: 01/04/2014 Duration: 54 months

Organisation name of lead contractor for this deliverable: University of Skövde

Responsible Person: D. Vernon Revision: 2.0

Project co-funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public PU

PP Restricted to other programme participants (including the Commission Service)

RE Restricted to a group specified by the consortium (including the Commission Service)

CO Confidential, only for members of the consortium (including the Commission Service)



D3.1 System Architecture

Contents

Executive Summary 3

Principal Contributors 4

Revision History 4

1 Introduction 5

2 Primitives and Ports 5

3 The sensoryInterpretation Component 6

4 The childBehaviourClassification Component 9

5 The cognitiveControl Component 10

6 Inter-connectivity between the components 13

Date: 1/10/2014
Version: No 2.0

Page 2



D3.1 System Architecture

Executive Summary

Deliverable D3.1 defines the DREAM system architecture, i.e. the top-level functional decomposition

of the DREAM system, including a definition of the data flows between these functional elements.

Specifically, the deliverable provides a functional specification of the three principal sub-systems to

be developed in WP4: robot sensing and interpretation; WP5: child behaviour assessment; and WP6:

cognitive robot behaviour control, together with a definition of the data connectivity between these

sub-systems.

The functional specifications are defined in terms of the action primitives and perception primi-

tives described in Deliverables D1.2 and D1.3, corresponding to the functionality of WP6 and WP4,

respectively. The functional specification of the WP5 sub-system is defined in terms of child behaviour

classification primitives defined in this deliverable because they have not yet been documented in a

WP5 deliverable.

The specifications are grounded in the implementation framework adopted by the DREAM project

— the Component-Based Software Engineering (CBSE) component-port-connector model imple-

mented using YARP modules and ports — and therefore this deliverable should be read in tandem

with the DREAM Software Engineering Standards described in Deliverable D3.2.

It is envisaged that each primitive (and hence each functional element) will eventually be imple-

mented as a distinct component in the DREAM architecture. However, for the purpose of this top-level

definition, we collect them together in three component placeholder components

1. sensoryInterpretation

2. childBehaviourClassification

3. cognitiveControl

corresponding to WP4, WP5, and WP6, respectively.

Nevertheless, the data and control flow associated with each distinct primitive (and correspond-

ing component) is defined here, i.e. the input and output ports that are exposed by each primitive

component over which input and output function data and control data can be exchanged with these

components. This effectively defines the sub-system interconnectivity.

Where appropriate, the persistent data sources and sinks associated with each sub-system are also

identified. Since the DREAM software engineering standards (Deliverable D3.2) require that all com-

ponent application programming interfaces (APIs) be effected by configurable port interfaces, the

identification of all the data interfaces exposed on the ports associated with each primitive component

effectively defines the sub-system API.

All data entities are specified by both information content and representation. The content is

derived from the primitive specifications in Deliverables D1.2 and D1.3, and Section 4 below while

the representations are defined in terms of YARP port protocols.

Date: 1/10/2014
Version: No 2.0

Page 3



D3.1 System Architecture

Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order).

Paul Baxter, University of Plymouth

Tony Belpaeme, University of Plymouth

Erik Billing, University of Skövde

Pablo Gómez, Vrije Universiteit Brussel

Zhaojie Ju, University of Portsmouth

Corentin Le Molgat, Aldebaran Robotics

Honghai Liu, University of Portsmouth

Hoang Long Cao,Vrije Universiteit Brussel

Serge Thill, University of Skövde

David Vernon, University of Skövde

Hui Yu, University of Portsmouth

Tom Ziemke, University of Skövde

Revision History

Version 1.0 (DV 31-08-2014)

First draft.

Version 1.1 (DV 05-09-2014)

Implementation of the WP6 changes identified at the Amsterdam workshop.

Version 1.2 (DV 23-09-2014)

Removed empty references section.

Version 2.0 (DV 01-10-2014)

Implementation of several suggestions arising from pre-submission review by the DREAM team.

Date: 1/10/2014
Version: No 2.0

Page 4



D3.1 System Architecture

1 Introduction

The DREAM software system comprises three main sub-systems, corresponding to WP4 (Sensing

and Interpretation), WP5 (Child Behaviour Analysis) and WP6 (Robot Behaviour). Initially, these

three sub-systems are implemented by three place-holder components, as follows.

1. sensoryInterpretation

2. childBehaviourClassification

3. cognitiveControl

In addition, there is one other utility component in the system architecture. This is a Graphic User

Interface (GUI) to facilitate external control of the robot by a user (either a therapist or a software

developer) and to provide the user with an easily-to-understand view on the current status of the robot

control. It will also provide a graphic rendering of the child’s behavioural state, degree of engagement,

and degree of performance in the current intervention.

The functionality of each sub-system will be developed incrementally as the project progresses

and as new components that implement part of the functionality encapsulated in the place-holder

components are developed and integrated into the system. During integration, white-box testing will

be performed on a system-level by removing the driver and stub functions that simulate the output and

input of data in the top-level system architecture, i.e. in one of the three components above, allowing

that source and sink functionality to be provided instead by the component being integrated.

The functionality of sensoryInterpretation is specified completely by the 25 perception primitives

defined in Section 2 of Deliverable D1.3 (Child Behaviour Specification).

The functionality of cognitiveControl is specified partially by the seven action primitives defined

in Section 2 of Deliverable D1.2 (Robot Behaviour Specification). This is only a partial specification

because the basis for invoking each of these action primitives has not yet been defined (whereas, in

the case of sensoryInterpretation, all of the primitives are continually invoked to monitor the status of

the robot’s environment). Specifically, these seven action primitives only reflect the functionality re-

quired to carry out the robot behaviours that are required to follow the scripted interventions described

in Deliverable D1.1. Inevitably, additional functionality will be required to achieve supervised auton-

omy on the part of the robot when there are even slight deviations from this pattern of behaviour.

Consequently, we augment this functional definition in Section 5 to reflect more cognitive behaviour.

The functionality of childBehaviourClassification is encapsulated by three primitives:

getChildBehaviour(), getChildMotivation(), and getChildPerformance(). These prim-

itives are defined in Section 4.

2 Primitives and Ports

The parameters of every primitive in the three sub-systems are explosed by two dedicated ports, one

for input and one for output, with the arguments encapsulated in a YARP vector or bottle, whichever

is more appropriate.

The general naming convention for the two ports is /<primitive name>:i for input and

/<primitive name>:o for output.

Date: 1/10/2014
Version: No 2.0

Page 5



D3.1 System Architecture

3 The sensoryInterpretation Component

The following are the primitives, associated input and output ports, and port types in the sensoryIn-

terpretation component. Not all primitives have input parameters. The components for those that do

are stateful, i.e. once the associated argument values are set, they remain persistently in that state until

reset by another input.

checkMutualGaze()

/sensoryInterpretation/checkMutualGaze:o

BufferedPort<VectorOf<int>>

getArmAngle(left_azimuth, elevation, right_azimuth, elevation)

/sensoryInterpretation/getArmAngle:o

BufferedPort<VectorOf<double>>

getBody(body_x, y, z)

/sensoryInterpretation/getBody:o

BufferedPort<VectorOf<double>>

getBodyPose(<joint_i>)

/sensoryInterpretation/getBodyPose:o

BufferedPort<VectorOf<double>>

getEyeGaze(eye, x, y, z)

/sensoryInterpretation/getEyeGaze:i

/sensoryInterpretation/getEyeGaze:o

BufferedPort<VectorOf<double>>

getEyes(eyeL_x, y, z, eyeR_x, y, z)

/sensoryInterpretation/getEyes:o

BufferedPort<VectorOf<double>>

getFaces(<x, y, z>)

/sensoryInterpretation/getFaces:o

BufferedPort<VectorOf<double>>

getGripLocation(object_x, y, z, grip_x, y, z)

/sensoryInterpretation/getGripLocation:i

/sensoryInterpretation/getGripLocation:o

BufferedPort<VectorOf<double>>

getHands(<x, y, z>)

/sensoryInterpretation/getHands:o

BufferedPort<VectorOf<double>>

getHead(head_x, y, z)

/sensoryInterpretation/getHead:o

BufferedPort<VectorOf<double>>

getHeadGaze(<plane_x, y, z>, x, y, z)

/sensoryInterpretation/getHeadGaze:i

/sensoryInterpretation/getHeadGaze:o

BufferedPort<VectorOf<double>>

Date: 1/10/2014
Version: No 2.0

Page 6



D3.1 System Architecture

getHeadGaze(x, y, z)

/sensoryInterpretation/getHeadGaze:o

BufferedPort<VectorOf<double>>

getObjects(<x, y, z>)

/sensoryInterpretation/getObjects:o

BufferedPort<VectorOf<double>>

getObjects(centre_x, y, z, radius, <x, y, z>)

/sensoryInterpretation/getObjects:i

/sensoryInterpretation/getObjects:o

BufferedPort<VectorOf<double>>

getObjectTableDistance(object_x, y, z, vertical_distance)

/sensoryInterpretation/getObjectTableDistance:i

/sensoryInterpretation/getObjectTableDistance:o

BufferedPort<VectorOf<double>>

getSoundDirection(threshold, azimuth, elevation)

/sensoryInterpretation/getSoundDirection:i

/sensoryInterpretation/getSoundDirection:o

BufferedPort<VectorOf<double>>

identifyFace(x, y, z, face_id)

/sensoryInterpretation/identifyFace:i

/sensoryInterpretation/identifyFace:o

BufferedPort<VectorOf<double>>

identifyFaceExpression(x, y, z, expression_id)

/sensoryInterpretation/identifyFaceExpression:i

/sensoryInterpretation/identifyFaceExpression:o

BufferedPort<VectorOf<double>>

identifyObject(x, y, z, object_id)

/sensoryInterpretation/identifyObject:i

/sensoryInterpretation/identifyObject:o

BufferedPort<VectorOf<double>>

identifyTrajectory(<x, y, z, t>, trajectory_descriptor)

/sensoryInterpretation/identifyTrajectory:i

/sensoryInterpretation/identifyTrajectory:o

BufferedPort<VectorOf<double>>

identifyVoice(voice_descriptor)

/sensoryInterpretation/identifyVoice:o

BufferedPort<VectorOf<int>>

recognizeSpeech(text)

/sensoryInterpretation/recognizeSpeech:o

BufferedPort<Bottle>

trackFace(seed_x, y, z, time_interval, projected_x, y, z)

Date: 1/10/2014
Version: No 2.0

Page 7



D3.1 System Architecture

/sensoryInterpretation/trackFace:i

/sensoryInterpretation/trackFace:o

BufferedPort<VectorOf<double>>

trackHand(seed_x, y, z, time_interval, projected_x, y, z)

/sensoryInterpretation/trackFace:i

/sensoryInterpretation/trackFace:o

BufferedPort<VectorOf<double>>

trackObject(objectDescriptor, seed_x, y, z, time_interval, projected_x, y, z)

/sensoryInterpretation/trackObject:i

/sensoryInterpretation/trackObject:o

BufferedPort<VectorOf<double>>

Date: 1/10/2014
Version: No 2.0

Page 8



D3.1 System Architecture

4 The childBehaviourClassification Component

The functionality of the childBehaviourClassification component is encapsulated by three primitives,

as follows.

1. getChildBehaviour()

2. getChildMotivation()

3. getChildPerformance()

The getChildBehaviour() primitive classifies the child’s behaviour on the basis of current

percepts. It produces a set of number pairs where the first element of each pair represents a child state

and the second element the likelihood that the child is in that state. Thus, the primitive effectively

produces a discrete probability distribution across the space of child states.

The getChildMotivation() primitive determines the degree of motivation and engagement on

the basis of the temporal sequence of child behaviour states, quantifying the extent the children are

motivated to participate in the tasks with the robot and detect in particular when their attention is

lost. It produces two numbers, the first representing an estimate of the degree of engagement and the

second representing an indication of confidence in that estimate.

The getChildPerformance() primitive determines the degree of performance of the child on the

basis of a temporal sequence of child behaviour states, quantifying the performance of the children in

the therapeutic sessions. It produces two numbers, the first representing an estimate of the degree of

performance and the second representing an indication of confidence in that estimate.

In summary, the following are the primitives, associated ports, and port types for the childBe-

haviourClassification component.

getChildBehaviour(<state, probability>)

/childBehaviourClassification/getChildBehaviour:o

BufferedPort<VectorOf<double>>

getChildMotivation(degree_of_engagement, confidence)

/childBehaviourClassification/getChildMotivation:o

BufferedPort<VectorOf<double>>

getChildPerformance(degree_of_performance, confidence)

/childBehaviourClassification/getChildPerformance:o

BufferedPort<VectorOf<double>>

Date: 1/10/2014
Version: No 2.0

Page 9



D3.1 System Architecture

5 The cognitiveControl Component

As noted already, the functionality of the cognitiveControl placeholder component is specified par-

tially by the seven action primitives defined in Section 2 of Deliverable D1.2 (Robot Behaviour Spec-

ification). These seven action primitives reflect the functionality required to carry out the robot be-

haviours that are required to follow the scripted interventions described in Deliverable D1.1. However,

by itself this is not sufficient because there are two additional considerations for effective robot control

in the context of supervised autonomy.

First, the robot control is focussed on interaction with the child. Even when everything goes

according to plan and the intervention scripts can be followed exactly, there is a need to adapt the

robot behaviour to ensure its actions are in sync with those of the child. In a sense, the robot’s

behaviour, in an ideal situation, is entrained by the child’s (perhaps it would be better to say that the

child’s and the robot’s actions are mutually entrained). This means that the robot control isn’t just

a simple case of effecting playback of scripted motions and there has to be an element of adaptivity

in the robot behaviour, even in the case of following the scripted interventions defined in Deliverable

D1.1).

Second, individual children child are likely to deviate from the generalized expectations under-

lying the scripted interventions and the stereotyped standard behaviours they describe. Even slight

deviations call for adaptivity on the part of the robot. WP5 — Child Behaviour Analysis — provides

crucial information on the extent of these deviation in the guise of the engagement and performance

indicators. As these deviate from acceptable norms, the robot controller has to adapt, either to sus-

pend the interaction and hand over control of the situation to the therapist (this is the default scenario

envisaged in Deliverable D1.1) or to select some action — autonomously — that will re-engage the

child and hopefully improve his or her performance. This adaptivity requires more cognitive control.

However, that said, it is not possible to specify exactly what kind of behaviour is required because

we don’t know the extent to which autonomous interaction by the robot is required or useful when

dealing with children with ASD. To a large extent, this is exactly the goal of Work Package 2. At this

juncture, all we can specify is that the cognitive control will have to involve reactive (i.e. reflexive)

and life-like involuntary behaviours, attentive behaviours, expressive behaviours, and deliberative (i.e.

anticipatory) behaviours. These behaviours will be effected through the implementation of an appro-

priate cognitive architecture (to be designed in Work Package 6) with action selection being guided

by the constraints imposed by the parameters of desirable interaction to be defined in Work Package

2.

However, while the cognitiveControl placeholder component cognitive functionality will be de-

veloped in line with the constraints and insights gained in Work Package 2, we can identify here the

manner in which the component will expose the current status of its control behaviour so that this can

be used by the other two placeholder components. Specifically, the cognitiveControl placeholder

component will have a getInterventionState() primitive and an associated output port that will

identify the intervention that is currently being enacted and the current phase within that interven-

tion. To facilitate this, each intervention will be defined as a finite state automaton (equivalently, a

state transition diagram) with uniquely-labelled states to provide a common reference for all other

components.

While a getInterventionState() primitive handles the situation where the robot control is

following the prescribed intervention, even when the robot is adaptively entrained with the child’s

behaviour, it cannot capture the cognitive behaviour of the robot when dealing with situations that de-

viate from this script because of diminished performance or engagement on the part of the child. This

is true not only because the required robot behaviours have not yet been identified (as discussed above)

Date: 1/10/2014
Version: No 2.0

Page 10



D3.1 System Architecture

but also because cognition and autonomy — even supervised autonomy — by definition precludes a

priori prescriptive behavioural description by an external agent, including a software designer. To

compensate for this, the getInterventionState() primitive will have a third output parameter

to flag situations when the controller is (cognitively) handling an unexpected deviation from a given

intervention state (typcially as a result of the child’s behaviour exhibiting diminished engagement

and/or performance in the current intervention). This will allow the other components, and the user

(either a therapist or a software developer), to be informed about what is going on in the cognitive

controller, at least in general.

The following are the primitives and associated ports and port types in the cognitiveControl com-

ponent. The first seven are derived directly from Deliverable D1.2. The eight and ninth are addtional

utility primitives to enable and disable the robot. The tenth is the getInterventionState() prim-

itive described above.

grip()

/cognitiveControl/grip:i

BufferedPort<VectorOf<int>>

moveHand(handDescriptor, x, y, z, roll)

/cognitiveControl/moveHand:i

BufferedPort<VectorOf<double>>

moveHead (x, y, z)

/cognitiveControl/moveHead:i

BufferedPort<VectorOf<double>>

moveSequence(sequenceDescriptor)

/cognitiveControl/moveSequence:i

BufferedPort<VectorOf<int>>

moveTorso (x, y, z)

/cognitiveControl/moveTorso:i

BufferedPort<VectorOf<double>>

release()

/cognitiveControl/release:i

BufferedPort<VectorOf<int>>

say(text, tone)

/cognitiveControl/say:i

BufferedPort<Bottle>

enableRobot();

/cognitiveControl/enableRobot:i

BufferedPort<VectorOf<int>>

disableRobot();

/cognitiveControl/disableRobot:i

BufferedPort<VectorOf<int>>

getInterventionStatus(interventionDescriptor, stateDescriptor,

cognitiveModeDescriptor)

/cognitiveControl/getInterventionStatus:o

Date: 1/10/2014
Version: No 2.0

Page 11



D3.1 System Architecture

BufferedPort<VectorOf<int>>

Date: 1/10/2014
Version: No 2.0

Page 12



D3.1 System Architecture

6 Inter-connectivity between the components

Any component that needs to access the information exposed on the ports associated with a primitive

has to have equivalent ports of its own (so that the two ports can be connected) but reversing the in-

put/output designation. Thus, for example, one would connect

/cognitiveController/identifyObject:o to /sensoryInterpretation/identifyObject:i

/sensoryInterpretation/identifyObject:o to /cognitiveController/identifyObject:i.

This would allow cognitiveController to send the x, y, and z location of the object to be identified

to sensoryInterpretation and then to receive the identification number of that object from sensoryIn-

terpretation (see definition of identifyObject() in Deliverable D1.3).

Regarding the connectivity between the six components, the following principles apply.

• Each sensoryInterpretation output port is connected to the counterpart input port in the cogni-

tiveController and childBehaviourClassification components

• Each sensoryInterpretation input port is connected to the counterpart output port in the cogni-

tiveController component (but not the childBehaviourClassification component).

• Each childBehaviourClassification output port is connected to the counterpart input port in the

cognitiveController component.

• Each cognitiveController input port is, typically, not connected to any counterpart output port in

either the sensoryInterpretation or childBehaviourClassification components since these ports

will be typically be used only internally within the components that will constitute the cogni-

tiveController as it is developed.

• All of the cognitiveController input and output ports will be connected to a Graphic User Inter-

face (GUI) to facilitate external control of the robot by a user (either a therapist or a software

developer) and to provide the user with an easily-comprehended view on the current status of

the robot control. Furthermore, the child state, degree of engagement, and degree of perfor-

mance output ports in the childBehaviourClassification component will also be connected to

the GUI and graphically rendered in a suitable manner.

The complete system architecture is shown in Figure 1.

Date: 1/10/2014
Version: No 2.0

Page 13



D3.1 System Architecture

sensoryInterpretation

/checkMutualGaze:o

/getArmAngle:o

/getBodyPose:o

/getEyeGaze:o

/getEyes:o

/getFaces:o

/getGripLocation:o

/getHands:o

/getHead:o

/getHeadGaze:o

/getHeadGaze:o

/getObjects:o

/getObjects:o

/getObjectTableDistance:o

/getSoundDirection:o

/identifyFace:o

/identifyFaceExpression:o

/identifyObject:o

/identifyTrajectory:o

/identifyVoice:o

/recognizeSpeech:o

/trackFace:o

/trackFace:o

/trackObject:o

/checkMutualGaze:o

/getArmAngle:o

/getBodyPose:o

/getEyeGaze:o

/getEyes:o

/getFaces:o

/getGripLocation:o

/getHands:o

/getHead:o

/getHeadGaze:o

/getHeadGaze:o

/getObjects:o

/getObjects:o

/getObjectTableDistance:o

/getSoundDirection:o

/identifyFace:o

/identifyFaceExpression:o

/identifyObject:o

/identifyTrajectory:o

/identifyVoice:o

/recognizeSpeech:o

/trackFace:o

/trackFace:o

/trackObject:o

childBehaviourClassification

/getChildBehaviour:o

/getChildBehaviour:o

/getChildMotivation:o

/getChildMotivation:o

/getChildPerformance:o

/getChildPerformance:o

cognitiveControl

/getInterventionStatus:o

/getInterventionStatus:o

/getInterventionStatus:o

/getArmAngle:o

/getEyeGaze:o

/getGripLocation:o

/getHeadGaze:o

/getObjects:o

/getObjectTableDistance:o

/getSoundDirection:o

/identifyFace:o

/identifyFaceExpression:o

/identifyObject:o

/identifyTrajectory:o

/trackFace:o

/trackFace:o

/trackObject:o

GUI

/grip:o

/moveHand:o

/moveHead:o

/moveSequence:o

/moveTorso:o

/release:o

/say:o

/enableRobot:o

/disableRobot:o

/grip:i

/modeHand:i

/moveHead:i

/moveSequence:i

/moveTorso:i

/release:i

/say:i

/enableRobot:i

/disableRobot:i

/getInterventionStatus:i

/getInterventionStatus:i

/getInterventionStatus:i

/checkMutualGaze:i

/getArmAngle:i

/getArmAngle:i

/getBodyPose:i

/getEyeGaze:i

/getEyeGaze:i

/getEyes:i

/getFaces:i

/getGripLocation:i

/getGripLocation:i

/getHands:i

/getHead:i

/getHeadGaze:i

/getHeadGaze:i

/getHeadGaze:i

/getObjects:i

/getObjects:i

/getObjects:i

/getObjectTableDistance:i

/getObjectTableDistance:i

/getSoundDirection:i

/getSoundDirection:i

/identifyFace:i

/identifyFace:i

/identifyFaceExpression:i

/identifyFaceExpression:i

/identifyObject:i

/identifyObject:i

/identifyTrajectory:i

/identifyTrajectory:i

/identifyVoice:i

/recognizeSpeech:i

/trackFace:i

/trackFace:i

/trackFace:i

/trackFace:i

/trackObject:i

/trackObject:i

/checkMutualGaze:i

/getArmAngle:i

/getBodyPose:i

/getEyeGaze:i

/getEyes:i

/getFaces:i

/getGripLocation:i

/getHands:i

/getHead:i

/getHeadGaze:i

/getHeadGaze:i

/getObjects:i

/getObjects:i

/getObjectTableDistance:i

/getSoundDirection:i

/identifyFace:i

/identifyFaceExpression:i

/identifyObject:i

/identifyTrajectory:i

/identifyVoice:i

/recognizeSpeech:i

/trackFace:i

/trackFace:i

/trackObject:i

/getChildBehaviour:i

/getChildBehaviour:i

/getChildMotivation:i

/getChildMotivation:i
/getChildPerformance:i

/getChildPerformance:i

Figure 1: The DREAM system architecture.

Date: 1/10/2014
Version: No 2.0

Page 14


	Executive Summary
	Principal Contributors
	Revision History
	Introduction
	Primitives and Ports
	The sensoryInterpretation Component
	The childBehaviourClassification Component
	The cognitiveControl Component
	Inter-connectivity between the components

