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1. Executive Summary 

Deliverable D4.1 provides information for sensorized therapy room design and algorithms 
for data sensing and interpretation. This deliverable documents the development of the 
DREAM infrastructure for sensory data collection. It provides an overview the state of the art 
in sensory data acquisition & analysis, and sets out the specification, design, implementation, 
and testing of the DREAM sensory system based on the requirements set out in deliverable 
D1.1. This deliverable contain results from primarily from task T4.1 with additional input 
from task T4.2. 
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4. Introduction 

The tasks in Deliverable 4.1 include the design of a multi-camera system for data 
acquisition and preliminary vision signal processing. The system will be able to capture the 
child movements and interactions among the child, the robot and the therapist. This 
deliverable thus consists of two parts: multi-camera system design; preliminary algorithms for 
data sensing and interpretation. 

Since the designed system will be used for therapy purpose of ASD children, non-intrusive 
sensors are considered due to their non-contract, natural and unobstructed way of data 
capturing, which will significantly reduce the possible excruciating and fearful feelings of the 
children by caused by wearing the wearable sensors. To this end, the sensors used in this 
multi-camera system include video cameras and consumable depth sensors only. The system 
is required to be able to capture varying movements of the children and interaction including 
body gesture, facial expression, gaze and even speech. Thus, a small camera network is 
designed to meet these requirements along with a software package described in following 
sections.     

To enable the advances of the multi-camera system to capture multiple cues of the children 
and the interactions with the therapist, a software package consisting a set of efficient 
algorithms is developed. The architecture of the software package is formed by 7 modules 
integrating varying task and data communication functions, which essentially includes camera 
pose estimation, gaze estimation, human action analysis, object tracking, facial expression 
analysis, speech recognition and sensor fusion. Among those modules, the pose estimation 
modules can set a global coordinate framework for the system through estimating the pose of 
each individual sensor, which enables the alignment of the captured data for further 
communications. The sensor fusion module synchronises and fuses multiple sensor data. Each 
of the rest 5 modules achieves single function as an indispensable component of multi-camera 
system. 

The rest of the report is arranged as follows. Section 5 reviews the state-of-the-art methods 
for each component of the system. It intends to provide a background and related methods of 
the technologies used or developed in the system. Section 6 presents the detail of the design 
of the multi-camera system with hardware specification, installation and the installation of the 
software package and instructions. Section 7 describes the detail of the methods used in the 
system with preliminary testing results. 

5. The State-of-the-Art Methods 
5.1. Gaze Estimation 

Gaze estimation is to estimate the gaze direction or point of regard of a person. Gaze is also 
an important visual cue of a child and can provide useful information for therapist to detect 
and interactive with child with ASD. In DREAM project, we aim to provide the real time gaze 
estimation of the child. Further gaze analysis based on the detected gaze direction and its 
spatio-temporal gaze information will also be explored. The frequency and dwell time of 
fixation on different parts of the robot will be calculated based on the spatio-temporal gaze 
information. By combining the objects position, which is in front of the robot, the detected 
gaze direction will be able to provide useful information for the joint attention behaviours. 
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Providing the head position of the robot, the mutual gaze can also be addressed using the gaze 
direction of the child. 

Although there are many accurate eye-gaze tracking devices available at the market, most 
of them have the wearable limitation such as the need of wearing a glass with camera. In 
DREAM, it is necessary to track the gaze direction of the child using non-contact visual 
sensors since the child won’t feel comfortable wearing these devices. Compare to wearable 
devices, estimating the gaze direction by just using the non-wearable sensors is brings more 
challenges. The second significant challenge is the position of the vision sensors. Most 
existing non-wearable gaze estimation method chose to set the vision sensor under the screen 
or on the top of the screen to capture good quality of eye images. However, in DREAM, the 
robot will be in the middle of the table to interact with the child, which makes the gaze 
estimation much more challenge.  The third significant challenge is the large head movement 
of the child, together with the position of the camera; this makes it impossible to capture all 
the faces using one sensor. Thus a multi sensor solution is necessary. This will further cause 
the challenge of multi sensor fusion and also real time performance. 

With the development of image capturing devices, vision based gaze estimation has 
attracted more attention because of its non-intrusion and convenience. Various vision based 
gaze estimation methods have been proposed in the literature. Those methods can be 
classified into two categories, namely 2D based methods and 3D based methods. 

2D based gaze estimation methods estimate the point of regard directly using the eye 
images. One of the most classic gaze estimation methods is Pupil Centre Corneal Reflection 
(PCCR) that makes use of the glint reflection on the eye and pupil centre. Then a regression 
method is used to map the vector of these two centre points to the point on the screen. This 
method has been adopted into many commercial eye estimation devices such as tobii. 
However this method requires an IR light source and the head of the user should be fixed 
during the experiment, which is not suitable for interacting child with ASD. Zhu et al. [1] 
improved the PCCR method by mapping the head movement to a reference position and then 
performing gaze estimation, thus allowed for a small range of head movement. However an 
IR source was still needed to estimate the gaze in his method. Valenti et al. [2] proposed to 
use a hybrid scheme to estimate gaze direction by combining the head pose and eye centre 
position. Lu et al. [3] proposed an Adaptive Linear Regression method to map the gaze point 
in the screen via sparsely collected training samples. Thus less training images were required 
during the calibration stage. Sugano et al. [4] estimated the point of regards when people were 
watching a video by combining the visual saliency of the video and the captured eye images. 
Williams et al. [5] proposed a sparse and semi-supervised Gaussian process regression model 
to map the eye images to screen coordinates. However most of the 2D-based methods need 
numerous of calibrations for training. If the training samples are not big enough, they can't 
handle large head movements. Moreover, they only estimate the gaze point in the screen 
rather than the direction in a 3D space. 

Unlike 2D based gaze estimation methods, 3D based gaze estimation methods make use of 
the depth information of the eyes for gaze estimation. Lu et al. [6] acquired the depth 
information of the eye centre by using binocular vision that two cameras were placed on the 
top of the screen. Then the support vector regressor was used to map the space coordinates 
and local pattern model (LPM) to screen coordinates. Xiong et al. [7] proposed to estimate the 
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gaze direction through an RGB-D camera where the facial landmarks were tracked by using a 
supervised decent method. Funese et al. [8] proposed to create a face mesh by fitting a 3D 
Morphable Model to Kinect depth data and then cropped eye images to frontal looking to 
compensate head movement for gaze estimation.  

The main challenges in gaze estimation include low resolution of the eye region images, 
real time performance requirement, large head pose, occlusions as well as variable 
illuminations. Thus the related algorithms should be able to deal with the low-resolution 
challenge, such as eye centre localization method and facial feature extraction method. 
Furthermore, all those algorithms should have low computation complexity to acquire real-
time performance. Although the 3D based gaze estimation methods can allow free head 
movement compared to the 2D based gaze estimation methods, it remains a challenge to 
handle large head movement in child-robot interaction scenario. Thus a multi-sensor solution 
is necessary to deal with the large head pose in the scenario of interacting child with ASD. 

5.2. Multiple Sensor Fusion  

Multi-sensor fusion refers to combination of sensory data derived from disparate sensors in 
order to achieve better resulting information than using individual sources. Advantages of 
using multi-sensor system include robustness to environment and noise, rich information and 
better performance [9]. Human activities and interactions are inherently multimodal, and they 
involve gait, posture, body movements, speak, eye contact, and gaze and facial expressions. 
Multisensor fusion is an ideal tool to perceive, monitor and analysis these associated 
behaviours in achieving robustness to environmental, facilitating natural human-computer 
interaction and exploiting complementary information across modalities [9] [10]. Multi-
sensor fusion strategies can be divided into three main categories, which are the data fusion, 
feature fusion, decision fusion [11].   

The data fusion in low level will combine several sources of raw data into a new raw data, 
and synchronization and adaptation are usually needed before the fusion process. Statistical 
approaches are popular in the low level fusion, including non-recursive methods (such as 
weighted average method and the least square methods) and recursive methods (such as 
Kalman filter (KF) and extended KFs (EKFs)). For example, a complementary Kalman filter 
(CKF) [12] was proposed to overcome the drift problem in micro-sensor human motion 
capture. Matzka et al. [13] proved that covariance intersection and use of cross-covariance 
turned out to yield significantly lower errors than a Kalman filter at a comparable 
computational load. Covariance intersection also outperforms KF when the sensory data 
measured form multiple sensors were independent and it can generate a consistent estimate 
without considering the correlation between multisensory data [14]. Moreover, covariance 
union algorithm aims to solve the problem of information corruption which the covariance 
interaction cannot deal with [15].  

The feature fusion methods in the intermediate level extract and concatenate features from 
several data sources to form a new feature which is more discriminating and higher 
dimensional than the source features [16]. The high dimensionality of the fused feature vector 
puts challenges to the classifiers, and dimension reduction techniques have been employed to 
solve this problem, such as principal component analysis (PCA), Independent component 
analysis (ICA), projection pursuit (PP), and linear discriminate analysis (LDA) [17, 18], [19, 
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20]. To model individual streams, classification methods such as Hidden Markov Models 
(HMMs) and their hierarchical counterparts, Support Vector Machine (SVM) and Dynamic 
Bayesian networks (DBNs), can be used [21-23]. The feature fusion methods are more 
popular than the data fusion and decision fusion because they can combine modalities with 
different weights and have access to the low level data and features [24]. Multistream Fused 
Hidden Markov Model (MFHMM) was employed to detect four cognitive states and seven 
prototypical emotions with a better performance than face-only HMM, pitch-only HMM, 
energy-only HMM, and independent HMM fusion [25]. Liu et al. [26]  presented a sensor 
fusion method for assessing physical activity of human subjects, based on SVMs and 
demonstrated that the proposed multisensory fusion technique was more effective in 
identifying activity type and energy expenditure than the traditional accelerometer-alone-
based methods. 

Decision fusion methods consider and combine probability scores or likelihood values 
achieved from separate unimodal classifiers to develop a final decision. The quality of final 
decision is up to the way to estimate the best weighting factors based on the training datasets. 
For example, a self-optimizing approach was proposed to automatically select features, such 
as linear-prediction coefficients, and classifiers, such as Gaussian Mixture Models and SVM, 
and then combine the classifiers’ results based on Dempster-Shafer theory to generate the 
final decision [27].  Stergiou et al. [28] presented an audio-visual person identification system 
with a audio-only recognition system, a video-only recognition system and an audio-visual 
fusion subsystem. The final fusion was done by combining the unimodal identities into the 
multimodal one, using a suitable confidence metric for the results of the unimodal classifiers. 
Zouba et al. [29] proposed a new multisensor based activity recognition approach which used 
video cameras and environmental sensors in order to recognize interesting elderly activities at 
home. The fusion was done at the decision level by combining video events with 
environmental events. 

In addition, the above mentioned fusion strategies can also be combined in order to 
improve the performance [30, 31]. In [32], a multilevel multisensory fusion method was 
proposed to measure an exact recharging current, by combining fusion methods and rule-
based methods to decide an exact output for maximum and minimum condition of the 
recharging current and generate high-reliability results. Heracleous [33] combined the feature 
fusion, multistream HMM fusion and late fusion methods to analyse noisy audio speech with 
Electro-Magnetic Articulography speech and obtained a satisfactory recognition result in a 
noisy environment. 

Our objectives are to use date fusion methods in the low level to combine the raw data 
streams from different sensors in order to obtain a global 3D map of real-world environments 
containing information for the objects, body gestures, head pose, face expressions, etc., in the 
Deliverable 4.1, and to employ feature and decision fusion methods, such as hidden Markov 
models as well as conditional random fields and their variants to analyse the spatio-temporal 
gaze pattern and behaviour patterns of the children with ASD, in the Deliverable 4.2.  

5.3. Camera Pose Estimation  

Given n (n≥3) 2D-3D correspondence of 2D points in camera image and 3D points in space, 
calculating the pose of the camera which captures the image is known as the perspective-n-
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point (PnP) problem [34]. It is widely used in practical applications such as SLAM, SFM, 
Augmented Reality, etc. Recently, a lot of researches have been explored in this research area. 
Among these implantations, the minimal number of 2D-3D correspondences is 3, which 
makes the PnP problems being P3P [35, 36]. To improve the accuracy and robustness, 
researchers tend to solve the camera pose estimation problems using redundant data, which 
employs more than 3 pairs of 2D-3D correspondence for the calculation. The PnP problems 
can be divided into two groups, which are the Multi-State Methods (MSM) and the Direct 
Minimization Methods (DMM). They all have their own advantages and disadvantages.  

Normally, MSM only estimates the coordinates of partial points or camera projection 
matrix with partial points at earlier stages, and refines the results in later stages. Although the 
computing speed is fast when n is small, the accuracy is low. On the contrary, the accuracy is 
high when n is large with low computing speed due to the computational complexity [37]. 
DMM considers all the pairs of 2D-3D correspondence at one time. With proper energy 
function, the minimization process is carried on to find the best projection matrix of the 
camera [38]. The calculation process could be quick because of the employment of the linear 
or direct minimization algorithms [39]. However, due to the minimization process, the 
methods need a good initialization to avoid local minima[40]. 

5.4. Human Action Analysis 

Human actions consist of the interactions between human and human, human and objects, 
adverse variations to motion pattern consistency, subtle articulated movements and the spatio-
temporal activities. Depth sensors provide an innovative way of dealing such problems, and 
have been extensively applied in related academic research. Despite the intra-class variations, 
3D depth data captured by the depth sensors for constructing a delicate model of human 
motions are more efficiently. Action recognition routinely includes two main tasks, which are 
feature extraction and dynamic pattern modelling. More discernible spatio-temporal 
information can be captured through exploiting the depth sensors.  

A combination of spatio-temporal interest points localization like STIP [41] and low-level 
features like HOF [42] or HOG [43] is commonly adopted in the field of video-based motion 
recognition. When trying to utilize depth data, aforementioned local features are not optimally 
attributed to the situations that are with no texture in the depth map. Utilization of 3D 
articulated joint positions contributes to more precise motion recognition, which can be 
achieved by Multi-camera motion capture (MoCap) systems [44]. However, such system is of 
expensive equipment and requires markers, which impedes the wide usage. A marker-free 
motion capturing system is desirable and remains an interest among the research based on 
regular image sensors. As a result, low-cost depth cameras have been adopted for motion 
capturing with a trade-off in motion data quality.  

Despite the susceptibility to occlusion, which may bring noise to the data, the results 
captured by the depth sensors are reasonable. To remedy the differences of motion data 
quality between the MoCap systems and the depth sensors, a specific recognition method 
should be developed. 

There are various temporal models for human action recognition. Typically, two main 
models are employed: one is generative model such as Hidden Markov Model (HMM) and 
Conditional Random Field (CRF); another is dynamic temporal warping (DTW). For example, 
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Lv [45] employed HMM to model pre-defined relative positions that were obtained from the 
3D joints, while Wu [46] utilized CRF over 3D joint positions. In [47], Xu also used 
HMM/CRF to model human actions in videos. Generally, the 3D joint positions obtained 
from depth maps are noisier than those from the MoCap data. Without careful feature 
selections, it is difficult to obtain the accurate states when the difference between actions is 
slight. This difficulty usually undermines the performance of such generative models. DTW 
[48] defines the distance of two time series as the edit distance, which can be incorporated 
with the nearest-neighbour classification method to achieve action recognition. However, the 
performance of DTW greatly relies on a good metric measurement of the frame similarity. 
Moreover, it may suffer from large temporal misalignment for periodic actions such as 
“waving” and consequently degrade the classification performance [49]. 

Recently, many works have been done for action recognition in depth data and skeletons. In 
[50], along the human silhouette, HMM was used for dynamics analysis and each depth frame 
was represented as a bag of 3D points. In [51], an efficient random sampling approach was 
presented to learn semi-local features from data. In [52], a dimension-reduced skeleton feature 
was described. In [53], spatio-temporal occupancy patterns were used, but all the cells in the 
grid should be in same size, and the number of cells was set empirically. In [54], the features 
based on the distances between each pairs of joints was represented, and multiple instance 
learning method was used for feature selection. In [55], the histogram of gradient was used as 
feature representation over depth motion maps. In [56], linear dynamic systems were 
employed to model the dynamic medial axis structures of human parts, and discriminative 
metrics were developed to compare the sets of linear dynamics systems for action recognition. 
In [57], a Kinect was used for dance action recognition.  However, this system organized 
skeleton joints into human parts manually rather than automatically learned from data. 

5.5. Face Expression Analysis  

Automatic face analysis, which includes, e.g., face detection, face recognition, and facial 
expression recognition, has become a hot topic in computer vision because of its various 
applications in psychology, medicine, security, and computer technology. A face recognition 
system plays an important role in biometrics [58], and automatic facial expression recognition 
forms the essence of human behaviour understanding [59]. 

Face recognition aims to automatically identify and verify a person from a digital image or 
video sequence. Facial expression recognition considers two main streams: facial affect 
(emotion) detection and facial muscle action (action unit) detection [60]. The emotions 
conveyed by facial expressions are modelled with six categories: happiness, sadness, surprise, 
fear, angry and disgust. Ekman, etc., who propose these, argued that these emotions were 
universally displayed and recognized. Facial action descriptors rely on Facial Action Coding 
System (FACS). FACS defines 32 atomic facial muscle actions, called Action Units (AUs), 
which encode nearly any possible facial expressions. 

Depending on temporal relations, facial representations can be categorized into spatial and 
spatio-temporal. Spatial representations encode image sequence frame-by-frame, whereas 
spatio-temporal representations consider temporal dependency in image sequence. According 
to facial feature descriptors in space, another classification is achieved: appearance-based 
approaches and geometric-based approaches. Appearance representations use textural 
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information, while geometric-based approaches ignore texture and describe shape explicitly. 
It is generally believed that appearance-based approaches outperform geometric-based 
approaches in both face recognition and facial expression recognition, and for expression 
analysis, spatio-temporal models outperform their spatial counterparts [59]. 

The main challenges in face analysis include occlusions, illumination changes and large 
variations in appearances and head-pose. Spontaneous behaviours often occur with occlusions 
and head-pose variations. Appearance-based approaches have the problems of face aging and 
identification bias for face recognition [58] and facial expression analysis, respectively [60, 
62]. The problem of face analysis includes three main steps: (1) face registration, (2) facial 
feature extraction and representation, (3) feature analysis and recognition. 

Face registration aims to find faces in an image. A successful face registration should 
localize or detect faces regardless of clutter, occlusions and head-pose variations. A rigid 
registration aligns the input face to a prototypical frontal face. Sometimes one has to select 
constant illumination or perform illumination correction, and normalize the faces to a fixed 
size [61]. 

An effective facial representation is a crucial for a successful recognition. Local Binary 
Patterns (LBP) [62] and Local Phase Quantisation (LPQ) [63] are two popular appearance-
based methods in face analysis [64, 65]. Other commonly used textural representations 
include Histogram of Gradient (HOG), Gabor, sparse coding etc. It is popular to extract 
features from Three Orthogonal Planes (TOP) to extend spatial appearance representations to 
their spatio-temporal domain [66]. LBP-TOP and LPQ-TOP have been successfully used for 
facial expression recognition [67, 68]. Geometric-based approaches are seldom used for face 
recognition, but they form an important part in facial expression analysis [69]. The most 
frequently used shape representation is facial points representation, which describes a face as 
a number of fiducial points [69]. These methods have many advantages in head-pose wise 
facial expression recognition [70] and sptio-temporal models [71]. 

With derived facial representation, feature selection is sometimes needed when the number 
of patterns within a feature descriptor is too large. Principle Component Analysis is the most 
commonly used method for this task. For recognition, some popular classification methods, 
such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and AdaBoost 
are usually employed [72]. 

5.6. Object Tracking 

Object tracking is to spatially locate objects in each image frame and temporally associate the 
located objects between consecutive frames in a video or image sequence. When the initial 
states of interested objects are known, the aim of object tracking is to accurately and 
efficiently locate and identify objects with times whatever their positions and sizes change. 
Object tracking is one of the most active topics in the field of computer vision and pattern 
recognition [73]. Nowadays, extensive tracking technology has been explored especially for 
advanced cameras, which promotes the development of automatic video analysis. Typically, 
there are three steps for realizing this process which are detecting objects of interest, tracking 
objects and analysing the tracked objects to recognize their behaviours [74]. In addition, 
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object tracking can also be used in many areas such as motion analysis, automatic surveillance 
as well as human-computer interaction etc. [75].  

Recently, numerous representation schemes [76-78] have been proposed for robust object 
tracking. However, some major challenges, which might cause huge effect during tracking 
such as appearance variation caused by rotation, scale illumination, occlusion, to name a few. 
To address these problems, different methods can handle some of these issues but cannot 
solve all. For example, when processing occlusion aspect, PCA subspace representation [79] 
with online update was more effective compared with some other representations. 
Furthermore, an improved method using online updating and learning technology[80] was 
proposed to handle huge changes with time. However, a drift might occur [81] when using 
direct template updating. To remedy this, a Multiple Instance Learning (MIL) can be 
employed [74]. Moreover, sparse representation of trivial templates [81], which used to 
represent object, was proposed to process image noise. However, the real-time performance of 
this kind of method was unsatisfied.  

To solve the above mentioned problems, an effective way is to adapt online updating to 
learn a low-dimensional subspace [82]. Moreover, extracting key features and online boosting 
method [83] can be combined for improving the computational speed. Alternatively, low-
dimensional space can represent high-dimensional features by using a constructed classifier. 
If these features could be projected to arbitrary low-dimensional space, a necessary condition 
would be that the feature space should be sufficiently high according to the compressive 
sensing (CS) theory [84, 85]. This is because that to reconstruct the original high-dimensional 
features, enough information should be provided. During this progress, some important 
information and condition such as data-independent and information preserving should be 
guaranteed. For the background information could provide more specific information, it is 
also possible to use temporally information and local context information [86]. 

5.7. Speech Recognition  

Speech recognition has wide applications, which makes it a hot topic of research. Typically, 
speech recognition consists of two basic operations, namely feature extraction and 
classification.  

The feature extraction technique plays an important role for the speech recognition in a 
high accuracy. There are many feature extraction methods that are used in speech recognition, 
such as Fast Fourier Transforms (FFT), Linear Predictive Coding (LPC), Mel Frequency 
Cepstral Coefficients (MFCC) and Discrete Wavelet Transforms (DWT). The FFT has widely 
practical applications in computer vision such as signal processing, image analytics, speech 
recognition, etc. It is considered to be one of the most useful mathematical tools in computer 
science. For example, the FFT was used as feature extractor for speech recognition in [87]. 
Polur et al. [88] also carried out experiments for dysarthria speech recognition using FFT. The 
LPC is widely used to analyse the voice files with better result for low bit rate coding. For 
instance, in [89], LPC can obtain important features from the input signals. In [90] and [91], 
LPC was also successfully applied on speech processing. MFCC is used to extract unique 
features from human voice. For example, the MFCC was used in [92] for spoken letter 
recognition. The DWT is used to extract features from non-stationary signals such as audio. 
For instance, in [93], the feature extracted by DWT was classified with Support Vector 
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Machine (SVM) for speech recognitions. Sunny et al. [94] proposed a method for isolated 
spoken words recognition using DWT combining with Artificial Neural Networks.  

There are many classification methods used in speech recognition. The Hidden Markov 
Model (HMM) is the popular one for speech recognition. In [95], the recognition using HMM 
to gain encouraging results with a high accuracy. Support Vector Machine (SVM) is another 
widely used and effective algorithm as a classifier for speech recognition. SVM is a binary 
classifier that divides the inputs into two different groups. It was successfully employed in [93] 
for speech recognition. Shady et al. [96] also presented a speaker independent arabic speech 
recognition using SVM. Dynamic Time Warping (DTW) is a method to find optimal 
registration between two sets of time-dependent data. It is considered to be the most suitable 
algorithm for speech recognition due to its capability of coping with different speaking speeds. 
In [97], the DTW was successfully used for speech recognition with a high accuracy. 
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6. Multi-camera System Design and Installation 

This section includes system design, configuration and installation. 

6.1. Multi-camera System Design 

The design of the sensorized Therapy room mainly includes the intervention table, multiple 
sensors, fixing accessories and a workstation. 

6.1.1. Intervention Table 

The design of DREAM intervention table is provided in Figure 1. The detailed CAD file is 
provided as an appendix attachment. The table is specifically designed for DREAM project, 
accommodating ASD children interacting with humanoid robots. It provides a platform for a 
humanoid robot to perform, to mount multiple sensors, and to support a curtain to minimize 
the distraction to the children by covering data capturing sensors.  

                                       
                                       Figure 6.1: DREAM Intervention Table 

 

6.1.2. Sensors 

Five sensors are used and placed on the table including two RGB-D sensors and three 
ordinary cameras. 

1. RGB-D Sensor:  

Kinect sensors are used to track human body gesture, robot position, object position, sound, 
voice, etc. More details about the “Kinect for windows” purchase and specifications:  

http://www.ebuyer.com/343455-microsoft-Kinect-for-windows-l6m-00002 

2. Camera:  
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Cameras are used to capture human face, gaze, etc. More details about camera purchase and 
specifications:  

http://scorpionvision.co.uk/CatalogueRetrieve.aspx?ProductID=5134875&A=SearchResult
&SearchID=1557753&ObjectID=5134875&ObjectType=27 

3. Lens: 

http://scorpionvision.co.uk/CatalogueRetrieve.aspx?ProductID=6723233&A=SearchResult
&SearchID=1557755&ObjectID=6723233&ObjectType=27 

4. USB2 cable: 

http://scorpionvision.co.uk/catalogue-index/cables/usb-cables/2-metre-usb2-a-male-to-
mini-b-female 

6.1.3. Accessories 

5. Mounting kit for Kinect 
1) A mounting kit is needed to fix a Kinect onto the bench, as shown on the right in the 

figure 2, which can be purchased at:  
http://www.ebay.co.uk/itm/221231532116?_trksid=p2059210.m2749.l2649&s
sPageName=STRK%3AMEBIDX%3AIT (Only the top part will be used.)  

2) In addition, one screw set is need for each Kinect. Screw (M6×16)×2 and nut (M6 
Square nut Z) × 2 for Kinect : 
http://www.minitec.de/en//Web/produkte/Components/profile_system/system
_components/Fastening-Elements/stat_schrauben_muttern.php 

 
Figure 6.2: Mounting kit for Kinect. The left figure shows the mounting kit and the right shows the screw set 

to fix Kinect onto the table. 

6. Mounting kit for cameras 
1) Each camera is planned to be mounted on the table by TWO “Guard unit fixing angle 

45 AL supplied loose”, shown in figure 3. 
http://www.minitec.de/en//Web/produkte/Components/profile_system/system
_components/Fastening-Elements/Guard-unit-fixing-angle-45-
AL.php?SESSID=fa15h3lnllspqaha30lf7fmga4 
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In addition, one screw set is need for each camera. Screw (M6×12)×3 
http://www.minitec.de/en//Web/produkte/Components/profile_system/system_compo
nents/Fastening-Elements/stat_schrauben_muttern.php 

 

 

 

Figure 6.3: Fixing angle for camera 

 

 

6.1.4. The Workstation 

The minimum requirement for the workstation:  

1. Intel Xeon CPU E5-1650 v2 3.5GHz or a faster processor 
2. 5 USB Host Controllers (Three usb3.0 and two usb2.0) 
3. 8 GB RAM 
4. Graphics card supporting DirectX 9.0c 

The workstation we recommend is:  

http://store.hp.com/UKStore/Merch/Product.aspx?id=ECC_BUNDLE_4586044&opt
=&sel=WKS#merch-marketing 

Need to upgrade it from 8G memory to 16G memory, and 256G SSD to 256G SSD + 1T 
HDD. This workstation requires two extra usb3.0 express card adapters. 

Here is one recommendation for the card adapter: 

http://www.amazon.co.uk/Transcend-Express-Interface-Dual-
Expansion/dp/B003MVJG8Q  

In order to run the software smoothly, each sensor must be connected to a separate usb 
controller: each camera (DFK 42BUC03) must be connected to a separate USB3.0 controller; 
each Kinect sensor needs to connect to a separated USB2.0 controller (it will be better if there 
are more USB3.0 controllers for Kinects). 
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The reason why one USB controller can only be connected to a single sensor is that our 
image has a resolution of 1280*960 at 25fps. This means it needs to transfer a huge amount of 
data per second. After testing the sensors with the workstation, it found that connecting two 
cameras with a controller resulted in low quality images. At the same time, we need connect a 
DFK camera to an independent USB3.0 controller, which is much faster than USB2.0. There 
will be an obvious noise showing on the capture images if the camera is connect to a separate 
usb2.0 controller, which may cause loss of data. So we recommend connecting each camera to 
a separate/independent usb3.0 controller. Based on the testing, Kinect has a good/satisfying 
signal when connecting to a separate usb2.0 controller. 

6.1.5. Summary 

A list to summarize the above devices is provided as below: 

1. Intervention Table ×1: Specification, quotation and CAD drawing are attached. 
2. Kinect ×2 (Kinect for windows): http://www.ebuyer.com/343455-microsoft-

Kinect-for-windows-l6m-00002 
3. Camera×3 (DFK 42BUC03 1.2mp Colour Camera with trigger and IO from 

Scorpion vision ltd): 
http://scorpionvision.co.uk/CatalogueRetrieve.aspx?ProductID=5134875&A=
SearchResult&SearchID=1557753&ObjectID=5134875&ObjectType=27 

4. Lens x 3 (HF6M-2 Spacecom 6mm C Mount Lens from Scorpion vision ltd): 
http://scorpionvision.co.uk/CatalogueRetrieve.aspx?ProductID=6723233&A=S
earchResult&SearchID=1557755&ObjectID=6723233&ObjectType=27 

5. Mounting kit for Kinect  × 2: 
http://www.ebay.co.uk/itm/221231532116?_trksid=p2059210.m2749.l2649&s
sPageName=STRK%3AMEBIDX%3AIT 

6. Screw (M6×16)×2 and nut (M6 Square nut Z) × 2 for Kinect : 
http://www.minitec.de/en//Web/produkte/Components/profile_system/system
_components/Fastening-Elements/stat_schrauben_muttern.php 

7. Mounting kit for Camera, “Guard unit fixing angle 45 AL supplied loose” × 6, each 
camera needs two: 
http://www.minitec.de/en//Web/produkte/Components/profile_system/system
_components/Fastening-Elements/Guard-unit-fixing-angle-45-
AL.php?SESSID=fa15h3lnllspqaha30lf7fmga4 (they have been added in the 
quotation of the table, see attached) 

8. Screw (M6×12)×3 for camera: 
http://www.minitec.de/en//Web/produkte/Components/profile_system/system
_components/Fastening-Elements/stat_schrauben_muttern.php 

9. Workstation ×1: 
http://store.hp.com/UKStore/Merch/Product.aspx?id=ECC_BUNDLE_458604
4&opt=&sel=WKS#merch-marketing 

(Need to upgrade it from 8G memory to 16G memory, and 256G SSD to 256G SSD + 
1T  HDD + two usb3.0 express card adapters). 
http://www.amazon.co.uk/Transcend-Express-Interface-Dual-
Expansion/dp/B003MVJG8Q 
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6.2. System Installation 
6.2.1. Hardware Installation 

6.2.1.1. Kinect Installation 

Both Kinects are installed at the middle of the bars. A screw nut (M6 square nut Z) should be 
pre-inserted in the bar in advance. The procedure is shown in the following figures.  
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6.2.1.2. Camera installation 

Three cameras are fixed at the places shown in the following figure.  
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The following figures show the steps of installing the camera on the angles: 

 

 

6.2.2. Software installation and instruction  
6.2.2.1. Software installation  

The software package requires to run on a Windows 7 (64bit) operating system. 

1. Make sure the computer has 5 separate usb controllers, which include at least 3 
USB3.0 controllers for the three cameras (one for each) as mentioned in the 
workstation. After inserting two usb3.0 express card adapters, click the 
\Dreamsetup\USB3.0 adapter\RENESAS-USB3-Host-Driver\ setup.exe          to install 
the driver for the adapter. 
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2. Plug the DFK 42BUC03 camera in an independent USB3.0 controller. The 
recommended workstation has three usb controllers. Each usb controller has a number 
of usb ports. As shown in the following figure, there are three usb ports in the front of 
the computer. The black usb ports are of usb2.0 and they belong to usb2.0 control1. 
The two blue usb ports belong to usb3.0 control2. 

 

 

There are 6 usb ports at the back of the case. Four black ports belong to usb2.0 control3; two 
blue ones share a same usb3.0 controller, which is usb3.0 control2. 

Plug one camera in one of the blue usb ports; insert the other two cameras into two PCIE to 
usb3.0 adapters respectively. 

The mapping are summarised as: 

Kinect1  → Control1 
Kinect2  →  Control3 
Camera1  →  Control2 
Camera2  →  PCIE card adapter 1 
Camera3  →  PCIE card adapter 1 
 
There links are shown in the following figures.  
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3. To install the DFK 42BUC03 camera driver, double click the “drvInstaller.exe” in the 
folder of /Dreamsetup/camera_driver. The driver can also be downloaded from the 
link: 

http://www.theimagingsource.com/en_US/support/downloads/details/icwdm
uvccamtis/ 

 

 

4. Set the environment for the cameras. Cancel the gain option of the camera so that the 
image will get rid of the noise.  

Double click the ‘IC Capture.exe’ in the folder of /Dreamsetup/IC Capture 2.3. 
Click file --- new 
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Select the camera and click OK 

 
 
Click---device---properties 
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Click exposure and cancel the tick of Gain and set it to the smallest as the following 
image. Then click OK. 

 
 

Repeat this step three times for all the three cameras and make sure that all the 
camera’s parameters are set. 
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5. Install Windows SDK 1.8 for Kinect, double click the KinectSDK-v1.8-Setup.exe and 
then tick on “I agree to the …”, then click the install. 

 
 

6.2.2.2. User instruction 

1) Right click the \Dreamsetup\Release\Dreamsave.exe and select run as administrator. 
2) Then a browse for Folder to place the captured data: 
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3) Select a folder that has suffient space to save data. After the path is selected, one 
following window will prompt out: 

 

4) We can click the preview button to check whether the sensors are working well. Here 
is one preview example: 

 

The previewing time is displayed at the right-bottom of the window. As we can see that 51 
seconds have passed. We can simply click the previewstop button to stop preview. 
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In order to save the video, we can simply click the Save button. Then the following image 
shows up.  

 

The saving time is also displayed at the right-bottom of the windows. Our program is able 
to save the data while at the same time displaying the image. If you want to check how many 
images have been saved, just click the number button.  The number of images captured will 
display on the right of the button (click the button will not affect the performance of the 
program, you can click as many times as you want).  
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If you want to stop capturing the data, simply click the stop button. 

 

Then click the exit button or red button to exit the program. The data will be saved at the 
path you selected. 
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Note: After preview, if we click the Exit button or the red button on the right-top of the 
window, the program will exit. 

6.2.3. Sensor adjustment 
6.2.3.1. Kinect adjustment 

Once the Kinects are mounted on the bar, you may need to adjust the view angle of the sensor 
manually. You should ensure that the view range covers the NAO robot and the whole table 
plane. For the middle Kinect, you should ensure that the face is at the centre of the image 
when the child faces toward the camera. 

6.2.3.2. Camera adjustment and testing 

Once all the cameras are mounted on the bar, you may need to adjust the view angle of the 
sensor manually. You should ensure that the face is at the centre of the image when the child 
faces toward the camera. 

Here is one example image from the testing of the sensors, all of which are working well: 

 

Figure 6.1 

 

 

7. Method Development and Implementation 
7.1. Camera Pose Estimation 

7.1.1. Method 

In this section, we need to determine the position and orientation of each camera, given its 
intrinsic parameters and a set of n correspondences between 3D points and their 2D 
projections. The 3D point coordinates are from the Kinect. The 2D projections on camera 
plane are obtained by matching 2D points between camera image and Kinect RGB image. Our 
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implementation is based on Efficient Perspective-n-Points (EPnP) algorithm proposed by 
Vincent, Francesc and Pascal, with the 2D-3D correspondence obtained mentioned above, the 
camera poses can be estimated accurately. The PnP algorithm employed in our 
implementation is a transformation-based PnP method. As shown in the following equation,  

( , ) ii m K R t M  

mi is the projection of the 3D point Mi onto the camera image with K being intrinsic 
parameters of the camera. R is the rotation matrix, t is the translation matrix. mi, K and Mi are 
known in the equation. With more than 3 pairs of mi-Mi correspondence, the R and t can be 
estimated using optimization algorithms. In our implementation, the mi-Mi correspondences 
are more than 20 pairs to improve the robustness of the process.  

7.1.2. Results 

Our camera pose estimation method has robust results for different camera poses. It only 
requires the user to mark the corresponding points between the Kinect image and Camera 
image manually for about 20 pairs. This approach is preferred as it’s far more reliable than 
any other feature-matching algorithm. With the intrinsic parameters of the cameras, the poses 
of those cameras related to the Kinect can be found reliably. And we also provide an interface 
to transform the rotation across different coordinate systems. The experiment results are 
shown in Fig. 1. As illustrated, the poses of three cameras at three different positions can be 
estimated accurately.  
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Figure 7.1 

 

7.2. Gaze Estimation  
7.2.1. Face Location Method 

The boosted cascade face detector is employed with default parameters in order to obtain the 
approximate location of the face [98]. This method corresponds to the getFaces(x,y,z) 
function. 

7.2.2. Eye Location Method 

This correspond to the getEyes(eyeLx, eyeLy, eyeLz, eyeRx, eyeRy, eyeRz) function. In 
our project, we present an convolution based integro-differential eye center localization 
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method to localize the eye centers. The proposed method is computationally much cheaper 
than the original integro-differential method [99] and also achieves a higher accuracy in a 
public available lowe resolution image database. 

The original integro-differential method is a very popular eye localization method in the 
literature which is defined as follows: 

maxሺ,௫బ,௬బሻ ቚߪܩሺݎሻ ∗
డ

డ
∮

ூሺ௫,௬ሻ

ଶఙ
,௫బ,௬బݏ݀
ቚ                       (1) 

Where Gఙሺrሻ is a Gaussian smoothing function with a scale of ߪ.  Iሺx, yሻ represent for the 
eye image. ds is the contour of a circle with the center point of ሺx, yሻ and radius r . The 
convolution operation is denoted as ∗. The operator locate the eye centre by make use of the 
drastic intensity along the boundary of iris and cornea. 

The following equation is the discrete implementation of the integro-differential operator: 
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Where ∆ݎ	and ∆ߠ represent for small increments in radius and angular. 

Instead of considering the small increments along the angular. We design two kinds of mask to convolute the 
eye image. The proposed method calculates a ratio derivative between neighbor curve of iris and cornea which is 
formulated as follows: 
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Where ܭ  and ܭାଵᇱ  are two kind of designed masks.  ܫ and ܫାଵᇱ  are the convolution result of the different 
eye	 image	ܫሺݔ, 	is	ܦ	And	ሻ.ݕ the	ratio	derivative.	ݎ	and	ݎ௫	represent	 for	 the	minimum	and	maximum	
of	the	radius	ݎ.	The	computation complexity	of	the	proposed	eye	localization	method	is	greatly	reduced	by 
employing FFT in the realization of convolution 

7.2.3. Gaze Estimation Method 

We propose a real-time gaze estimation method by constructing multi-sensor fusion system to 
handle the large head movement. Three cameras and two Kinects are used in this system. In 
the gaze estimation task, the cameras are used to capture the face of the child. The frontal 
Kinect is used to capture the head position in world coordinate and the top Kinect is used. All 
the image data are captured simultaneously by creating 8 handles in programming. Each 
handle deals with difference kinds of data. The data captured in each handle are two Kinect 
RGB image data, two Kinect depth data, three camera data and one Kinect audio data. The 
resolution of the camera, Kinect RGB image, Kinect depth image are 1280*960, 640*480 and 
640*480 separately. 

To estimation the gaze direction. Firstly the facial features should be located. In pure 
method, we employ the method proposed by Xiong et al. [100] to locate the feature points in 
the human face. In order to deal with head movements, the head poses need to be determined. 
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We employ the object pose estimation method (POSIT) proposed by Dementhon et al. [101] 
is used to calculate the direction of head gaze (corresponding to the getHead(headx, heady, 
headz) function. Then the eye centre is located by applying the proposed convolution based 
intergo-differential eye centre localization method. It should be noted that the gaze direction 
differs from the head gaze by two angles, the horizontal direction θ and the vertical direction 
φ. The final gaze direction is finally determined by adding the angles to the head gaze. The 
following is the equation to calculate the gaze direction (corresponding to the getEyeGaze(eye, 
x, y, z) function). 
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Where ሺxୡ, yୡሻmeans the the center of two eye corners, ൫x୮, y୮൯means the center eye pupils, 
α is the angle between the line of two eye corners and the line of two centres. β is the 
complementary angle of  α. L is the distance of the two eye corners, γ and ε are determined 
through experiment. 

7.2.4. Results 

The following is the result of gaze estimation. The green points are the located facial points. 
The located eye centres are marked in red. The red line which starts on the nose indicates the 
direction of the head pose. The white line which starts at the middle of two eye centres is the 
gaze direction.  

 
Figure 7.2  

7.3. Human Action Analysis 

The aim of this section is mainly about recognising the behaviour of ASD children. To 
achieve this objective, this part will provide the requirements on action and event recognition 
based on multi-sensory data (task 4.4). The meaning of function and variables has been shown 
in data interpretation part which will adopt skeleton data. After acquiring skeleton information, 
the centre of body, hand joint and grip position will be obtained and output the 3D 
coordinates information. The body pose such as manipulate object and shaking hand can be 
estimated as well as arm angel through skeleton joint angel.  
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7.3.1. Method 

To recognise the action of human body, this project will use the skeleton information 
acquired by Kinect, one main idea is to represent the movement of human body using the 
pairwise relative positions of the joints feature. For a human subject, 21 joint positions are 
tracked by the skeleton tracker and each joint i has 3 coordinates ሺݐሻ ൌ ሺݔሺݐሻ, ,ሻݐሺݕ  ሻሻݐሺݖ
at a frame t. The illustration of the skeleton joints are shown in Fig. 1. The coordinates are 
normalized so that the motion is invariant to the initial body orientation and the body size. For 
each joint i, we extract the pairwise relative position features by taking the difference between 
the position of joint i and any other joint j: 

 ൌ  െ  

The 3D joint feature for joint i is defined as: 

 ൌ ሼ|݅ ് ݆ሽ 

From the equations, enumerating all the joint pairs are used for introducing some 
information, this might be irrelevant compared with classification task, but our system can 
handle this difficulties by selecting most relevant joints for recognising task. Relative joint 
position is actually a quite intuitive way to represent human motions. Think about that, for 
example, the action “waving”. It can be interpreted as “arms above the shoulder and moving 
left and right”. This can be effectively characterized through the pairwise relative positions.  

7.3.2. Results 

Using the skeleton information of Kinect, some results are shown as Fig.6 to Fig.8, as well as 
the 3D joint position including stand model and seat model. 

  

 
Figure 7.3  Human joints tracked with the skeleton tracker 
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Figure 7.4  Action recognition using depth information and Kinect skeleton (stand model) 

    

 
Figure 7.5  Action recognition using depth information and Kinect skeleton (seat model) 

7.4. Face Expression Analysis 

Face & facial expression recognition are the relevant components as mentioned in task 4.4. 
Task 4.4 provides some advice that the facial appearance cues should be captured and Support 
Vector Machine (SVM) is considered as classifier. So we use Local Binary Patterns (LBP) to 
represent facial texture cues and apply SVM for identity & facial expression classification. 

7.4.1. Method 

LBP is a nonparametric method and has been proved as a powerful descriptor in representing 
local textural structure [72]. The main advantages of LBP are its strong tolerance against 
illumination variations and computational simplicity. This method has been successfully used 
in both spatial and sptio-temporal domains in face recognition and facial expression 
recognition. 

The original LBP operator labels the pixels of an image with decimal numbers. Each pixel 
is compared with its eight neighbors in a 33 neighbourhood, considering the center pixel 
value as threshold; bigger values are encoded with 1 and the others with 0. A binary number 
is obtained by concatenating all these values. Its corresponding decimal number is used to 
compute LBP histogram. Figure 9 shows an example of LBP operator. 
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Figure 7.6 Example of LBP operator. 

7.4.2. Support Vector Machine 

SVM is considered as one of the most powerful machine learning techniques for data 
classification. It achieves a good balance between structural complexity and generalization 
error. It offers great performance under the circumstance of very few training samples, high 
dimensionality and nonlinear classification. 

In a two-class learning task, SVM find a maximal margin hyperplane as its decision 
boundary. For a linear separable dataset, SVM assumes that the best classification results are 
obtained by maximizing the margin of hyperplane between two classes. It allows not only the 
best partition on the training data, but also leaves much room for the correct classification of 
the future data. In order to guarantee the maximum margin hyperplanes to be actually found, 
an SVM classifier attempts to maximize the following function with respect to ݓሬሬԦ  and b: 

ܮ ൌ
1
2
‖ሬሬԦݓ‖ െߙݕሺݓሬሬԦ ∙ పሬሬሬԦݔ  ܾሻ

௧

ୀଵ

ߙ

௧

ୀଵ

	

where ݐ is the number of training examples, ߙ are the Lagrange multipliers. The vector ݓሬሬԦ and 
constant ܾ define the hyperplane. 

SVM only makes binary decisions. For multi-class classification problem, one-vs-rest 
technique provides a computational simpler and flexible strategy, which trains binary 
classifiers to one class from all the others 

7.4.3. Result 

We evaluate our system on CK+ database using 10-fold cross-validation. CK+ is a set of 
image sequences in which the facial expressions of subjects are displayed from neutral to 
target emotions. For our experiment, the first neutral face and three peak frame are used, 
which results in 1236 images (135 Angry, 177 Disgust, 75 Fear, 207 Happy, 84 Sadness 249 
Surprise and 309 Neutral). The confusion matrix is shown below. 

Table 1 Facial expression recognition rate 

 Neutral Angry  Disgust  Fear  Happy Sadness  Surprise 

Neutral  50.15 15.32 9.61 3.60 9.61 8.11 3.60 

Angry  26.15 36.15 9.23 4.62 1.00 9.23 4.62 

Disgust  20.44 6.63 56.91 0.55 8.84 4.42 2.21 
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Fear  13.33 8.33 6.67 43.33 13.33 10.00 5.00 

Happy  13.04 4.83 8.21 6.76 59.42 3.38 4.35 

Sadness  31.17 7.79 10.39 12.99 9.09 24.68 3.90 

Surprise 4.84 1.61 0.40 2.42 3.23 2.02 85.48 

 

7.5. Object Tracking 

The aim of this section is mainly focus on tracking part including tracking ASD child hand, 
the trajectory of hand, objects holding by ASD child and getting the distance between the 
object and table. The complication of tracking part can assist analysing the behaviour of ASD 
children which is part of task 4.4. The main task of this part if outputting 3D coordinates of 
object the position of children in real world and acquiring the trajectory of hand of ASD 
children. The key technology for achieving this aim is as follows. 

7.5.1. Method 

Despite that numerous algorithms [102] have been proposed in the literature, object tracking 
remains a challenging problem due to appearance change caused by pose, illumination, 
occlusion, and motion, among others. In this project, a compressive tracking algorithm will be 
used which can handle referred problems. The tracking problem is formulated as a detection 
task and the main steps of the proposed algorithm. We assume that the tracking window in the 
first frame is given by a detector or manual label. At each frame, we sample some positive 
samples near the current target location and negative samples away from the object center to 
update the classifier. To predict the object location in the next frame, we draw some samples 
around the current target location and determine the one with the maximal classification score. 

To account for large scale change of object appearance, a multiscale image representation is 
often formed by convolving the input image with a Gaussian filter of different spatial 
variances. The Gaussian filters in practice have to be truncated which can be replaced by 
rectangle filters.  

For each sample Z ∈ Rனൈ୦, its multiscale representation is constructed by convolving Z 
with s set of rectangle filters at multiple scales ሼFଵ,ଵ, … , Fன,୦ሽ defined by 

,ݔఠ,ሺܨ ሻݕ ൌ
1
݄߱

ൈ ݂ሺݔሻ ൌ ൜
1, 1  ݔ  0, 1  ݕ  ݄,
.݁ݏ݅ݓݎ݄݁ݐ																	,0

 

Where ω and h are the width and height of a rectangle filter respectively. 

Then we represent each filtered image as a column vector in Rఠ
 and concatenate these 

vectors as a very high-dimensional multiscale image feature vector x ൌ ሺݔଵ, … , ሻ்ݔ ∈ ܴ 
where m ൌ ሺ݄߱ሻଶ. The dimensionality m is a typically in the order of 10 to 10ଵ. We adopt 
a sparse random matrix R to project x onto a vector v ∈ ܴ in a low-dimensional space. The 
random matrix R needs to be computes only once offline and remains fixed throughout the 
tracking process. For the sparse matrix R, the computational load is very light. And we only 
need to store the nonzero entries in R and the positions of rectangle filters in an input image 
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corresponding to the nonzero entries in each row of R. Then, v can be efficiently computed by 
using R to sparsely measure the rectangular features which can be efficiently computed using 
the integral image method. 

It is easy to show that the low-dimensional feature v is scale invariant. Each feature in v is a 
linear combination of some rectangle filters convolving the input image at different positions. 
Therefore, without loss of generality, we only need to show that the j-th rectangle feature xj in 
the i-th feature vi in v is scale invariant. We have  

ሻݕݔሺݔ ൌ ሻݕݏ௦௪ೕ,௦ೕሺܨ ⊗ ܼሺݕݏሻ 

ൌ ௦௪ೕ,௦ೕሺܽሻܨ ⊗ ܼሺܽሻ|ୀ௦௬ 

ൌ
1

ଶ݄߱ݏ
න ܼሺܽ െ ݑሻ݀ݑ
௨ఢஐೞ

 

ൌ
1

ଶ݄߱ݏ
න ܼሺݕ െ ݑଶ݀ݏ|ሻݑ
௨ఢஐ

 

	ൌ
1

݄߱
න ܼሺݕ െ ݑሻ݀ݑ
௨ఢஐ

 

ሻݕ௪ೕ,௦ೕሺܨ= ⊗ ܼሺݕሻ ൌ  ሻݕሺݔ

Where Ω ൌ ሼሺݑଵ, ଶሻ|1ݑ  ଵݑ  ߱, 1  ଶݑ  ݄ሽ  and Ω௦ ൌ ሼሺݑଵ, ଶሻ|1ݑ  ଵݑ  ,߱ݏ 1 
ଶݑ  s݄ሽ 

We assume all elements in v are independently distributed and model them with a naive 
Bayes classifier 

Hሺvሻ ൌ log ቆ
∏ ݕ|ݒሺ ൌ 1ሻሺݕ ൌ 1ሻ
ୀଵ

∏ ݕ|ݒሺ ൌ 0ሻሺݕ ൌ 0ሻ
ୀଵ

ቇ ൌlog	൬
ݕ|ݒሺ ൌ 1ሻ
ݕ|ݒሺ ൌ 0ሻ

൰



ୀଵ

 

Where we assume uniform prior, ሺݕ ൌ 1ሻ ൌ ݕሺ ൌ 0ሻ, and ߳ݕሼ0,1ሽ is a binary variable 
which represents the sample label. 

The random projections of high dimensional random vectors are almost always Gaussian. 
Thus the conditional distributions ሺݒ|ݕ ൌ 1ሻ  and ሺݒ|ݕ ൌ 0ሻ  in the classifier H(v) are 
assumed to be Gaussian distributed with four parameters ሺߤ

ଵ, ߪ
ଵ, ߤ

, ߪ
ሻ,  

ݕ|ݒሺ ൌ 1ሻ~ܰሺߤ
ଵ, ߪ

ଵሻ, ݕ|ݒሺ ൌ 0ሻ~ܰሺߤ
, ߪ

ሻ 

Where ߤ
ଵሺߤ

ሻ and ߪ
ଵሺߪ

ሻ are mean and standard deviation of the positive (negative) class. 
The scalar parameters in last equation are incrementally updated by 

ߤ
ଵ ⟵ ߤߣ

ଵ  ሺ1 െ λሻμଵ	 

ߪ	
ଵ ⟵ ටߣሺߪ

ଵሻଶ  ሺ1 െ λሻሺσଵሻଶ  ሺ1ߣ െ ߤሻሺߣ
ଵ െ  	ଵሻଶߤ

Where λ  0 is a learning parameter, 



I. D4.1 Sensorized Therapy Room Design and Algorithms for Data 
Sensing and Interpretation

 

 

Date:  28/03/2015 

Version: No. 3.0 
 Page 40 of 51

 

ଵߪ ൌ ඨ
1
݊
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ିଵ
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And ߤଵ ൌ
ଵ


∑ ሺ݇ሻݒ
ିଵ
ୀ|௬ୀଵ . Parameters ߤ

  and ߪ
  are updated with similar rules.  The 

above equations can be easily derived by maximum likelihood estimation. 

Because the variables are assumed to be independent in our classifier, the n-dimensional 
multivariate problem is reduced to the n univariate estimation problem. Thus, it requires fewer 
training samples to obtain accurate estimation than estimating the covariance matrix in the 
multivariate estimation. Furthermore, several densely sampled positive samples surrounding 
the current tracking result are used to update the distribution parameters, which is able to 
obtain robust estimation even when the tracking result has some drift. In addition, the useful 
information from the former accurate samples is also used to update the parameter 
distributions, thereby facilitating the proposed algorithm to be robust to misaligned samples. 
Thus, our classifier performs robustly even when the misaligned or the insufficient number of 
training samples is used. 

7.5.2. Results and explanation of function 

This part will mainly focus on functions F13, F14, F15, F19, F20 and F25. The meaning of 
these functions has been explained in data interpretation part. To complete these functions, 
some programming will be designed and output the 3D coordinates of object and hand. To 
show the result vividly, image result which is the preliminary result shown as follows which 
indicates that the object tracking can work well when therapist interact with ASD child.  

  

Figure 7.7 The result one of object tracking 
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Figure 7.8 Result two of object tracking 

7.6. Speech Recognition 

In DREAM project, the effective child-robot social interactions in supervised autonomy RET 
requires the robot to be able to infer the psychological disposition of the child. The speech 
recognition can help the system to understand the psychological disposition of the child better. 
Therefore, the implementation of the speech recognition is given in the system. With the 
speech recognition functions, the specified words and sentence spoken by child can be 
transformed into plain texts for easier understanding what child have expressed. Our 
implementation is based on Microsoft Kinect SDK. 

7.6.1. Results 

The isolated words or continuous sentences can be recognized with our implementation of 
speech recognition that built on top of word recognition technology. Our speech recognition 
system displays the content of recognition results in plain text as output when the speaker is 
speaking. The follow figures are the experiment results. 
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Figure 7.9 
 

7.7. Multiple Sensors Capturing and Fusion 

As described in the above section, the hardware configuration was introduced, which 
provides the platform for Task 4.1: design multi-camera system for data acquisition of smart 
space in software. This section describes the design of synchronising all the sensors in 
software, not only for multi-sensory data acquisition but also for Task 4.2 vision signal 
processing and analyses. In order to synchronise and fuse multiple sensor data, a framework 
for coordinating multiple sensors is presented in Figure 4. This framework starts from five 
individual sensors: Camera 1, Camera 2, Camera3, Kinect 1 and Kinect 2. The modules from 
1 to 5 are responsible for gaze estimation, face and expression recognition, audio processing, 
body pose recognition and object tracking, respectively. It is worth noting that only 1 of 3 
cameras is activated at a time for gaze estimation and face & expression recognition, and thus 
a special module of face detection & camera selection is proposed. 
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Figure 4: a framework for coordinating multiple sensors  

 

7.7.1. Face Detection & Camera Selection  

Camera 1, Camera 2 and Camera 3 form a functional unit to get the face location, eye 
locations, gaze direction, head direction, etc.  The Face Detection & Camera Selection 
Module (FDCS) captures image frames from three sensors and selects one camera by the 
highest face detection probability, and meanwhile FDCS module also functions to obtain 
facial feature points from the selected frame. The selected camera ID, the original frame and 
the calculated feature points will be simultaneously saved in the Global Buffer and be updated 
according to the speed (fps). Module 1 and Module 2 serve to implement the primary 
functions, like calculating face/eye location, head/gaze directions, face ID, facial expression 
ID and etc. These separated modules will run through the main algorithms, which has been 
proposed/employed by this project.  

The function of Kinect1 are two-folds:  voice analysis (Module 3) and subject’s skeleton 
joints extraction (Module 4). Module 3 can be further separated into two parts: speech 
recognition and speech direction tracking. Kinect2 focuses on object tracking, and the 
objective is to get object (a toy) location, object ID and head location of a robot.  

Camera	1 Camera	2 Camera	3 Kinect	1 Kinect	2 

Buffer	(29	variables) 

Face	Detection	&	Camera	Selection 

Module	1 Module	2 Module	3 Module	4 Module	5

Coordination	Transformation 

Interface	(25	Functions) 
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7.7.2. Global Buffer Module 

As described in Task 3.1, the YARP will be used to deliver information among components. 
Therefore, a global buffer is proposed to store a number of variables, and these variables can 
be considered as parameters or arguments.  

global_buffer  

{ 

V1: cv::VideoCapture cap; 
V2: CameradeviceID 
V3: Mat ::image 
V4: Eyes(rightx, righty, rightz, left x,left y, left z) 
V5: Head pose(roll, yaw, pitch) 
V6: Face(vector(x,y,z)) 
V7: Gaze(roll, yaw, pitch) 
V8: Coordinate transform Mat(R,T)---camera1,camera2,camera3,Kinect2  
V9: Frame 3D points(x,y,z) 
V10: Object position(x,y,z) 
V11: Head position(x,y,z) 
V12: Hand position(x,y,z) 
V13: cv::Mat X; //face 49 feature points 
V14: int numberkernel; //number of kernel used for eye center detection 
V15: vector<cv::Mat> kernel_filter; //kernel used for eye center detection 
V16: Robot head position 
V17: Sound Direction 
V18: Face sorce 
V19: Desk_point vector // 3 points  
V20: Skelton joint vector 
V21: Object_location 
V22: Object_id 
V23: Face_id 
V24: Face_expression_id 
V25: Object_id 
V26: Object_history_location vector 
V27: Voice_descriptor_id 
V28: Voice_text_id 
V29: Skelton_history_joint vector  

} 

 

7.7.3. Functions and Global Variables 

The relationship between 25 functions (as described in D3.1) and 29 variables is listed in 
Table 1. With 29 variables, predefined 25 interface functions can be easily implemented 
through accessing the variables based on arithmetic and coordinate transformation.  
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Table 2 Functions and global variables 

25 Interface functions Related Variables 

F1: checkMutualGaze V7,V8,V17 

F2: getArmAngle V20 

F3: getBody V20 

F4: getBodyPose V20 

F5: getEyeGaze V4,V7,V8,V13 

F6: getEyes V3,V4,V6,V8,V13,V14,V15 

F7: getFaces V3,V6,V8 

F8: getGripLocation V22,V21,V22 

F9: getHands V20 

F10: getHead V6,V8,V13 

F11: getHeadGaze1 V6,V8,V11,V13,V19 

F12: getHeadGaze2 V6,V8,V13 

F13: getObjects1 V21,V22 

F14: getObjects2 V19,V21,V22 

F15: getObjectTableDistance V21,V22 

F16: getSoundDirection V8,V17 

F17: indntifyFace V11,V23 

F18: IdentifyFaceExpression V11,V23,V24 

F19: identifyObject V21,V25 

F20: identifyTrajectory V25,V26 

F21: identifyVoice V27 

F22: recognizeSpeech V28 

F23: trackFace V6,V8,V18 

F24: trackHand V29 

F25: trackObject V21,V22 
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