

Development of Robot-enhanced Therapy for
Children with Autism Spectrum Disorders

Project No. 611391

DREAM

Development of Robot-enhanced Therapy for
Children with Autism Spectrum Disorders

Agreement Type: Collaborative Project

Agreement Number: 611391

D4.2 Evaluation of Multi-Sensory Data Perception

Due Date: 01/04/2016

Submission date: 01/04/2016

Start date of project: 01/04/2014 Duration: 54 months

Organisation name of lead contractor for this deliverable: University of Portsmouth

Responsible Person: Honghai Liu Revision: 2.0

Project co-funded by the European Commission within the Seventh Framework
Programme

Dissemination Level

PU Public PU

PP Restricted to other programme participants (including the Commission Service)

RE Restricted to a group specified by the consortium (including the Commission
Service)

CO Confidential, only for members of the consortium (including the Commission
Service)

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 2 of 49

Contents

Executive Summary .. 4	

Principal Contributors ... 5	

Revision History ... 6	

1. Introduction ... 7	

2. Multi-Sensory Data Perception Framework .. 8	

3. Multi-Sensory Data Perception Methods .. 11	

3.1. Gaze estimation .. 11

 3.1.1. Method ... 11

 3.1.2. Experimental Results ... 13

 3.1.3. Related Functions ... 16

3.2. Upper body skeleton joints detection and joint-based hand tracking 17

 3.2.1. Method ... 17

 3.2.2. Experimental Results ... 17

 3.2.3. Related Functions ... 19

3.3. Object detection and tracking ... 21

 3.3.1. Method ... 21

 3.3.2. Experimental Results ... 22

 3.3.3. Related Functions ... 22

3.4. Face and facial expression recognition .. 23

 3.4.1. Method ... 23

 3.4.2. Experimental Results ... 24

 3.4.3. Related Functions ... 24

3.5. Speech and sound direction recognition .. 26

 3.5.1. Method ... 26

 3.5.2. Experimental Results ... 27

 3.5.3. Related Functions ... 29

 3.5.4. Challenge ... 29

4. YARP Implementation .. 30	

4.1. usbCameraSource ... 30	

4.2. usbCameraSelection ... 30	

4.3. KinectSource .. 33	

4.4. sensoryInterpretation .. 34	

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 3 of 49

5. Multi-Sensory Data Fusion - A Preliminary ... 39	

5.1. Camera Selection ... 39

 5.1.1. Method ... 39

 5.1.2. Experimental Results ... 41

5.2. Coordinate Transformation .. 43

 5.2.1. Method ... 43

 5.2.2. Experimental Results ... 46

References ... 49	

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 4 of 49

Execut ive Summary

Objectives

 Deliverable D4.2 aims to evaluate multi-sensory data perception. Its main objectives are:

l To document algorithm specification, design, implementation, and validation of a suite

of multi-modal sensory data acquisition modules derived from the sensory requirements

set out in “Deliverable D1.1 Interaction Definition” (with particular regard to the sensory

cues that characterize the action triggers, action components, and action goal states.)

l To deliver the results from task T4.2 and provide inputs for tasks T3.3, T4.3, T4.4, T6.1,

and T6.2.

 Implementation

The above objectives in D4.2 have been fulfilled and the involved tasks are summarized as

follows:

We have proposed methods/algorithms for multi-modal sensory data acquisition. For visual

data acquisition, a gaze estimation method is proposed to obtain ASD children’s head poses

as well as their gaze directions; a joint detection method is introduced to get ASD children’s

upper body skeletons and a joint-based method is presented to track their hands in real time; a

simple blob detection method is employed for detecting the objects on the table and an

efficient Gaussian mixture probability hypothesis density tracker is employed for object

tracking; a face and expression recognition method is proposed to recognize children’s faces

and expressions. For audio data acquisition, the Microsoft SDK is utilized to recognize the

speech and determine the sound direction. We have experimentally evaluated the feasibility

and effectiveness of the proposed methods/algorithms.

l We have completed the YARP framework to implement the 25 perception primitives

defined in “Deliverable D1.3 Child Behaviour Specification” and “Deliverable D3.1

System Architecture”. We have developed three additional components to make the

system more flexible and efficient.

l We also proposed methods for both the camera selection module and the coordinate

transformation module, which are the foundation for multi-sensory data fusion.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 5 of 49

Pr inc ipa l Contr ibutors
The main authors of this deliverable are as follows (in alphabetical order)

Haibin Cai, University of Portsmouth

Yinfeng Fang, University of Portsmouth

Dongxu Gao, University of Portsmouth

Zhaojie Ju, University of Portsmouth

Honghai Liu, University of Portsmouth

Ting Wang, University of Portsmouth

Yiming Wang, University of Portsmouth

Hui Yu, University of Portsmouth

Shu Zhang, University of Portsmouth

Xiaolong Zhou, University of Portsmouth

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 6 of 49

Revis ion His tory

Version 2.0 (Zhou, X., Fang, Y., Cai, H., Gao, D., Wang, Y., Ju, Z., Yu, H., Liu,

H., 31-03-2016)

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 7 of 49

1. In t roduct ion
 This deliverable, D4.2, describes the process and analyse of the sensory data, including

images and sound, obtained from the multi-camera system designed. The processed data is
further taken as the input for YARP implementation and multi-data fusion.

First, an overview of the multi-sensory data perception framework is introduced. Five

individual sensors that include three RGB cameras and two Kinects are used for data sensing.

Twenty-five interface functions and twenty-nine related variables are defined for sensory data

organization and perception.

Then, data perception methods corresponding to the 25 functions described in D1.3 and
D3.1 are presented. Specifically,

l A gaze estimation method is proposed to determine where a child with Autism Spectrum

Disorders (ASD) is actually looking at.

l A method is employed to estimate ten skeleton joints of the child’s upper body. The

estimated joints can then be used to track the child’s hands, which will be further needed

for action recognition.

l A blob detection method is utilized for object detection and the Gaussian Mixture

Probability Hypothesis Density (GM-PHD) tracker is incorporated to track the objects on

the table.

l The Local Binary Patterns (LBP) is used to represent facial appearance cues and the

SVM is applied for identity facial expression classification.

l Based on the Microsoft Kinect SDK, the speech in English as well as the sound direction

can be recognized.

l In addition, experimental evaluation of the proposed data perception methods is also

presented.

Finally, a YARP implementation of the sensory data perception is presented. A preliminary

of multi-sensory data fusion that includes camera selection and coordinate transformation is
also presented as a foundation of the next deliverable D4.3.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 8 of 49

2. Mul t i -Sensory Data Percept ion Framework

In this chapter, an overview of multi-sensory data perception framework is presented. Three

RGB cameras and two Kinects are used for data sensing according to D4.1. Twenty-five

interface functions and twenty-nine related variables are defined for sensory data organization

and perception. The captured multi-sensory data will be employed as an input for tasks T3.3,
T4.3, T4.4, T6.1, and T6.2.

Figure 2.1 shows a framework of multi-sensory data capturing and processing. As

documented in D4.1, this project employs five individual sensors: Camera0, Camera1,

Camera2, Kinect0 and Kinect1. Camera0 and Kinect0 are located in the middle of the

designed platform, which are frontally facing to an ASD child. Camera1 and Camera2 are on

the left and right of the platform respectively, and Kinect1 is equipped on the top of the

platform.

Figure 2.1: A framework of multi-sensory data capturing and processing.

Camera0, Camera1 and Camera2 form a functional unit to get the face location, eye
locations, gaze direction, head direction, etc.

l The Camera Selection Module (CSM) captures image frames from three cameras and

selects the best camera with the highest face detection probability, and meanwhile the

CSM module also functions to obtain facial feature points from the selected frame.

l The selected camera ID, the original frame and the calculated feature points will be

simultaneously saved in a global buffer and be updated according to the speed (fps).

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 9 of 49

l Module 1 and module 2 serve to implement the primary functions, like calculating

face/eye locations, head/gaze directions, face IDs, facial expression IDs and etc. These

separate modules will run through several main algorithms, which are proposed in this

deliverable. It should be noted that Module 1 and Module 2 could communicate with

each other by sharing data in the global buffer.

l The function of Kinect0 is two-fold: voice analysis (Module 3) and subject’s skeleton

joints extraction (Module 4). Module 3 can be further separated into two parts: speech

recognition and sound direction tracking. Kinect1 focuses on object tracking, and the

objective is to get the object (toys) locations, object IDs and robot’s head location.

l An example definition of the global buffer with 29 variables is shown as below.

global_buffer

{

V1: cv::VideoCapture cap;

V2: CameradeviceID

V3: Mat ::image

V4: Eyes(rightx, righty, rightz, left x,left y, left z)

V5: Head pose(roll, yaw, pitch)

V6: Face(vector(x,y,z))

V7: Gaze(roll, yaw, pitch)

V8: Coordinate transform Mat(R,T)---camera1,camera2,camera3,Kinect2

V9: Frame 3D points(x,y,z)

V10: Object position(x,y,z)

V11: Head position(x,y,z)

V12: Hand position(x,y,z)

V13: cv::Mat X; //face 49 feature points

V14: int numberkernel; //number of kernel used for eye centre detection

V15: vector<cv::Mat> kernel_filter; //kernel used for eye centre detection

V16: Robot head position

V17: Sound Direction

V18: Face source

V19: Desk_point vector // 3 points

V20: Skeleton joint vector

V21: Object_location

V22: Object_id

V23: Face_id

V24: Face_expression_id

V25: Object_id

V26: Object_history_location vector

V27: Voice_descriptor_id

V28: Voice_text_id
V29: Skeleton_history_joint vector

}

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 10 of 49

l The coordinate transformation component is employed to determine the position and

orientation of each camera and transform all the local sensory data to a global coordinate
system.

While running the program, all the variables would be updated by the modules and CSM in

real-time. With these 29 variables, the predefined 25 interface functions can be easily

implemented through accessing the variables. Table 2.1 lists relationships between these 25

interface functions (described in D3.1.3) and the defined variables.

Table 2.1: Functions and global variables.

25 Interface functions Related variables

F1: checkMutualGaze V7,V8,V17

F2: getArmAngle V20

F3: getBody V20

F4: getBodyPose V20

F5: getEyeGaze V4,V7,V8,V13

F6: getEyes V3,V4,V6,V8,V13,V14,V15

F7: getFaces V3,V6,V8

F8: getGripLocation V22,V21,V22

F9: getHands V20

F10: getHead V6,V8,V13

F11: getHeadGaze1 V6,V8,V11,V13,V19

F12: getHeadGaze2 V6,V8,V13

F13: getObjects1 V21,V22

F14: getObjects2 V19,V21,V22

F15: getObjectTableDistance V21,V22

F16: getSoundDirection V8,V17

F17: indntifyFace V11,V23

F18: IdentifyFaceExpression V11,V23,V24

F19: identifyObject V21,V25

F20: identifyTrajectory V25,V26

F21: identifyVoice V27

F22: recognizeSpeech V28

F23: trackFace V6,V8,V18

F24: trackHand V29

F25: trackObject V21,V22

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 11 of 49

3. Mul t i -Sensory Data Percept ion Methods

In this chapter, specific methods for multi-sensory data perception are proposed. These

methods, including gaze estimation, upper body skeleton joints detection and joint-based hand

tracking, object detection and tracking, face and facial expression recognition, and speech and

sound direction recognition, are investigated and employed to realise the 25 functions
introduced in Chapter 2.

3.1. Gaze Estimation

3.1.1. Method

Face Location Method

The boosted cascade face detector [1] is employed with default parameters in order to

obtain the approximate location of the face. This method corresponds to the getFaces(x,y,z)

function.

Eye Location Method

This method corresponds to the getEyes(eyeLx, eyeLy, eyeLz, eyeRx, eyeRy, eyeRz)

function. We present an improved integro-differential solution to localize the eye centres. The

proposed method is computationally much cheaper than the original integro-differential

method [2] and it also achieves a higher accuracy in lower-resolution images.

The original integro-differential method is one of the most popular eye localization

methods in the literature. The integro-differential operator (IDO) is defined as follows.

max(%,'(,)() +, - ∗
/

/%

0 ',)

1,%
23

%,'(,)(
 (3-1)

where G, r is a smoothing Gaussian with a scale of 6 and ∗ represents convolution, I x, y is

the image of an eye and 23 is the contour of the - radius circle with the centre point of

(9:, ;:). The operator searches for the maximum along the circle path in the blurred image

via the Gaussian kernel, partial derivative with respect to increasing radius r. In order to deal

with the obscure of upper and lower limbus by the eyelids, the angular arc of contour

integration s is restricted in range to two opposing 90 cones centred on the horizon.

In discrete implementation of the IDO, the order of convolution and differentiation is

interchanged and concatenated to improve the speed. After replacing the convolution and

contour integrals with sums, the equation is derived as follows.

max <∆>,'(,)(
=

@

∆>
+, A − C ∆- − +, A − k − 1 ∆- F[(C∆- cos K∆L +NO

9:), (C∆- sin K∆L + ;:)] (3-2)

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 12 of 49

where ∆- means a small increment in radius, ∆L is the angular sampling interval along the

circular arcs.

As can be seen from the Equation (3-2), an angular sampling interval Δθ is used to find

points along the circular arc 23. However, this makes it hard to choose an appropriate value of

Δθ. If Δθ is too small the computational cost would be very high, on the other side the

accuracy would decrease. Besides, the original IDO only uses the optimization of the circle

curve integral of the gradient magnitudes, the centre point of pupil, which is also an important

information, is not taken into account. The proposed method utilizes all the pixels along the

circular by convoluting different sizes of circle kernels in the eye region image. The grayscale

of the eye centre is also considered by designing the kernel with a weight in the centre point.

The size of the kernel is 2- + 1 where - stands for the radius of circle. The pixels along the

circular are assigned a normalized value. In order to cope with the obscure of eye lids, the

upper and lower part is not assigned.

Instead of using a differential method at the integral of circle intensity, this project

calculates a ratio derivative between neighbour curve magnitudes, which is formulated as

follows.

	
F% = U% ∗ F 9, ;

F%V@
W = U%V@

W ∗ F 9, ;

X% =
0YZ[
\

0Y

]-^K]9(%,',))(X%)	

-_ -N`a, -Nb'

 (3-3)

where U% is the kernel with a centre weight and - stands for the radius of the circle inside the

kernel.

 The kernel without a centre weight is represented as U%V@
W whose radius is - + 1. F% and

F%V@
W are the results of convolution of the different kernels with eye image F(9, ;). X% means

the ratio derivative calculated by the division of the convolution result image. -N`a and -Nb',

which are set according to the size of eye image, represent the minimum and maximum of the

radius -. The weights of the points around the circular arcs are of equal value and normalized

to 1, and the weight of the centre point is settled to a valid value. In order to locate the eye

centre and radius, the proposed method searches the maximum of different radius of X% and

the smoothing function in the original IDO is not employed. By using FFT in the realization

of convolution, the computation complexity can be reduced.

Gaze Estimation Method

We propose a real-time gaze estimation method by constructing multi-sensor fusion system

to handle the large head movement. Three cameras and two Kinects are used in this system. In

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 13 of 49

the gaze estimation task, the cameras are used to capture the face of the child. The Kinect0 is

used to capture the head position in the world coordinate and the Kinect1 is used to capture

the positions of the robot head and objects. All the image data are captured simultaneously by

creating 8 handles in programming. Each handle deals with different kinds of data. The data

captured in these handles contains two Kinect RGB image data, two Kinect depth data, three

camera data and one Kinect audio data. The resolution of the camera, Kinect RGB image,

Kinect depth image are 1280*960, 640*480 and 640*480, respectively.

To estimate the gaze direction, the facial features should be located at first. We employ the

method proposed by Xiong et al. [3] to locate the feature points in the human face. In order to

deal with head movements, the head poses need to be determined. We employ the object pose

estimation method (POSIT) proposed by Dementhon et al. [4] to calculate the direction of

head pose (corresponding to the getHead(headx, heady, headz) function). Then the eye centre

is located by applying the proposed convolution based intergo-differential eye centre

localization method. It should be noted that the gaze direction differs from the head pose by

two angles, the horizontal direction θ and the vertical direction φ . The gaze direction is

finally determined by adding the angles to the head pose. The following is the equation to

calculate the gaze direction (corresponding to the getEyeGaze(eye, x, y, z) function).

θ = tanf@(g ∗ 9h − 9i
1
+ ;hf;i

1
∗
jklm

n
)

φ = tanf@(o ∗ 9h − 9i
1
+ ;hf;i

1
∗
jklp

q
)

 (3-4)

where 9i , ;i denotes the centre of eye corner, 9h, ;h denotes the centre of eye pupil, α is

the angle between the line of two eye corners and the line of two centres. β is the

complementary angle of α . L is the distance of two eye corners, γ and ε are determined

through experiments.

3.1.2. Experimental Results

Eye Location Results

Rough eye regions are extracted through anthropometric relationships with the face as

stated in [5] and [6]. The proposed method is validated on the naturally captured ASD

children images. The main challenge is caused by a large variety of illumination conditions,

backgrounds, scales and poses. Some children in the database are wearing glasses, while in

some images the eyes are partly closed. Some experimental snapshots are illustrated in Figure

3.1. The located facial landmarks are marked as green points and the located eye centres are

marked with a red cross. The results demonstrate that our eye location method can effectively

and accurately detect and locate ASD children’s eyes even in challenging cases.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 14 of 49

Figure 3.1: Snapshots with accurate eye centre estimation.

Gaze Estimation Results

Figures 3.2-3.5 show the gaze estimation results of our project. The Kinects are used to

acquire the RGB colour images as well as the depth images; three high-resolution cameras are

used to acquire high quality RGB colour images. The images we used to calculate the gaze

direction are selected according to the angle of head poses. The most frontal face image is the

image that has the smallest angle of yaw. This image is then chosen to estimate the gaze

direction. In the Figures 3.2-3.5, green dots, red crosses and white lines represent the feature

points, eye locations and gaze directions, respectively. The results demonstrate that the

proposed method can successfully and correctly locate children’s eyes and estimate the gaze

directions with different head movements.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 15 of 49

Figure 3.2: Gaze estimation result from the middle camera.

Figure 3.3: Gaze estimation result from the right camera.

Figure 3.4: Gaze estimation result from the left camera.

Figure 3.5: Gaze estimation on other ASD children.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 16 of 49

Mutual Gaze Estimation Results

 The estimated gaze direction can be further used for mutual gaze determination by

incorporating the position of the robot head. In the project, the mutual gaze function is

designed to judge whether the child is looking at the robot or not. As shown in Figure 3.6, if

the child is facing towards the head position of the robot, then the system can automatically

output a status of the child as “gaze robot head”.

Figure 3.6: Mutual gaze results.

3.1.3. Related Functions

Related functions are F1, F5, F6, F7, F10, F11, F12 and F23.

Relationship of above functions and global variables are shown in Figure 3.7.

V11F1

V7

V16

F14

F25

F10

F5

Y/N

V4

V13

F6

V6

V3

F7 V3

Facial detection fun

V21

V22V19

V10 F11

F23

Figure 3.7: Relationship between gaze related functions and variables.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 17 of 49

3.2. Upper Body Skeleton Detection and Joint-Based Hand
Tracking

3.2.1. Method

 Human upper body skeleton detection

 To recognise the action of human upper body, this project will use the skeleton information

acquired by Kinect0. The main idea is to represent the movement of human upper body using

the pairwise relative positions of the joints feature. A depth image is employed to accurately

and quickly infer 3D positions of body joints. Different body parts are labelled for classifying

joints. Per-pixel information is processed and pooled to generate reliable states of skeletal

joints.

 The acquirement of the skeletal joints is a fundamental part for competing some functions

like getting upper body poses, computing arm angles and locating the positions of the hand.

This project utilises the Kinect SDK in the process of programming for acquiring the skeleton

data. The skeleton data can be captured for use in real-time and/or can also be persisted for

offline processing. Both real-time online and offline data processing can be useful in the

detection of the skeleton and provide excellent results for activity recognition.

 For a human subject, 10 joint positions are tracked by the skeleton tracker when seating in

front of the sensor, and each joint i has 3 coordinates v` w = (9` w , ;` w , x`(w)) at a frame t.

The coordinates are normalized so that the motion is invariant to the initial body orientation

and the body size. Using relative joint positions is actually a quite intuitive way to represent

human motions. For example, it can be interpreted as “arms above the shoulder and moving

left and right” for recognising the action “waving”. This can be effectively characterized

through the pairwise relative positions.

Human hand tracking

Based on the detected skeletal joints, we can easily track the 3D position of a hand, frame

by frame. Hand tracking can assist in estimating the location of object to grasp and is a key

step for tracking the trajectory of the hand. This will be used to analyse which object is

grasped by the ASD child and further to help with the activity classification.

3.2.2. Experimental Results

The skeleton acquired includes 10 joints (head, neck, left and right shoulder, left and right

elbow, left and right wrist, and left and right hand) as shown in Figure 3.8.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 18 of 49

Figure 3.8: Captured skeletal joints with different actions.

From the results of captured skeletal joints, it is clear that all these ten joints can be

estimated accurately with different actions. These joints can be further used to track the hand

and analyse the activities. As shown in Figure 3.9, the selected skeletal joint data extracted

from the recorded data can be used to indicate body movements.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 19 of 49

Figure 3.9: The skeletal joints detection from the recorded data.

 As the upper body joints include hand joint information, frame by frame movement of the

hand can be tracked. Figure 3.10 shows the trajectory of the tracked hand by only considering

the position of the hand from the detected skeletal joints for different actions. The results
demonstrate the good performance of tracking hand by skeleton joints.

Figure 3.10: The trajectory of tracked hand based on the detected skeleton joints.

3.2.3. Related Functions

Related functions are F2, F3, F4, F8, F9 and F24.

Relationship of above functions and global variables are shown in Figure 3.11.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 20 of 49

F2 V20
Arm	

angle
Get skeleton fun V3

F3 V20body Get skeleton fun V3

F4 V20
Body	

pose
Get skeleton fun V3

F8 V20
Locati

on
Get skeleton fun V3

V21

V22

F13

F9 V20hand Get skeleton fun V3

Figure 3.11: Relationship between skeleton related functions and variables.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 21 of 49

3.3. Object Detection and Tracking

3.3.1. Method

 Numerous object detection and tracking algorithms have been proposed in the literature. In

this project, the objective is to detect and track the objects (toys) on the table and finally to

judge whether the objects are picked up by the ASD child or not. The main challenges raised

in this project are object variety, illumination and occlusion. Fortunately, only two objects are

involved at one time and they are on two separate positions of the table. To effectively detect

and track the objects in real time, a simple blob based Otsu object detection method [8] is

employed at each frame and an efficient GM-PHD tracker [9] is used for tracking objects over

time.

The main steps of object detection are summarized as follows.

• Input the video RGB image and transform it to HSV image.

• Use the global threshold method for image binarization with respect to the V-channel

of the HSV image.

• Employ the blob algorithm to recognize the maximum boundary of the table, based on

the fact that the table is white. Once the table area is detected, it is saved and all object

detections are operated within this area.

• At each time step, transform the table area to grey scale, and then use the Otsu

algorithm for adaptively image binarization.

• Within the table area, employ the blob algorithm to detect the candidate regions of the
objects. The centre of each blob is regarded as the position of each object.

Object detection can find all the locations of objects on the table at each frame. To correctly

associate the objects in consecutive frames, an efficient GM-PHD tracker is utilized for object
tracking. The main steps of object tracking are given here.

• Input the video image and use object detection method to detect all the objects.

• Use entropy distribution-based method [10] to estimate the birth intensity of the new

objects.

• Predict object states according to the state transition model. In this project a constant

velocity model is used.

• Update object states according to the new detected measurements. By doing so, the

same object between two consecutive frames will be associated with the highest

weight.

• Output the states of the objects and the corresponding identities.

The abovementioned method is based on one 2D RGB image and it outputs 2D locations of

the objects. To obtain the 3D locations of the objects, a 2D-3D correspondence according to
the depth information captured by the Kinect could be incorporated.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 22 of 49

3.3.2. Experimental Results

The proposed object detection and tracking method is tested on the recorded video data

provided by the UBB. Considering the following scenario, a therapist puts two objects on the

table and guides an ASD child to pick up one of them. The objects are varied and sometimes

occluded by child’s hands. As shown in Figure 3.12, the proposed method can successfully

detect and track the objects when they appear on the table as well as when the child grasps

them.

Figure 3.12: Detecting and tracking objects on the table.

3.3.3. Related Functions

 Related functions are F13, F14, F15, F19, F20 and F25.

Relationship of above functions and global variables are shown Figure 3.13.

F15
distan

ce

V3

V21

V22

F13

F19 V21

V25

F20 V25

V26

Figure 3.13: Relationship between object tracking related functions and variables.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 23 of 49

3.4. Face and Facial Expression Recognition

3.4.1. Method

Task 4.4 provides some advices that the facial appearance cues should be captured and

Support Vector Machine (SVM) is considered as a classifier. So we use Local Binary Patterns

(LBP) to represent facial appearance cues and apply SVM for identity and facial expression
classification.

LBP is a nonparametric method and has been proven as a powerful descriptor in

representing the local textural structure [11]. The main advantages of LBP are the strong

tolerance against illumination variations and the computational simplicity. This method has

been successfully used in both spatial and spatio-temporal domains in face recognition and
facial expression recognition.

The original LBP operator labels the pixels of an image with decimal numbers. Each pixel

is compared with its eight neighbours in a 3∗3 neighbourhood, considering the centre pixel

value as a threshold; bigger values are encoded with 1 and the others with 0. A binary number

is obtained by concatenating all these values. Its corresponding decimal number is used to
compute LBP histogram. Figure 3.14 shows an example of LBP operator.

5 1

4 4

9

6

7 32

1 0

1

1

1

1 00

ThresholdThreshold Binary:	11010011

Decimal:	211

Binary:	11010011

Decimal:	211

Figure 3.14: An example of LBP operator.

In order to emphasize spatial relationships of a face image, the holistic LBP histogram is

extended to a spatially enhanced histogram by using block-based LBP strategy. The detected

face image is divided into 8-by-8 blocks and the LBP feature is extracted in each block. All

the LBP histograms are concatenated into a single histogram. The resulting spatially enhanced
LBP descriptor will be the input of SVM.

SVM is considered as one of the most powerful machine learning techniques for data

classification. It achieves a good balance between structural complexity and generalization

error. It offers a great performance under the circumstance of very few training samples, high

dimensionality and nonlinear classification.

In a two-class learning task, SVM finds a maximal margin hyperplane as its decision

boundary. For a linear separable dataset, SVM assumes that the best classification results are

obtained by maximizing the margin of hyperplane between two classes. It allows not only the

best partition on the training data, but also leaves much room for the correct classification of

the future data. In order to guarantee the maximum margin hyperplanes to be actually found,

an SVM classifier attempts to maximize the following function with respect to y and b:

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 24 of 49

{| =
@

1
y − }`;` y ∙ 9� + Ä

Å
`Ç@ + }`

Å
`Ç@ (3-5)

where w is the number of training examples, }` are the Lagrange multipliers. The vector y and

constant Ä define the hyperplane.

3.4.2. Experimental Results

The face database is created by manually extracting a number of frames from videos, which

yields 204 images of six children. Basically, the face images are laid in frontal or near-frontal

view. There is no large-scale occlusion or head pose in all the images, whilst illuminations
vary.

For the facial expression database, the raw data is also manually extracted from videos.

Meanwhile, the NIMH Child Emotional Faces Picture Set (NIMH-ChEFS) is used to

complement the facial expression database. The resulting database includes 437 images of

five emotional categories (83 Angry, 78 Fear, 111 Happy, 73 Neutral and 92 Sad).

We evaluate our method using 10-fold cross-validation. For face recognition, the

preliminary research is based on the identity classification of six children and experimental

results show that this method can successfully identify them and the recognition rate is around

97%. Considering that the face database is in a small scale, the accuracy may reduce when

applying this method to the real-world face recognition.

For facial expression recognition, the confusion matrix is shown in Table 3.1. The overall

recognition rate is 0.6371. It is very difficult to achieve a clear partition of emotions. The

child tends to perform a combination of emotions (most frequently a combination of fear and
angry). It therefore is difficult to distinguish the negative emotions of children.

Table 3.1: The confusion matrix for facial expression recognition on ASD children.

 Neutral Angry Fear Happy Sad

Neutral 0.5778 0.1765 0.0415 0.1107 0.0934

Angry 0.2035 0.5196 0.0536 0.1161 0.1071

Fear 0.1509 0.0943 0.4906 0.1509 0.1132

Happy 0.0491 0.0552 0.0773 0.7796 0.0387

Sad 0.0636 0.0909 0.1515 0.1060 0.5879

3.4.3. Related Functions

Related functions are F17 and F18.

Relationship of above functions and global variables are shown in Figure 3.15.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 25 of 49

F17
Face	

ID
V11

V23

F18 V11

V23

expression	

ID

Figure 3.15: Relationship between face related functions and variables.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 26 of 49

3.5. Speech and Sound Direction Recognition

3.5.1. Method

The speech recognition method is based on Microsoft Kinect SDK. The codes are written to

utilize the trained model provided by the SDK to recognize the speech. A dictionary is

designed to store the predefined key words and related short sentences, to make the speech

recognition individually independent. The dictionary is fully customizable. This will bring

convenience to users to recognize what sentences the subject say by key words. It will start to

recognize the speech and returns a textual representation on the screen when the subject

speaks. However, the proposed method cannot recognize speech in Romanian since there are

no training samples provided by the SDK.

The direction of the incoming sound is identified based on the different places of

microphones in the Kinect. The positions of microphones are shown in Figure 3.16. The

sound will arrive at each of the microphones in a chronological order as the distances are
different between microphones and the sound source.

Figure 3.16: An illustration of distances between Kinect microphones.

 A signal with higher-quality sound will be produced by processing the audio signals of all

microphones after calculating the source and position of the sound. Two significant properties,

which are the sound angle and the confidence of the sound angle, will be identified and then

the system outputs the direction of the most crucial sound. The angles, including the sound

source angle and the beam angle, are defined in the x-z plane of the sensor perpendicular to

the z-axis of the sensor from the sensor location to analyse the sound source effectively; this

will provide the direction of the sound but not the location of the sound. The range of the

confidence is from one to zero, which represents the full confidence and no confidence
respectively.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 27 of 49

3.5.2. Experimental Results

The isolated words or continuous sentences can be recognized with this implementation of

speech recognition that built on top of word recognition technology. The proposed speech

recognition system displays the content of recognition results in plain text as output when the

subject is speaking. Figure 3.17 shows the experiment results on speech recognition in

English. The results validate that the system can successfully recognize the words and

sentences in English.

Figure 3.17: Speech recognition results in English.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 28 of 49

In Figure 3.18(a), the user makes a sound to the left of the Kinect and the system outputs

the direction of the sound as originating from -11 degrees. The "-" indicates that the sound

source is located to the left of the Kinect as measured from the front and the absolute value

indicates the angle of the source of sound from the normal, which is perpendicular to the mid-

point of the Kinect's front face. Similarly, the system can successfully recognize different

sounds from the middle and right sides of the Kinect (as shown in Figure 3.18(b) and 3.18(c)).

The sound from the middle side can be determined by setting a threshold of the angle of the

source of sound. For example, if the angle of the source of sound is between -5 degrees and 5

degrees, then this sound could be regarded as a middle sound.

(a) Sound from the left side of the Kinect

(b) Sound from the middle of the Kinect

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 29 of 49

(c) Sound from the right side of the Kinect

Figure 3.18: Sound direction recognition results.

3.5.3. Related Functions

Function: Related functions are F16, F21 and F22.

Relationship of above functions and global variables are shown in Figure 3.19.

F16V22

F21V27

F22V28

Figure 3.19: Relationship between audio related functions and variables.

3.5.4. Challenge

Currently, the system is able to identify the sound direction in Romanian, but it cannot

recognize the speech in Romanian due to the lack of related training database. It is also a

challenge to collect and train the Romanian language data without a native speaker’s

assistance.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 30 of 49

4. YARP Implementat ion

The component of sensoryInterpretation aims to implement 25 perception primitives defined

in Section 2 of Deliverable D1.3 (Child Behaviour Specification), and Section 3 of

Deliverable D3.1 (System Architecture). We developed three additional components to

support sensoryInterpretation. They are usbCameraSource, usbCameraSelection and

KinnectSource. The structuralized design makes the whole system more flexible and allows

different components to share the workload that originally belongs to one component, which

improves the real-time performance in sensing children’s behaviours. The complete system

architecture of sensoryInterpretation is shown in Figure 4.1.

4.1. usbCameraSource

1) Component Description

It reads images directly from a camera and streams them to a YARP port. An instance of

usbCamerSource can only read one USB camera.

2) Input Port

None.

3) Output Port

• /usbCameraSource/Cam:o

BufferedPort<ImageOf<PixelRgb>>
Note: The output port to which the images are updated.

4.2. usbCameraSelection
1) Component Description

It inputs images from 3 YARP ports synchronously, and selects an image with the best frontal

face for further processing to get local information, like eye location, eye gaze, etc.

2) Input Port

• /cameraSelection/camMid:i

BufferedPort<ImageOf<PixelRgb>>

Note: The input port to which the images from camera0 are streamed.

• /cameraSelection/camLeft:i

BufferedPort<ImageOf<PixelRgb>>

Note: The input port to which the images from camera1 are streamed.

• /cameraSelection/camRight:i

BufferedPort<ImageOf<PixelRgb>>
Note: The input port to which the images from camera2 are streamed.

3) Output Port

• /cameraSelection/cam:o

• BufferedPort<ImageOf<PixelRgb>>

Note: The output port to which the selected image with the best frontal face is

streamed. In this image, 49 facial landmarks, eye location etc. can be visualized for

demonstrations.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 31 of 49

Figure 4.1: The sensoryInterpretation component architecture.

u
sb
a
a
m
era

S
o
u
rce

au
sb
C
am

eraS
o
u
rce

acam
:o

acam
eraS

electio
n
acam

M
id
:i

u
sb
a
a
m
era

S
o
u
rce

au
sb
C
am

eraS
o
u
rce

acam
:o

acam
eraS

electio
n
acam

L
eft:i

u
sb
a
a
m
era

S
o
u
rce

au
sb
C
am

eraS
o
u
rce

acam
:o

acam
eraS

electio
n
acam

R
ig
h
t:i

u
sb
a
a
m
era

S
electio

n

acam
eraS

electio
n
acam

:o

acameraSelectionacamID:o

acameraSelectionafaceLocation2D:o

acam
eraS

electio
n
afaceL

an
d
m
ark

2
D
:o

acameraSelectionaheadpostLocal:o

acameraSelectionaeyeLocation2D:o

acameraSelectionaeyeGazeLocal:o

sen
so
ry
In
terp

reta
tio

n

asensoryInterpretationacamID:i

asensoryInterpretationaeyeLocation2D:i

K
in
n
ectS

o
u
rce

ak
in
ectS

o
u
rce

afro
n
tC
o
lo
r:o

ak
in
ectS

o
u
rce

afro
n
tD
ep
th
:o

ak
in
ectS

o
u
rce

au
p
C
o
lo
r:o

ak
in
ectS

o
u
rce

au
p
D
ep
th
:o

akinectSourceaupJoint:o

akinectSourceabodyCenter:o

akinectSourceaarmAngle:o

akinectSourceasoundRelatedInformation:o

asensoryInterpretationagetArmAngle:o

asensoryInterpretationagetBodyPose:o

asensoryInterpretationagetEyeGaze:o

asensoryInterpretationagetEyes:o

asensoryInterpretationagetFaces:o

asensoryInterpretationagetGripLocation:o

asensoryInterpretationagetHands:o

asensoryInterpretationagetHead:o

asensoryInterpretationagetHeadGaze:o

asensoryInterpretationagetObjects:o

asensoryInterpretationagetObjectTableDistance:o

asensoryInterpretationagetSoundDirection:o

asensoryInterpretationaidentifyFace:o

asensoryInterpretationaidentifyFaceExpression:o

asensoryInterpretationaidentifyObject:o

asensoryInterpretationaidentifyTrajectory:o

asensoryInterpretationaidentifyVoice:o

asensoryInterpretationarecognizeSpeech:o

asensoryInterpretationatrackFace:o

asensoryInterpretationatrackObject:o

asensoryInterpretationacheckMutualGaze:o

asensoryInterpretationagetBody:o

asensoryInterpretationatrackHead:o

asen
so
ry
In
terp

retatio
n
ab
o
d
y
Jo
in
ts:i

asen
so
ry
In
terp

retatio
n
ab
o
d
y
C
en
ter:i

asen
so
ry
In
terp

retatio
n
aarm

A
n
g
le:i

asen
so
ry
In
terp

retatio
n
aso

u
n
d
V
o
ice:i

acameraSelectionafaceID:o

acameraSelectionafaceExpression:o

asensoryInterpretationaeyeGazeLocal:i

asensoryInterpretationafaceExpression:i

akinectSourceaobjects:o

asen
so
ry
In
terp

retatio
n
ao
b
jects:i

ak
in
ectS

o
u
rce

acam
eraID

:i

ak
in
ectS

o
u
rce

aF
aces:i

ak
in
ectS

o
u
rce

aE
y
es:i

ak
in
ectS

o
u
rce

aH
ead

P
o
st:i

ak
in
ectS

o
u
rce

aE
y
eG

aze:i

asensoryInterpretationagetGripLocation:i

asensoryInterpretationagetHeadGaze:i

asensoryInterpretationagetObjects:i

asensoryInterpretationagetObjectTableDistance:i

asensoryInterpretationagetSoundDirection:i

asensoryInterpretationaidentifyFace:i

asensoryInterpretationaidentifyFaceExpression:i

asensoryInterpretationaidentifyObject:i

asensoryInterpretationaidentifyTrajectory:i

asensoryInterpretationatrackFace:i

asensoryInterpretationatrackHand:i

asensoryInterpretationatrackObject:i

akinectSourceafacesAndEyes3D:o

akinectSourceaheadpostAndGazeGlobal:o

ak
in
ectS

o
u
rce

afacesE
y
es3

D
:o

ak
in
ectS

o
u
rce

aH
an
d
E
y
eG

aze:o

P
0
/
K
I
N
E
C
T
S
O
U
R
C
E
/
U
P
D
E
P
T
H

P
0
/
K
I
N
E
C
T
S
O
U
R
C
E
/
U
P
D
E
P
T
H

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 32 of 49

• /cameraSelection/camID:o

BufferedPort<VectorOf<int>>

Note: The complete output port to which the ID of the selected camera (1, 0 and 2

refer to the left, middle, and right cameras respectively) is streamed. The length of

output vector is 2 with an additional valid state indicator, and it is formatted as [id,

state], where state = 0 indicates an invalid camera ID information and state = 1

indicates a valid camera ID information. When face is not detected from any camera,

state is set to 0. But the invalid information is still output to YARP server, to

implement unblock reading in YARP. (This design can be found in the following

contents, and we will not explain it again.)

• /cameraSelection/faceLocation2D:o

BufferedPort<VectorOf<double>>

Note: The output port to which face locations in the selected image are streamed. The

length of the vector changes with the number of faces being detected, and it is

formatted as [N, face1.x, face1.y, face2.x, face2.y, …]. N refers to the number of faces.

• /cameraSelection/faceLandmark2D:o

BufferedPort<VectorOf<double>>

Note: The output port to which 98 landmarks of a face are streamed. The length of

the vector is 99, formatted as [mark1.x, mark1.y, mark2.x, mark2.y, ... , mark48.x,

mark49.y, state].

• /cameraSelection/headpostLocal:o

BufferedPort<VectorOf<double>>

Note: The output port to which the head gaze with respect to the post of the selected

camera is streamed. The length of the vector is 4, and it is formatted as [pitch, yaw,

roll, state].

• /cameraSelection/eyeLocation2D:o

BufferedPort<VectorOf<double>>

Note: The output port to which eyes’ location of a face is streamed. The length of the

vector is 5, and it is formatted as [righteye.x, righteye.y, lefteye.x, lefteye.y, state].

• /cameraSelection/eyeGazeLocal:o

BufferedPort<VectorOf<double>>

Note: The output port to which the eye gaze with respect to the post of the selected

camera is streamed. The length of the vector is 3, and it is formatted as [pitch, yaw,

roll, state].

• /cameraSelection/faceID:o;

BufferedPort<VectorOf<int>>

Note: The output port to which the face ID (0,1,2 … stand for different individuals)

is streamed. The length of the vector is 2, and it is formatted as [ID, state].

• cameraSelection/faceExpressID:o

BufferedPort<VectorOf<int>>

Note: The complete output port name to which the facial expression (0, 1, 2, 3 and 4

stand for neutral, happy, sad, angry and fearful) is streamed. The length of the

vector is 2, and it is formatted as [ID, state].

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 33 of 49

4.3. KinectSource

1) Component Description

This component functions in two parts: a) reads RGB and depth information from 2 Kinects,

and obtains the locations of upper body joints, body centre, arm angles and sound direction of

a child; b) reads the selected camera ID, 2D face, eye locations, local head and eye gazes from

usbCameraSelectioin, and transfers these coordinates to the world coordinate system.

2) Input Port

• / kinectSource /cameraID:i, connecting to /cameraSelection/camID:o

• / kinectSource /faces:i, connecting to /cameraSelection/faceLocation2D:o

• / kinectSource /headPost:i, connecting to /cameraSelection/ headPostLocal:o

• / kinectSource /eyes:i, connecting to /cameraSelection /eyeLocation2D:o

• / kinectSource /eyeGazeLocal:I, connecting to /cameraSelection /eyeGaze:o

3) Output Port

• /kinectSource/frontColor:o

BufferedPort<ImageOf<PixelRgb>>

Note: The output port to which the RGD image of the front Kinect (Kinect0) is

streamed.

• /kinectSource/frontDepth:o

BufferedPort<ImageOf<PixelRgb>>

Note: The output port to which the depth image of the front Kinect (Kinect0) is

streamed.

• /kinectSource/upColor:o

BufferedPort<ImageOf<PixelRgb>>

Note: The output port to which the RGB image of the upper Kinect (Kinect1) is

streamed.

• /kinectSource/upDepth:o

BufferedPort<ImageOf<PixelRgb>>

Note: The output port to which the depth image of the upper Kinect (Kinect1) is

streamed.

• /kinectSource/ArmAngle:o

BufferedPort<VectorOf<double>>

Note: The output port to which the azimuth and elevation angles of upper left and

right arms of a child are streamed. The length of the vector is 5, and it is formatted as

[left_elevation, left_azimuth, right_elevation, right_azimuth, state].

• /kinectSource/bodyCenter:o

BufferedPort<VectorOf<double>>

Note: The output port to which the body centre of a child is streamed. The length of

the vector is 4, and it is formatted as [bodyCenterOut.x, bodyCenterOut.y,

bodyCenterOut.z, state].

• /kinectSource/upJoints:o

BufferedPort<VectorOf<double>>

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 34 of 49

Note: The output port to which 10 upper body joints of shoulder centre, head, left

shoulder, left elbow, left wrist, left hand, right shoulder, right elbow, right wrist and

right hand are streamed. The length of the vector is 31, and it is formatted as [joint1.x,

joint1.y, joint1.z, ..., joint10.x, joint10.y, joint10.z, state], where joint1, joint2 …, and

joint10 refer to shudder centre, head, left shoulder, left elbow, left wrist, left hand,

right shoulder, right elbow, right wrist and right hand respectively.

• /kinectSource/soundRelatedInformation:o

BufferedPort<VectorOf<double>>

Note: The output port to which the horizontal and vertical angles defining the

direction to the loudest sound of the environment, voice ID and speech ID are

streamed. The length of the vector is 5, and it is formatted as

[horizontal_sound_direction, vertical_sound_direction, voice_ID and speech_ID,

state]. Voice_ID refers to the person who makes voice, and speech_ID refers to one of

several predefined sentences being identified.

• /kinectSource/Objects:o

BufferedPort<VectorOf<double>>

Note: The output port to which the locations of objects in the view of upper Kinect

are streamed. The length of the vector is 8, and it is formatted as [o1.x, o1.y, o1.z,

o1.state, o2.x, o2.y, o2.z, o2.state], where o1 refers to the left side object on the table,

and o2 refers to the right side object. o1.state and o2.state indicate whether the object

is identified.

• /kinectSource/facesAndEyes3D:o

BufferedPort<VectorOf<double>>

Note: The output port to which the locations of two eyes, multiple faces and camera

ID are streamed. The length of the vector is N*3+9, and it is formatted as [state,

CamID, leye.x, leye.y, leye.z, reye.x, reye.y, reye.z, N, face1.x, face1.y, face1.z, …,

faceN.x, faceN.y, faceN.z], where N refers to the number of faces, state shows whether

this data is valid.

• /kinectSource/headpostAndGazeGlobal:o

BufferedPort<VectorOf<double>>

Note: The output port name to which the directions of head and eye gaze in the

world are streamed. The length of the vector is 7, and it is formatted as [state,
headgaze.x, headgaze.y, headgaze.z, eyegaze.x, eyegaze.y, eyegaze.z, o2.s].

4.4. sensoryInterpretation

1) Component Description

This component reads data usbCameraSelection and KinectSource, and then reorganizes the

data format according to the definition of 25 perception primitives. It also encapsulates the

internal outputs of usbCameraSelection and KinectSource into standard outputs according to

the primitives defined in Section 3 of Deliverable D3.1 (System Architecture).

2) Input Port

Internal input ports from cameraSelection and kinectSource

• /sensoryInterpretation/camID:i, connecting to /cameraSelection/camID:o

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 35 of 49

• /sensoryInterpretation/eyeGazeLocal:i, connecting to

/cameraSelection/eyeGazeLocal:o

• /sensoryInterpretation/faceID:i, connecting to /cameraSelection/faceID:o

• /sensoryInterpretation/faceExpression:i, connecting to

/cameraSelection/faceExpression:o

• /sensoryInterpretation/armAngle:i, connecting to /kinectSource/armAngle:o

• /sensoryInterpretation/bodyCenter:I, connecting to /kinectSource/bodyCenter:o

• /sensoryInterpretation/bodyJoints:i ,connecting to /kinectSource/upJoint:o

• / sensoryInterpretation/objects:i ,connecting to /kinectSource/objectsLocation:o

• / sensoryInterpretation /soundVoice:i ,connecting to /kinectSource

/soundRelatedInformation:o

• / sensoryInterpretation/facesEyes:i ,connecting to /kinectSource /facesAndEyes3D:o

• / sensoryInterpretation/headEyeGaze:i ,connecting to /kinectSource

/headPostAndGazeGlobal:o

External input ports from users’ component

• /sensoryInterpretation/getGripLocation:i
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/getHeadGaze:i
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/getObjects:i

/sensoryInterp BufferedPort<VectorOf<double>>

• /sensoryInterpretation/getObjectTableDistance:i
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/getSoundDirection:i
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/identifyFace:o
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/identifyFaceExpression:o
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/identifyObject:o
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/identifyTrajectory:o
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/trackFace:o
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/getHead:o
BufferedPort<VectorOf<double>>

• /sensoryInterpretation/trackObject:o
BufferedPort<VectorOf<double>>

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 36 of 49

3) Output Port

1. /sensoryInterpretation/checkMutualGaze:o

BufferedPort<VectorOf<int>>

Note: The length of the vector is 1, and it is formatted as [state]. state = 0 and state =

1 refer to no mutualGaze and mutualGaze, respectively.

2. /sensoryInterpretation/getArmAngle:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 4, and it is formatted as [left_elevation, left_azimuth,

right_elevation, right_azimuth], referring to the azimuth and elevation angles of the

upper left and right arms of a child.

3. /sensoryInterpretation/getBody:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 3, and it is formatted as [x, y, z].

4. /sensoryInterpretation/getBodyPose:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 30, and it is formatted as [joint1.x, joint1.y,

joint1.z, …, joint10.x, joint10.y, joint10.z]. 10 joint positions are listed in the order of

shudder centre, head, left shoulder, left elbow, left wrist, left hand, right shoulder,

right elbow, right wrist and right hand.

5. /sensoryInterpretation/getEyeGaze:o

BufferedPort<VectorOf<double>>

Note: The length of the vector is 3, and it is formatted as [x, y, z]. Together with the

input from /sensoryInterpretation/getEyeGaze:i containing eye’s position, the gaze

direction originated from child’s eye can be given.

6. /sensoryInterpretation/getEyes:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 6, and it is formatted as [leftEye.x, leftEye.y, leftEye.z,

rightEye.x, rightEye.y, rightEye.z].

7. /sensoryInterpretation/getFaces:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 3*N+1, and it is formatted as [N, face1.x, face2.y,

face3.z, faceN.x, faceN.y, faceN.z]. N refers to the number of faces being detected.

8. /sensoryInterpretation/getGripLocation:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 3, and it is formatted as [x, y, z], referring to the

location of the incidence of gripping an object.

9. /sensoryInterpretation/getHands:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 6, containing the locations of two hands. The vector

is formatted as [left.x, left.y, left.z, right.x, right.y, right.z].

10. /sensoryInterpretation/getHead:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 3, containing child’s head location. The vector is

formatted as [head.x, head.y, head.z].

11. /sensoryInterpretation/getHeadGaze:o

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 37 of 49

BufferedPort<VectorOf<double>>

Note: When there is no input from /sensoryInterpretion/getHeadGaze:i, this port

outputs a vector formatted as [x, y, z]. It reflects a child’s gaze direction originated

from the head position.

12. /sensoryInterpretation/getHeadGaze:o
BufferedPort<VectorOf<double>>

Note: When receiving the input from /sensoryInterpretion/getHeadGaze:i, this port

outputs the location on a flat surface. The output vector is formatted as [x, y, z].

13. /sensoryInterpretation/getObjects:o

/sensoryInterp BufferedPort<VectorOf<double>>

Note: The length of the vector is 4, and it is formatted as [object1.x, object1.y,

object1.z, objects1.state, object2.x, object2.y, object2.z, objects2.state]. If

objects1.state = 1, an object on the left side of the table is detected and the position of

this object is given by the coordinate (object1.x, object1.y, object1.z). If objects1.state

= 0, no object is detected on the left side of the table. If objects2.state = 1, an object

on the right side of the table is detected and the position of this object is given by the

coordinate (object2.x, object2.y, objec2.z). If objects1.state = 0, no object is detected

on the right side of the table.

14. /sensoryInterpretation/getObjects:o
BufferedPort<VectorOf<double>>

Note: When receiving data from /sensoryInterpretation/getObjects:i, this port outputs

locations of objects in a certain area. The length of the vector is 3*N+1, and it is

formatted as [N, x1, y1, z1, …, xN, yN, zN]. N is the number of objects being identified.

15. /sensoryInterpretation/getObjectTableDistance:o
BufferedPort<VectorOf<double>>

Note: With the input of an object’ location from

/sensoryInterpretation/getObjectTableDistance:i, this port outputs the vertical

distance between the table and the object. The length of the output vector is 1, and it is

formatted as [vectical_distance]. If no data is received form the input port, no data will

be output.

16. /sensoryInterpretation/getSoundDirection:o
BufferedPort<VectorOf<double>>

Note: The length of the output vector is 2, and it is formatted as

[horizontal_sound_direction, vertical_sound_direction]. This angle directs to the

loudest sound (higher than a threshold) of the environment from the front Kinect0. If

no input data is received from /sensoryInterpretation/threshold:i, a default threshold

will be applied.

17. /sensoryInterpretation/identifyFace:o
BufferedPort<VectorOf<double>>

Note: The length of the output vector is 1, and it is formatted as [faceID]. If no face is

identified, no data will be output form this port.

18. /sensoryInterpretation/identifyFaceExpression:o
BufferedPort<VectorOf<double>>

Note: The length of the output vector is 1, and it is formatted as [ExpressionID]. If no

face is identified, no data will be output form this port.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 38 of 49

19. /sensoryInterpretation/identifyObject:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 1, and it is formatted as [objectID].

20. /sensoryInterpretation/identifyTrajectory:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 1, and it is formatted as [state], where 0 and 1 stand

for the incidence and non-incidence of hand waving.

21. /sensoryInterpretation/identifyVoice:o
BufferedPort<VectorOf<int>>

Note: The length of the vector [ID] is 1, and the person’s ID who arises the voice is

streamed.

22. /sensoryInterpretation/recognizeSpeech:o
BufferedPort<Bottle>

23. /sensoryInterpretation/trackFace:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 3, and it is formatted as [face.x, face.y, face.z]. It

outputs exactly the same values as /sensoryInterpretation/trackFace:o

24. /sensoryInterpretation/getHead:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 3, and it is formatted as [x, y, z] to represent the head

position in the world.

25. /sensoryInterpretation/trackObject:o
BufferedPort<VectorOf<double>>

Note: The length of the vector is 3, and it is formatted as [x, y, z] to represent the

location of a specified object (left or right object).

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 39 of 49

5. Mul t i -Sensory Data Fus ion - A Pre l iminary

In this chapter, a preliminary that includes camera selection and coordinate transformation

for multi-sensory data fusion is presented. As shown in Figure 2.1, there are two main

modules involved in the framework for sensory data fusion: Camera Selection Module (CSM)

and Coordination Transformation Module (CTM). The CSM is employed to determine which

sensor is optimal for capturing the best view of a subject’s face, while the CTM is utilized to

transform all individual sensory data to a global coordinate system. By doing so, the user can
directly collect and use the sensory data output by the system.

5.1. Camera Selection

5.1.1. Method

All the data captured by three cameras and two Kinects needs to be synchronized for

further analysis. A multi-sensor selection strategy [12] is used to keep the synchronization of

each sensor while at the same time keep the system running in real time. To deal with the

synchronization problem, a multi-threaded programing strategy is employed, where each

sensor owns a separate thread, and a controlling thread is used to coordinate the start and end

of all other threads. To acquire real time performance, the multi-sensor selection strategy is

divided into two stages, namely detection stage and tracking stage. The detailed procedures of
the two stages are shown in Figure 5.1 and Figure 5.2, respectively.

In the detection stage, the first step is to calibrate available sensors, and then capture the

sensory data in parallel. With the captured sensory data, methods for the face detection, face

features extraction, head pose estimation, and object detection can be invoked. The camera

that captures the most frontal face is selected for gaze estimation, face recognition and facial

expression analysis. The face features extraction and head pose estimation methods are

applied on the selected images. The data captured by Kinect0 is used for child’s head
detection and the data captured by the Kinect1 is for objects and robot head detection.

In the tracking stage, based on the selected camera and the two Kinects, methods for facial

feature points and head pose tracking, child’s head tracking, and objects and robot head

tracking can be performed in real time. Since the processing speed of detection stage is

relatively slow, the system can recall the tracking stage to improve the efficiency and thus
lead to a real time performance.

By combining the detection and tracking stages together, the whole system can run in real

time. In order to perform optimal camera selection, a face confidential score of each camera is

defined. This score is acquired by measuring the variation of facial landmarks of detected face

with respect to facial landmarks of a predefined frontal face. The detection and tracking stages

will output a face confidential score for each camera. The camera with the highest face
confidential score will be selected as the optimal camera.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 40 of 49

Sensors Calibration

Camera1 Camera2 Camera3 Kinect1 Kinect2

Child Head &

Detection

Desk Object &

Robot Head

Detection

Face

Detection

Face

Detection

Face

Detection

Face Features

& Head Pose

Detection

Y

Face Features

& Head Pose

Detection

Face Features

& Head Pose

Detection

Y Y

N N N

Gaze

Estimation

Visual Focus

of Attention

Estimation

Camera

Selection

Synchronously

Capture New

Frames

Success

Fail

Figure 5.1: The detection stage.

Selected

Camera
Kinect1 Kinect2

Child Head

Tracking

Facial Feature

& Head Pose

Tracking

Desk Object &

Robot Head

Tracking

Synchronously

Capture New

Frames

Gaze Tracking

Visual Focus

of Attention

Estimation

Figure 5.2: The tracking stage.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 41 of 49

5.1.2. Experimental Results

 The results of the camera selection module are shown in Figure 5.3. These results show that

the camera can be correctly selected based on the face confidential score. Figures 5.3(a), 5.3(b)

and 5.3(c) demonstrate the selected results when a subject is facing forward, left and right,

respectively.

(a) Selected results when a subject is facing forward.

(b) Selected results when a subject is facing left.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 42 of 49

(c) Selected results when a subject is facing right.

Figure 5.3: Results of optimal camera selection strategy.

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 43 of 49

5.2. Coordinate Transformation

The goal of CTM is to transform all the local data captured from the individual cameras to a

global coordinate system. To this end, we first need to determine the position and orientation

of each camera, given its intrinsic parameters and a set of n correspondences between 3D

points and their 2D projections. Then, any 3D point coordinate in the camera coordinate

system can be transformed to the global 3D coordinate system with the rotation and

translation matrices of the camera. The workflow of the proposed camera pose estimation is

shown in Figure 5.4.

Kinect Capturing

Scene

Camera Capturing

Scene

RGB

Data

Depth

Data

RGB

Data

Alignment of

the Depth &

RGB Data

Aligned

RGB

Data

Aligned

Depth

Data

Image Feature

Matching

2D-3D

Correspondance

Camera Pose

Estimation
Output

Figure 5.4: Workflow of the proposed camera pose estimation.

5.2.1. Method

Our implementation is based on an Efficient Perspective-n-Points (EPnP) algorithm

proposed by Vincent et al. [13]. Our camera pose estimation method has a robust result when

different camera poses are encountered. It only requires users to mark corresponding points

between Kinect images and Camera images manually for about 20 pairs. This method is

prefered because it is more reliable than all the other feature-matching algorithms tested. With

the intrinsic parameters of the cameras, the poses of those cameras related to the Kinect can

be determined robustly. As shown in the following equation

 m
i
≈K(R,t)M

!
i

(5-1)

where mi is the projection of the 3D point Mi onto the camera image with K being intrinsic
parameters of the camera. R is the rotation matrix and t is the translation matrix. mi, K and Mi
are known in the equation. With more than 3 pairs of mi-Mi correspondences, the R and t can
be estimated using optimization algorithms. In our implementation, the mi-Mi correspondences
are more than 20 pairs to improve the robustness of the process.

Therefore, the first step for camera pose estimation is to find the 2D-3D correspondence
between the 2D points in the camera image and the 3D points in the space. Because the Kinect

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 44 of 49

can generate both RGB and depth images, the 2D-3D correspondence can be done through an
intermediate step of 2D-2D correspondence between the camera RGB image and the Kinect
RGB image. Then the relationship between points in the Kinect RGB image and the Kinect
depth image will provide the 2D-3D correspondence mentioned above.

To ensure the accuracy of the estimation, the 2D-2D correspondence is achieved by
manually marking corresponding 2D points on the RGB image from the normal camera and
RGB image captured by the Kinect. A calibration object is used to assist this marking process.
This object is shown in the field of view (FOV) of both camera and Kinect. The same point on
the object is marked in RGB images from both the camera and Kinect. With this process, the
accurate 2D-2D correspondence can be obtained.

In the meanwhile, the process of alignment between the RGB image and the depth image
both generated from Kinect is carried out. However, the shift of the location of the different
sensors causes a shift between the RGB image and Depth Image. This presents an obstacle for
searching from 3D points in space to 2D points in the camera image, which has 2D-2D
correspondence to Kinect RGB image. This could be solved by taking into account of the
constant distance between the RGB sensor and the infrared sensor in the Kinect device. With
the knowledge of FOV of the Kinect, we can modify every pixel in the depth image
accordingly to make them aligned with the pixels in RGB image. After alignment, for every
coordinate of 2D point in RGB image, we can retrieve the corresponding 2D coordinate in
Depth image. Then coordinate of 3D point in the space can be obtained with the Equation (5-
2).

 0 0

p p px y z

u u v v f
= =

− − (5-2)

where (u0, v0) is the depth image centre of the Kinect, and f is the focal length of the infrared
camera. (xp, yp, zp) is the 3D coordinate of a point in the space corresponding to the 2D point of
(u, v) in the depth image. The alignment result of RGB image and Depth image is illustrated in
Figure 5.5.

Figure 5.5: The point cloud collection by a Kinect after the RGB image and the Depth image has been

aligned. The Kinect is in front of the chair.

When 2D-3D correspondence is obtained, the next process is to estimate the camera pose.
In our method, this process is mainly based on an iterative process. In every loop of iterations,

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 45 of 49

a Perspective-n-Points (PnP) algorithm is applied along with the 2D-3D correspondence
calculated by the previous process. There is a wide range of PnP algorithm implementations in
the community. We choose an EPnP algorithm according to its high efficiency in calculation.
The EPnP algorithm is an O(n) non-iterative process in the first place. We put it into a
sequence of loops because the main process of the PnP algorithm is about parameterization and
quadratic equations solving, which will also bring in errors when outliers are input. To
minimize this, in each iteration, we firstly apply the EPnP algorithm with the 2D-3D
correspondences. Then a projection process from every 3D point in space to 2D points is
conducted with the estimated camera rotation and translation in the current loop. By comparing
the projected 2D points and the true 2D points in the camera image, the outliers of the 2D-3D
pairs can be counted. If the number of outliers is larger than a predefined threshold, such as the
40% of the total number of the point-pairs in our implementation, then randomly down sample
the 2D-3D point pairs to a predefined number of count, such as the 60% of the total number of
the point-pairs in our implementation. After randomly down sampling, next loop starts. If the
number of outliers is less than the threshold, or the total count of the loop is larger than a
predefined number, the iteration should end, and the final results of the camera pose can be
output.

Furthermore, we have also provided an implementation for transforming local 3D
coordinates to global 3D coordinates. The transformation process is based on the Rotation and
Translation of the Camera relative to the global coordinate system.

With the previously obtained results of the camera poses, the coordinates of the 3D points
can be easily transformed from camera coordinate system (local 3D coordinate) to Kinect
coordinate system (global 3D coordinate). To achieve unified 3D coordinates in same
coordinate system when the points from different cameras, the following equation can be used.

 P *P'R t= + (5-3)

where P’ is a 3D point in camera coordinate system and P is the corresponding 3D point in
unified coordinate system. R and t are the rotation and translation matrices of the camera,
which are also known as the pose of the camera. Similarly, the same process can be applied for
other cameras.

 For those facial points where one of the cameras and the middle Kinect can both capture, it
is easy to find their global 3D coordinates. However, it is sometimes hard for both devices to
capture the same facial points in many situations because of the large head movement. Thus a
2D to 3D coordinate transformation for these located 2D facial points is necessary. The
transformation can be performed using the following equation.

1 1

' ' '

0 0

' '

* *C W

C C PC

C PC

P R P R T

X Y Z

u u v v f

Z Z

− −⎧ = −
⎪
⎪

= =⎨
− −⎪

⎪ =⎩

 (5-4)

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 46 of 49

where
W
P refers to the head centre position in world coordinate,

C
P is the head centre position

in the local coordinate; (u0, v0) is the image centre of the camera, and f is the focal length of the

camera. ()' ' '
, ,

C C C
X Y Z is the 3D coordinate of a point in the local coordinate of the camera,

which is corresponding to the 2D point of (u, v) in the image.
'

PC
Z is the depth value of head

centre point in the local coordinate system. The depth value of the facial points is replaced by
the depth value of head centre in local coordinate for the calculation of its 3D points in local
coordinate. Its global coordinate can be acquired by using Equation (5-2).

5.2.2. Experimental Results

The experimental results of camera pose estimation are shown in Figure 5.6. The origin of

the 3D coordinate system is seated in the Kinect. Compared to the ground truth shown in

Figure 5.6(a), the poses of the cameras in the middle, left and right are estimated accurately

and some matched points between each camera and Kinect can be seen in Figures 5.6(b), 5.6(c)
and 5.6(d).

(a) Relative Positions between Kinect and Three Cameras

(b) Calculated Relative Positions between the Kinect and the Right Camera

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 47 of 49

(c) Calculated Relative Positions between the Kinect and the Middle Camera

(d) Calculated Relative Positions between the Kinect and the Left Camera

Figure 5.6: The experimental results by the proposed method.

With the proposed method, the parameters of the rotation and translation matrices for the
three cameras with respect to the Kinect0 can be obtained in Table 5.1.

Table 5.1: The rotation and translation matrices of three cameras with respect to the Kinect0.

 Rotation matrix Translation matrix

Camera0 [-0.98808, 0.08217, 0.13015;

 -0.01150, -0.88261, 0.46996;

 0.15349, 0.46287, 0.87304]

[-23.4745;

-139.0706;

36.2407]

Camera1 [-0.94568, 0.24830, 0.20983;

 0.01914, -0.60182, 0.79841;

 0.32452, 0.75906, 0.56438]

[-265.7251;

-640.1735;

251.9052]

Camera2 [-0.83212, -0.43233, -0.34736;

 -0.11177, -0.48276, 0.86859;

 -0.54321, 0.76160, 0.35339]

[457.1840;

-634.0433;

509.5746]

To validate the correctness of obtained rotation and translation matrices, a coordinate

transformation experiment between the Camera0 and Kinect0 is devised. Figure 5.7 shows the

colour images captured by the Kinect0 and Camera0. First, the colour and depth images

captured by the Kinect0 are aligned using the Kinect SDK, the aligned result is shown in

Figure 5.8. Then, the 3D point cloud is recovered according to the Equation (5-2). The

recovered 3D points are then transformed to the Camera0 local coordinate system to get their

relative colour information using Equation (5-3). Finally, the 3D points cloud is transformed

D4.2 Evaluation of Multi-Sensory Data Perception

Date: 01/04/2016

Version: No. 2.0
 Page 48 of 49

back into the world coordinate system after the colour information has been updated. The

coordinate transformation result is shown in Figure 5.9, which visually validates the
acceptable performance of the proposed method.

 Figure 5.7: Colour images captured by the Kinect0 (left) and the Camera0 (right).

Figure 5.8: The aligned result of colour and depth images captured by the Kinect0.

Figure 5.9: Coordinate transformation result by transforming the data captured by the Camera0 to the

data captured by the Kinect0

D4.2 Evaluation of multi-sensory data fusion and interpretation

Date: 01/04/2016

Version: No. 2.0
 Page 49 of 49

References

[1] P. Viola and M.J. Jones, Robust real-time face detection. International Journal of

Computer Vision, 2004, 57(2): 137-154.

[2] J.G. Daugman, High Confidence Visual Recognition of Persons by a Test of Statistical

Independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,

15(11): 1148-1161.

[3] X.H. Xiong and F. De la Torre, Supervised Descent Method and its Applications to Face

Alignment. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp.

532-539.

[4] D.F. Dementhon and L.S. Davis, Model-Based Object Pose in 25 Lines of Code.

International Journal of Computer Vision, 1995, 15(1-2): 123-141.

[5] R. Valenti and T. Gevers, Accurate Eye Center Location through Invariant Isocentric

Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9):

1785-1798.

[6] N. Markus, et al., Eye pupil localization with an ensemble of randomized trees. Pattern

Recognition, 2014, 47(2): 578-587.

[7] F. Jan, I. Usman, and S. Agha, A non-circular iris localization algorithm using image

projection function and gray level statistics. Optik, 2013, 124(18): 3187-3193.

[8] L. Agarwal and K. Lakhwani, Optimization of frame rate in real time object detection and

tracking, International Journal of Scientific & Technology Research, 2013, 2(7): 132-134.

[9] X. Zhou, H. Yu, H. Liu, and Y.F. Li, Tracking multiple video targets with an improved

GM-PHD tracker, Sensors, 2015, 15(12): 30240-30260.

[10] X. Zhou, Y.F. Li, and B. He, Entropy distribution and coverage rate-based birth intensity

estimation in GM-PHD filter for multi-target visual tracking, Signal Processing, 2014, 94:

650-660.

[11] D. Huang, C. Shan, M. Ardabilian, Y. Wang, and L. Chen. Local Binary Patterns and Its

Application to Facial Image Analysis: A Survey. IEEE Transactions on Systems, Man, and

Cybernetics, part C: Applications and Reviews, 2011, 41(6):765-781.

[12] H. Cai, X. Zhou, H. Yu, and H. Liu, Gaze estimation driven solution for interacting

children with ASD. 26th 2015 International Symposium on Micro-Nano Mechatronics and

Human Science (MHS2015), Nagoya, Japan, 2015.

[13] L. Vincent, F. Moreno-Noguer, and P. Fua, Epnp: An accurate o(n) solution to the pnp
problem. International Journal of Computer Vision, 2008, 81(2):155-166.

