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Execut ive Summary 

 

Objectives 

 

    Deliverable D4.2 aims to evaluate multi-sensory data perception. Its main objectives are: 

l To document algorithm specification, design, implementation, and validation of a suite 

of multi-modal sensory data acquisition modules derived from the sensory requirements 

set out in “Deliverable D1.1 Interaction Definition” (with particular regard to the sensory 

cues that characterize the action triggers, action components, and action goal states.)  

l To deliver the results from task T4.2 and provide inputs for tasks T3.3, T4.3, T4.4, T6.1, 

and T6.2. 

 

 Implementation 

 

The above objectives in D4.2 have been fulfilled and the involved tasks are summarized as 

follows:  

We have proposed methods/algorithms for multi-modal sensory data acquisition. For visual 

data acquisition, a gaze estimation method is proposed to obtain ASD children’s head poses 

as well as their gaze directions; a joint detection method is introduced to get ASD children’s 

upper body skeletons and a joint-based method is presented to track their  hands in real time; a 

simple blob detection method is employed for detecting the objects on the table and an 

efficient Gaussian mixture probability hypothesis density tracker is employed for object 

tracking; a face and expression recognition method is proposed to recognize children’s faces 

and expressions. For audio data acquisition, the Microsoft SDK is utilized to recognize the 

speech and determine the sound direction. We have experimentally evaluated the feasibility 

and effectiveness of the proposed methods/algorithms.  

l We have completed the YARP framework to implement the 25 perception primitives 

defined in “Deliverable D1.3 Child Behaviour Specification” and “Deliverable D3.1 

System Architecture”. We have developed three additional components to make the 

system more flexible and efficient.  

l We also proposed methods for both the camera selection module and the coordinate 

transformation module, which are the foundation for multi-sensory data fusion.  
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1.  In t roduct ion 
    This deliverable, D4.2, describes the process and analyse of the sensory data, including 

images and sound, obtained from the multi-camera system designed. The processed data is 
further taken as the input for YARP implementation and multi-data fusion.  

First, an overview of the multi-sensory data perception framework is introduced. Five 

individual sensors that include three RGB cameras and two Kinects are used for data sensing. 

Twenty-five interface functions and twenty-nine related variables are defined for sensory data 

organization and perception. 

Then, data perception methods corresponding to the 25 functions described in D1.3 and 
D3.1 are presented. Specifically,  

l A gaze estimation method is proposed to determine where a child with Autism Spectrum 

Disorders (ASD) is actually looking at.  

l A method is employed to estimate ten skeleton joints of the child’s upper body. The 

estimated joints can then be used to track the child’s hands, which will be further needed 

for action recognition.  

l A blob detection method is utilized for object detection and the Gaussian Mixture 

Probability Hypothesis Density (GM-PHD) tracker is incorporated to track the objects on 

the table.  

l The Local Binary Patterns (LBP) is used to represent facial appearance cues and the 

SVM is applied for identity facial expression classification.  

l Based on the Microsoft Kinect SDK, the speech in English as well as the sound direction 

can be recognized.  

l In addition, experimental evaluation of the proposed data perception methods is also 

presented. 

Finally, a YARP implementation of the sensory data perception is presented. A preliminary 

of multi-sensory data fusion that includes camera selection and coordinate transformation is 
also presented as a foundation of the next deliverable D4.3.  
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2.  Mul t i -Sensory Data Percept ion Framework 

In this chapter, an overview of multi-sensory data perception framework is presented. Three 

RGB cameras and two Kinects are used for data sensing according to D4.1. Twenty-five 

interface functions and twenty-nine related variables are defined for sensory data organization 

and perception. The captured multi-sensory data will be employed as an input for tasks T3.3, 
T4.3, T4.4, T6.1, and T6.2. 

Figure 2.1 shows a framework of multi-sensory data capturing and processing. As 

documented in D4.1, this project employs five individual sensors: Camera0, Camera1, 

Camera2, Kinect0 and Kinect1. Camera0 and Kinect0 are located in the middle of the 

designed platform, which are frontally facing to an ASD child. Camera1 and Camera2 are on 

the left and right of the platform respectively, and Kinect1 is equipped on the top of the 

platform. 

 

 

 

Figure 2.1: A framework of multi-sensory data capturing and processing.  

 

Camera0, Camera1 and Camera2 form a functional unit to get the face location, eye 
locations, gaze direction, head direction, etc.   

l The Camera Selection Module (CSM) captures image frames from three cameras and 

selects the best camera with the highest face detection probability, and meanwhile the 

CSM module also functions to obtain facial feature points from the selected frame.  

l The selected camera ID, the original frame and the calculated feature points will be 

simultaneously saved in a global buffer and be updated according to the speed (fps).  
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l Module 1 and module 2 serve to implement the primary functions, like calculating 

face/eye locations, head/gaze directions, face IDs, facial expression IDs and etc. These 

separate modules will run through several main algorithms, which are proposed in this 

deliverable. It should be noted that Module 1 and Module 2 could communicate with 

each other by sharing data in the global buffer.  

l The function of Kinect0 is two-fold: voice analysis (Module 3) and subject’s skeleton 

joints extraction (Module 4). Module 3 can be further separated into two parts: speech 

recognition and sound direction tracking. Kinect1 focuses on object tracking, and the 

objective is to get the object (toys) locations, object IDs and robot’s head location.  

l An example definition of the global buffer with 29 variables is shown as below.  

global_buffer  

{ 

V1: cv::VideoCapture cap; 

V2: CameradeviceID 

V3: Mat ::image 

V4: Eyes(rightx, righty, rightz, left x,left y, left z) 

V5: Head pose(roll, yaw, pitch) 

V6: Face(vector(x,y,z)) 

V7: Gaze(roll, yaw, pitch) 

V8: Coordinate transform Mat(R,T)---camera1,camera2,camera3,Kinect2  

V9: Frame 3D points(x,y,z) 

V10: Object position(x,y,z) 

V11: Head position(x,y,z) 

V12: Hand position(x,y,z) 

V13: cv::Mat X; //face 49 feature points 

V14: int numberkernel; //number of kernel used for eye centre detection 

V15: vector<cv::Mat> kernel_filter; //kernel used for eye centre detection 

V16: Robot head position 

V17: Sound Direction 

V18: Face source 

V19: Desk_point vector // 3 points  

V20: Skeleton joint vector 

V21: Object_location 

V22: Object_id 

V23: Face_id 

V24: Face_expression_id 

V25: Object_id 

V26: Object_history_location vector 

V27: Voice_descriptor_id 

V28: Voice_text_id 
V29: Skeleton_history_joint vector  

} 
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l The coordinate transformation component is employed to determine the position and 

orientation of each camera and transform all the local sensory data to a global coordinate 
system.  

While running the program, all the variables would be updated by the modules and CSM in 

real-time. With these 29 variables, the predefined 25 interface functions can be easily 

implemented through accessing the variables. Table 2.1 lists relationships between these 25 

interface functions (described in D3.1.3) and the defined variables.  

 

Table 2.1: Functions and global variables. 

25 Interface functions Related variables 

F1: checkMutualGaze V7,V8,V17 

F2: getArmAngle V20 

F3: getBody V20 

F4: getBodyPose V20 

F5: getEyeGaze V4,V7,V8,V13 

F6: getEyes V3,V4,V6,V8,V13,V14,V15 

F7: getFaces V3,V6,V8 

F8: getGripLocation V22,V21,V22 

F9: getHands V20 

F10: getHead V6,V8,V13 

F11: getHeadGaze1 V6,V8,V11,V13,V19 

F12: getHeadGaze2 V6,V8,V13 

F13: getObjects1 V21,V22 

F14: getObjects2 V19,V21,V22 

F15: getObjectTableDistance V21,V22 

F16: getSoundDirection V8,V17 

F17: indntifyFace V11,V23 

F18: IdentifyFaceExpression V11,V23,V24 

F19: identifyObject V21,V25 

F20: identifyTrajectory V25,V26 

F21: identifyVoice V27 

F22: recognizeSpeech V28 

F23: trackFace V6,V8,V18 

F24: trackHand V29 

F25: trackObject V21,V22 
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3.  Mul t i -Sensory Data Percept ion Methods 

In this chapter, specific methods for multi-sensory data perception are proposed. These 

methods, including gaze estimation, upper body skeleton joints detection and joint-based hand 

tracking, object detection and tracking, face and facial expression recognition, and speech and 

sound direction recognition, are investigated and employed to realise the 25 functions 
introduced in Chapter 2.  

3.1. Gaze Estimation 

3.1.1. Method 

Face Location Method 

The boosted cascade face detector [1] is employed with default parameters in order to 

obtain the approximate location of the face. This method corresponds to the getFaces(x,y,z) 

function. 

 

Eye Location Method 

This method corresponds to the getEyes(eyeLx, eyeLy, eyeLz, eyeRx, eyeRy, eyeRz) 

function. We present an improved integro-differential solution to localize the eye centres. The 

proposed method is computationally much cheaper than the original integro-differential 

method [2] and it also achieves a higher accuracy in lower-resolution images. 

The original integro-differential method is one of the most popular eye localization 

methods in the literature. The integro-differential operator (IDO) is defined as follows. 

 

max(%,'(,)() +, - ∗
/

/%

0 ',)

1,%
23

%,'(,)(
                         (3-1) 

 

where G, r  is a smoothing Gaussian with a scale of 6 and ∗ represents convolution, I x, y  is 

the image of an eye and 23 is the contour of the - radius circle with the centre point of 

(9:, ;:). The operator searches for the maximum along the circle path in the blurred image 

via the Gaussian kernel, partial derivative with respect to increasing radius r. In order to deal 

with the obscure of upper and lower limbus by the eyelids, the angular arc of contour 

integration s is restricted in range to two opposing 90 cones centred on the horizon.  

In discrete implementation of the IDO, the order of convolution and differentiation is 

interchanged and concatenated to improve the speed. After replacing the convolution and 

contour integrals with sums, the equation is derived as follows. 

 

max <∆>,'(,)(
=

@

∆>
+, A − C ∆- − +, A − k − 1 ∆- F[(C∆- cos K∆L +NO

9:), (C∆- sin K∆L + ;:)]          (3-2) 
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where ∆- means a small increment in radius, ∆L is the angular sampling interval along the 

circular arcs. 

As can be seen from the Equation (3-2), an angular sampling interval Δθ is used to find 

points along the circular arc 23. However, this makes it hard to choose an appropriate value of 

Δθ. If Δθ is too small the computational cost would be very high, on the other side the 

accuracy would decrease. Besides, the original IDO only uses the optimization of the circle 

curve integral of the gradient magnitudes, the centre point of pupil, which is also an important 

information, is not taken into account. The proposed method utilizes all the pixels along the 

circular by convoluting different sizes of circle kernels in the eye region image. The grayscale 

of the eye centre is also considered by designing the kernel with a weight in the centre point. 

The size of the kernel is 2- + 1 where - stands for the radius of circle. The pixels along the 

circular are assigned a normalized value. In order to cope with the obscure of eye lids, the 

upper and lower part is not assigned. 

Instead of using a differential method at the integral of circle intensity, this project 

calculates a ratio derivative between neighbour curve magnitudes, which is formulated as 

follows. 

 

                     

	
F% = U% ∗ F 9, ;

F%V@
W = U%V@

W ∗ F 9, ;

X% =
0YZ[
\

0Y

]-^K]9(%,',))(X%)	

-_ -N`a, -Nb'

                    (3-3) 

 

where U% is the kernel with a centre weight and - stands for the radius of the circle inside the 

kernel.  

    The kernel without a centre weight is represented as U%V@
W  whose radius is - + 1.  F% and 

F%V@
W  are the results of convolution of the different kernels with eye image F(9, ;). X% means 

the ratio derivative calculated by the division of the convolution result image. -N`a and -Nb', 

which are set according to the size of eye image, represent the minimum and maximum of the 

radius -. The weights of the points around the circular arcs are of equal value and normalized 

to 1, and the weight of the centre point is settled to a valid value. In order to locate the eye 

centre and radius, the proposed method searches the maximum of different radius of X% and 

the smoothing function in the original IDO is not employed. By using FFT in the realization 

of convolution, the computation complexity can be reduced. 

 

Gaze Estimation Method 

We propose a real-time gaze estimation method by constructing multi-sensor fusion system 

to handle the large head movement. Three cameras and two Kinects are used in this system. In 
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the gaze estimation task, the cameras are used to capture the face of the child. The Kinect0 is 

used to capture the head position in the world coordinate and the Kinect1 is used to capture 

the positions of the robot head and objects. All the image data are captured simultaneously by 

creating 8 handles in programming. Each handle deals with different kinds of data. The data 

captured in these handles contains two Kinect RGB image data, two Kinect depth data, three 

camera data and one Kinect audio data. The resolution of the camera, Kinect RGB image, 

Kinect depth image are 1280*960, 640*480 and 640*480, respectively. 

To estimate the gaze direction, the facial features should be located at first. We employ the 

method proposed by Xiong et al. [3] to locate the feature points in the human face. In order to 

deal with head movements, the head poses need to be determined. We employ the object pose 

estimation method (POSIT) proposed by Dementhon et al. [4] to calculate the direction of 

head pose (corresponding to the getHead(headx, heady, headz) function). Then the eye centre 

is located by applying the proposed convolution based intergo-differential eye centre 

localization method. It should be noted that the gaze direction differs from the head pose by 

two angles, the horizontal direction θ  and the vertical direction φ . The gaze direction is 

finally determined by adding the angles to the head pose. The following is the equation to 

calculate the gaze direction (corresponding to the getEyeGaze(eye, x, y, z) function). 

 

θ = tanf@(g ∗ 9h − 9i
1
+ ;hf;i

1
∗
jklm

n
)

φ = tanf@(o ∗ 9h − 9i
1
+ ;hf;i

1
∗
jklp

q
)

            (3-4) 

 

where 9i , ;i  denotes the centre of eye corner, 9h, ;h  denotes the centre of eye pupil, α is 

the angle between the line of two eye corners and the line of two centres. β  is the 

complementary angle of α . L is the distance of two eye corners, γ  and ε  are determined 

through experiments. 

 

3.1.2. Experimental Results 

 

Eye Location Results 

Rough eye regions are extracted through anthropometric relationships with the face as 

stated in [5] and [6]. The proposed method is validated on the naturally captured ASD 

children images. The main challenge is caused by a large variety of illumination conditions, 

backgrounds, scales and poses. Some children in the database are wearing glasses, while in 

some images the eyes are partly closed. Some experimental snapshots are illustrated in Figure 

3.1. The located facial landmarks are marked as green points and the located eye centres are 

marked with a red cross. The results demonstrate that our eye location method can effectively 

and accurately detect and locate ASD children’s eyes even in challenging cases. 
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Figure 3.1: Snapshots with accurate eye centre estimation. 

 

Gaze Estimation Results 

Figures 3.2-3.5 show the gaze estimation results of our project. The Kinects are used to 

acquire the RGB colour images as well as the depth images; three high-resolution cameras are 

used to acquire high quality RGB colour images. The images we used to calculate the gaze 

direction are selected according to the angle of head poses. The most frontal face image is the 

image that has the smallest angle of yaw. This image is then chosen to estimate the gaze 

direction. In the Figures 3.2-3.5, green dots, red crosses and white lines represent the feature 

points, eye locations and gaze directions, respectively. The results demonstrate that the 

proposed method can successfully and correctly locate children’s eyes and estimate the gaze 

directions with different head movements. 
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Figure 3.2: Gaze estimation result from the middle camera. 

 

 

Figure 3.3: Gaze estimation result from the right camera. 

 

 
Figure 3.4: Gaze estimation result from the left camera. 

 

 
Figure 3.5: Gaze estimation on other ASD children. 
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Mutual Gaze Estimation Results 

 The estimated gaze direction can be further used for mutual gaze determination by 

incorporating the position of the robot head. In the project, the mutual gaze function is 

designed to judge whether the child is looking at the robot or not. As shown in Figure 3.6, if 

the child is facing towards the head position of the robot, then the system can automatically 

output a status of the child as “gaze robot head”.  

 

 

Figure 3.6: Mutual gaze results. 

 

3.1.3. Related Functions 

Related functions are F1, F5, F6, F7, F10, F11, F12 and F23. 

Relationship of above functions and global variables are shown in Figure 3.7. 
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Figure 3.7: Relationship between gaze related functions and variables. 
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3.2. Upper Body Skeleton Detection and Joint-Based Hand 
Tracking 

3.2.1. Method 

    Human upper body skeleton detection 

    To recognise the action of human upper body, this project will use the skeleton information 

acquired by Kinect0. The main idea is to represent the movement of human upper body using 

the pairwise relative positions of the joints feature. A depth image is employed to accurately 

and quickly infer 3D positions of body joints. Different body parts are labelled for classifying 

joints. Per-pixel information is processed and pooled to generate reliable states of skeletal 

joints.  

    The acquirement of the skeletal joints is a fundamental part for competing some functions 

like getting upper body poses, computing arm angles and locating the positions of the hand. 

This project utilises the Kinect SDK in the process of programming for acquiring the skeleton 

data. The skeleton data can be captured for use in real-time and/or can also be persisted for 

offline processing. Both real-time online and offline data processing can be useful in the 

detection of the skeleton and provide excellent results for activity recognition.  

    For a human subject, 10 joint positions are tracked by the skeleton tracker when seating in 

front of the sensor, and each joint i has 3 coordinates v` w = (9` w , ;` w , x`(w)) at a frame t. 

The coordinates are normalized so that the motion is invariant to the initial body orientation 

and the body size.  Using relative joint positions is actually a quite intuitive way to represent 

human motions. For example, it can be interpreted as “arms above the shoulder and moving 

left and right” for recognising the action “waving”. This can be effectively characterized 

through the pairwise relative positions.  

Human hand tracking 

Based on the detected skeletal joints, we can easily track the 3D position of a hand, frame 

by frame. Hand tracking can assist in estimating the location of object to grasp and is a key 

step for tracking the trajectory of the hand. This will be used to analyse which object is 

grasped by the ASD child and further to help with the activity classification. 

3.2.2. Experimental Results 

The skeleton acquired includes 10 joints (head, neck, left and right shoulder, left and right 

elbow, left and right wrist, and left and right hand) as shown in Figure 3.8. 
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Figure 3.8: Captured skeletal joints with different actions. 

 

From the results of captured skeletal joints, it is clear that all these ten joints can be 

estimated accurately with different actions. These joints can be further used to track the hand 

and analyse the activities. As shown in Figure 3.9, the selected skeletal joint data extracted 

from the recorded data can be used to indicate body movements. 
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Figure 3.9: The skeletal joints detection from the recorded data. 

 

    As the upper body joints include hand joint information, frame by frame movement of the 

hand can be tracked. Figure 3.10 shows the trajectory of the tracked hand by only considering 

the position of the hand from the detected skeletal joints for different actions. The results 
demonstrate the good performance of tracking hand by skeleton joints. 

 
Figure 3.10: The trajectory of tracked hand based on the detected skeleton joints. 

 

3.2.3. Related Functions 

Related functions are F2, F3, F4, F8, F9 and F24. 

Relationship of above functions and global variables are shown in Figure 3.11. 
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Figure 3.11: Relationship between skeleton related functions and variables. 
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3.3. Object Detection and Tracking  

3.3.1. Method 

    Numerous object detection and tracking algorithms have been proposed in the literature. In 

this project, the objective is to detect and track the objects (toys) on the table and finally to 

judge whether the objects are picked up by the ASD child or not. The main challenges raised 

in this project are object variety, illumination and occlusion. Fortunately, only two objects are 

involved at one time and they are on two separate positions of the table. To effectively detect 

and track the objects in real time, a simple blob based Otsu object detection method [8] is 

employed at each frame and an efficient GM-PHD tracker [9] is used for tracking objects over 

time.   

The main steps of object detection are summarized as follows. 

• Input the video RGB image and transform it to HSV image. 

• Use the global threshold method for image binarization with respect to the V-channel 

of the HSV image. 

• Employ the blob algorithm to recognize the maximum boundary of the table, based on 

the fact that the table is white. Once the table area is detected, it is saved and all object 

detections are operated within this area.  

• At each time step, transform the table area to grey scale, and then use the Otsu 

algorithm for adaptively image binarization.  

• Within the table area, employ the blob algorithm to detect the candidate regions of the 
objects. The centre of each blob is regarded as the position of each object. 

 

Object detection can find all the locations of objects on the table at each frame. To correctly 

associate the objects in consecutive frames, an efficient GM-PHD tracker is utilized for object 
tracking. The main steps of object tracking are given here. 

• Input the video image and use object detection method to detect all the objects. 

• Use entropy distribution-based method [10] to estimate the birth intensity of the new 

objects. 

• Predict object states according to the state transition model. In this project a constant 

velocity model is used. 

• Update object states according to the new detected measurements. By doing so, the 

same object between two consecutive frames will be associated with the highest 

weight. 

• Output the states of the objects and the corresponding identities. 

 

The abovementioned method is based on one 2D RGB image and it outputs 2D locations of 

the objects. To obtain the 3D locations of the objects, a 2D-3D correspondence according to 
the depth information captured by the Kinect could be incorporated.  
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3.3.2. Experimental Results 

The proposed object detection and tracking method is tested on the recorded video data 

provided by the UBB. Considering the following scenario, a therapist puts two objects on the 

table and guides an ASD child to pick up one of them. The objects are varied and sometimes 

occluded by child’s hands. As shown in Figure 3.12, the proposed method can successfully 

detect and track the objects when they appear on the table as well as when the child grasps 

them.  

 

 

Figure 3.12: Detecting and tracking objects on the table. 

 

3.3.3. Related Functions 

    Related functions are F13, F14, F15, F19, F20 and F25. 

Relationship of above functions and global variables are shown Figure 3.13. 
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Figure 3.13: Relationship between object tracking related functions and variables. 
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3.4. Face and Facial Expression Recognition  

3.4.1. Method 

Task 4.4 provides some advices that the facial appearance cues should be captured and 

Support Vector Machine (SVM) is considered as a classifier. So we use Local Binary Patterns 

(LBP) to represent facial appearance cues and apply SVM for identity and facial expression 
classification.  

LBP is a nonparametric method and has been proven as a powerful descriptor in 

representing the local textural structure [11]. The main advantages of LBP are the strong 

tolerance against illumination variations and the computational simplicity. This method has 

been successfully used in both spatial and spatio-temporal domains in face recognition and 
facial expression recognition. 

The original LBP operator labels the pixels of an image with decimal numbers. Each pixel 

is compared with its eight neighbours in a 3∗3 neighbourhood, considering the centre pixel 

value as a threshold; bigger values are encoded with 1 and the others with 0. A binary number 

is obtained by concatenating all these values. Its corresponding decimal number is used to 
compute LBP histogram. Figure 3.14 shows an example of LBP operator. 

 

5 1

4 4

9

6

7 32

1 0

1

1

1

1 00

ThresholdThreshold Binary:	11010011

Decimal:	211

Binary:	11010011

Decimal:	211

 

Figure 3.14: An example of LBP operator. 

 

In order to emphasize spatial relationships of a face image, the holistic LBP histogram is 

extended to a spatially enhanced histogram by using block-based LBP strategy. The detected 

face image is divided into 8-by-8 blocks and the LBP feature is extracted in each block. All 

the LBP histograms are concatenated into a single histogram. The resulting spatially enhanced 
LBP descriptor will be the input of SVM. 

SVM is considered as one of the most powerful machine learning techniques for data 

classification. It achieves a good balance between structural complexity and generalization 

error. It offers a great performance under the circumstance of very few training samples, high 

dimensionality and nonlinear classification. 

In a two-class learning task, SVM finds a maximal margin hyperplane as its decision 

boundary. For a linear separable dataset, SVM assumes that the best classification results are 

obtained by maximizing the margin of hyperplane between two classes. It allows not only the 

best partition on the training data, but also leaves much room for the correct classification of 

the future data. In order to guarantee the maximum margin hyperplanes to be actually found, 

an SVM classifier attempts to maximize the following function with respect to y and b: 
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where w is the number of training examples, }` are the Lagrange multipliers. The vector y and 

constant Ä define the hyperplane. 

 

3.4.2. Experimental Results 

The face database is created by manually extracting a number of frames from videos, which 

yields 204 images of six children. Basically, the face images are laid in frontal or near-frontal 

view. There is no large-scale occlusion or head pose in all the images, whilst illuminations 
vary. 

For the facial expression database, the raw data is also manually extracted from videos. 

Meanwhile, the NIMH Child Emotional Faces Picture Set (NIMH-ChEFS) is used to 

complement the facial expression database. The resulting database includes 437 images of 

five emotional categories (83 Angry, 78 Fear, 111 Happy, 73 Neutral and 92 Sad). 

We evaluate our method using 10-fold cross-validation. For face recognition, the 

preliminary research is based on the identity classification of six children and experimental 

results show that this method can successfully identify them and the recognition rate is around 

97%. Considering that the face database is in a small scale, the accuracy may reduce when 

applying this method to the real-world face recognition. 

For facial expression recognition, the confusion matrix is shown in Table 3.1. The overall 

recognition rate is 0.6371. It is very difficult to achieve a clear partition of emotions. The 

child tends to perform a combination of emotions (most frequently a combination of fear and 
angry). It therefore is difficult to distinguish the negative emotions of children. 

 

Table 3.1: The confusion matrix for facial expression recognition on ASD children. 

 Neutral Angry Fear Happy Sad 

Neutral 0.5778 0.1765 0.0415 0.1107 0.0934 

Angry 0.2035 0.5196 0.0536 0.1161 0.1071 

Fear 0.1509 0.0943 0.4906 0.1509 0.1132 

Happy 0.0491 0.0552 0.0773 0.7796 0.0387 

Sad 0.0636 0.0909 0.1515 0.1060 0.5879 

 

3.4.3. Related Functions 

Related functions are F17 and F18. 

Relationship of above functions and global variables are shown in Figure 3.15. 
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Figure 3.15: Relationship between face related functions and variables. 
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3.5. Speech and Sound Direction Recognition 

3.5.1. Method 

The speech recognition method is based on Microsoft Kinect SDK. The codes are written to 

utilize the trained model provided by the SDK to recognize the speech. A dictionary is 

designed to store the predefined key words and related short sentences, to make the speech 

recognition individually independent. The dictionary is fully customizable. This will bring 

convenience to users to recognize what sentences the subject say by key words. It will start to 

recognize the speech and returns a textual representation on the screen when the subject 

speaks. However, the proposed method cannot recognize speech in Romanian since there are 

no training samples provided by the SDK.  

The direction of the incoming sound is identified based on the different places of 

microphones in the Kinect. The positions of microphones are shown in Figure 3.16. The 

sound will arrive at each of the microphones in a chronological order as the distances are 
different between microphones and the sound source.  

 

 
Figure 3.16: An illustration of distances between Kinect microphones. 

     

    A signal with higher-quality sound will be produced by processing the audio signals of all 

microphones after calculating the source and position of the sound. Two significant properties, 

which are the sound angle and the confidence of the sound angle, will be identified and then 

the system outputs the direction of the most crucial sound. The angles, including the sound 

source angle and the beam angle, are defined in the x-z plane of the sensor perpendicular to 

the z-axis of the sensor from the sensor location to analyse the sound source effectively; this 

will provide the direction of the sound but not the location of the sound. The range of the 

confidence is from one to zero, which represents the full confidence and no confidence 
respectively.  
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3.5.2. Experimental Results 

The isolated words or continuous sentences can be recognized with this implementation of 

speech recognition that built on top of word recognition technology. The proposed speech 

recognition system displays the content of recognition results in plain text as output when the 

subject is speaking. Figure 3.17 shows the experiment results on speech recognition in 

English. The results validate that the system can successfully recognize the words and 

sentences in English. 

 

 

 

Figure 3.17: Speech recognition results in English. 
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In Figure 3.18(a), the user makes a sound to the left of the Kinect and the system outputs 

the direction of the sound as originating from -11 degrees. The "-" indicates that the sound 

source is located to the left of the Kinect as measured from the front and the absolute value 

indicates the angle of the source of sound from the normal, which is perpendicular to the mid-

point of the Kinect's front face. Similarly, the system can successfully recognize different 

sounds from the middle and right sides of the Kinect (as shown in Figure 3.18(b) and 3.18(c)). 

The sound from the middle side can be determined by setting a threshold of the angle of the 

source of sound. For example, if the angle of the source of sound is between -5 degrees and 5 

degrees, then this sound could be regarded as a middle sound. 

  

 

(a) Sound from the left side of the Kinect 

 

(b) Sound from the middle of the Kinect 
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(c) Sound from the right side of the Kinect 

Figure 3.18: Sound direction recognition results. 

 

3.5.3. Related Functions 

Function: Related functions are F16, F21 and F22. 

Relationship of above functions and global variables are shown in Figure 3.19. 
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Figure 3.19: Relationship between audio related functions and variables. 

 

3.5.4. Challenge 

Currently, the system is able to identify the sound direction in Romanian, but it cannot 

recognize the speech in Romanian due to the lack of related training database. It is also a 

challenge to collect and train the Romanian language data without a native speaker’s 

assistance. 
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4.  YARP Implementat ion 

The component of sensoryInterpretation aims to implement 25 perception primitives defined 

in Section 2 of Deliverable D1.3 (Child Behaviour Specification), and Section 3 of 

Deliverable D3.1 (System Architecture). We developed three additional components to 

support sensoryInterpretation. They are usbCameraSource, usbCameraSelection and 

KinnectSource. The structuralized design makes the whole system more flexible and allows 

different components to share the workload that originally belongs to one component, which 

improves the real-time performance in sensing children’s behaviours. The complete system 

architecture of sensoryInterpretation is shown in Figure 4.1.  

4.1. usbCameraSource 

1) Component Description  

It reads images directly from a camera and streams them to a YARP port. An instance of 

usbCamerSource can only read one USB camera.  

2) Input Port 

None. 

3) Output Port 

• /usbCameraSource/Cam:o  

BufferedPort<ImageOf<PixelRgb>> 
Note: The output port to which the images are updated. 

4.2. usbCameraSelection 
1) Component Description 

It inputs images from 3 YARP ports synchronously, and selects an image with the best frontal 

face for further processing to get local information, like eye location, eye gaze, etc.  

2) Input Port 

• /cameraSelection/camMid:i  

BufferedPort<ImageOf<PixelRgb>> 

Note: The input port to which the images from camera0 are streamed.  

• /cameraSelection/camLeft:i 

BufferedPort<ImageOf<PixelRgb>> 

Note: The input port to which the images from camera1 are streamed. 

• /cameraSelection/camRight:i 

BufferedPort<ImageOf<PixelRgb>> 
Note: The input port to which the images from camera2 are streamed. 

3) Output Port 

• /cameraSelection/cam:o  

• BufferedPort<ImageOf<PixelRgb>> 

Note: The output port to which the selected image with the best frontal face is 

streamed. In this image, 49 facial landmarks, eye location etc. can be visualized for 

demonstrations. 
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Figure 4.1: The sensoryInterpretation component architecture. 
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• /cameraSelection/camID:o 

BufferedPort<VectorOf<int>> 

Note: The complete output port to which the ID of the selected camera (1, 0 and 2 

refer to the left, middle, and right cameras respectively) is streamed. The length of 

output vector is 2 with an additional valid state indicator, and it is formatted as [id, 

state], where state = 0 indicates an invalid camera ID information and state = 1 

indicates a valid camera ID information. When face is not detected from any camera, 

state is set to 0. But the invalid information is still output to YARP server, to 

implement unblock reading in YARP. (This design can be found in the following 

contents, and we will not explain it again.) 

• /cameraSelection/faceLocation2D:o 

BufferedPort<VectorOf<double>> 

Note: The output port to which face locations in the selected image are streamed. The 

length of the vector changes with the number of faces being detected, and it is 

formatted as [N, face1.x, face1.y, face2.x, face2.y, …]. N refers to the number of faces.  

• /cameraSelection/faceLandmark2D:o  

BufferedPort<VectorOf<double>> 

Note: The output port to which 98 landmarks of a face are streamed. The length of 

the vector is 99, formatted as [mark1.x, mark1.y, mark2.x, mark2.y, ... , mark48.x, 

mark49.y, state]. 

• /cameraSelection/headpostLocal:o 

BufferedPort<VectorOf<double>>  

Note: The output port to which the head gaze with respect to the post of the selected 

camera is streamed. The length of the vector is 4, and it is formatted as [pitch, yaw, 

roll, state]. 

• /cameraSelection/eyeLocation2D:o 

BufferedPort<VectorOf<double>> 

Note: The output port to which eyes’ location of a face is streamed. The length of the 

vector is 5, and it is formatted as [righteye.x, righteye.y, lefteye.x, lefteye.y, state]. 

• /cameraSelection/eyeGazeLocal:o 

BufferedPort<VectorOf<double>>  

Note: The output port to which the eye gaze with respect to the post of the selected 

camera is streamed. The length of the vector is 3, and it is formatted as [pitch, yaw, 

roll, state]. 

• /cameraSelection/faceID:o; 

BufferedPort<VectorOf<int>> 

Note: The output port to which the face ID (0,1,2 … stand for different individuals) 

is streamed. The length of the vector is 2, and it is formatted as [ID, state]. 

• cameraSelection/faceExpressID:o 

BufferedPort<VectorOf<int>> 

Note: The complete output port name to which the facial expression (0, 1, 2, 3 and 4 

stand for neutral, happy, sad, angry and fearful) is streamed. The length of the 

vector is 2, and it is formatted as [ID, state]. 
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4.3. KinectSource 

1) Component Description 

This component functions in two parts: a) reads RGB and depth information from 2 Kinects, 

and obtains the locations of upper body joints, body centre, arm angles and sound direction of 

a child; b) reads the selected camera ID, 2D face, eye locations, local head and eye gazes from 

usbCameraSelectioin, and transfers these coordinates to the world coordinate system.  

 

2) Input Port 

• / kinectSource /cameraID:i, connecting to /cameraSelection/camID:o 

• / kinectSource /faces:i, connecting to /cameraSelection/faceLocation2D:o 

• / kinectSource /headPost:i, connecting to /cameraSelection/ headPostLocal:o 

• / kinectSource /eyes:i, connecting to /cameraSelection /eyeLocation2D:o 

• / kinectSource /eyeGazeLocal:I, connecting to /cameraSelection /eyeGaze:o 

3) Output Port 

• /kinectSource/frontColor:o 

BufferedPort<ImageOf<PixelRgb>> 

Note: The output port to which the RGD image of the front Kinect (Kinect0) is 

streamed.  

• /kinectSource/frontDepth:o 

BufferedPort<ImageOf<PixelRgb>>  

Note: The output port to which the depth image of the front Kinect (Kinect0) is 

streamed.  

• /kinectSource/upColor:o 

BufferedPort<ImageOf<PixelRgb>>  

Note: The output port to which the RGB image of the upper Kinect (Kinect1) is 

streamed.  

• /kinectSource/upDepth:o 

BufferedPort<ImageOf<PixelRgb>> 

Note: The output port to which the depth image of the upper Kinect (Kinect1) is 

streamed.  

• /kinectSource/ArmAngle:o 

BufferedPort<VectorOf<double>> 

Note: The output port to which the azimuth and elevation angles of upper left and 

right arms of a child are streamed. The length of the vector is 5, and it is formatted as 

[left_elevation, left_azimuth, right_elevation, right_azimuth, state]. 

• /kinectSource/bodyCenter:o 

BufferedPort<VectorOf<double>> 

Note: The output port to which the body centre of a child is streamed. The length of 

the vector is 4, and it is formatted as [bodyCenterOut.x, bodyCenterOut.y, 

bodyCenterOut.z, state]. 

• /kinectSource/upJoints:o 

BufferedPort<VectorOf<double>>   
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Note: The output port to which 10 upper body joints of shoulder centre, head, left 

shoulder, left elbow, left wrist, left hand, right shoulder, right elbow, right wrist and 

right hand are streamed. The length of the vector is 31, and it is formatted as [joint1.x, 

joint1.y, joint1.z, ..., joint10.x, joint10.y, joint10.z, state], where joint1, joint2 …, and 

joint10 refer to shudder centre, head, left shoulder, left elbow, left wrist, left hand, 

right shoulder, right elbow, right wrist and right hand respectively. 

• /kinectSource/soundRelatedInformation:o 

BufferedPort<VectorOf<double>> 

Note: The output port to which the horizontal and vertical angles defining the 

direction to the loudest sound of the environment, voice ID and speech ID are 

streamed. The length of the vector is 5, and it is formatted as 

[horizontal_sound_direction, vertical_sound_direction, voice_ID and speech_ID, 

state]. Voice_ID refers to the person who makes voice, and speech_ID refers to one of 

several predefined sentences being identified. 

• /kinectSource/Objects:o 

BufferedPort<VectorOf<double>> 

Note: The output port to which the locations of objects in the view of upper Kinect 

are streamed. The length of the vector is 8, and it is formatted as [o1.x, o1.y, o1.z, 

o1.state, o2.x, o2.y, o2.z, o2.state], where o1 refers to the left side object on the table, 

and o2 refers to the right side object. o1.state and o2.state indicate whether the object 

is identified. 

• /kinectSource/facesAndEyes3D:o 

BufferedPort<VectorOf<double>> 

Note: The output port to which the locations of two eyes, multiple faces and camera 

ID are streamed. The length of the vector is N*3+9, and it is formatted as [state, 

CamID, leye.x, leye.y, leye.z, reye.x, reye.y, reye.z, N, face1.x, face1.y, face1.z, …, 

faceN.x, faceN.y, faceN.z], where N refers to the number of faces, state shows whether 

this data is valid. 

• /kinectSource/headpostAndGazeGlobal:o 

BufferedPort<VectorOf<double>> 

Note: The output port name to which the directions of head and eye gaze in the 

world are streamed. The length of the vector is 7, and it is formatted as [state, 
headgaze.x, headgaze.y, headgaze.z, eyegaze.x, eyegaze.y, eyegaze.z, o2.s]. 

4.4. sensoryInterpretation 

1) Component Description 

This component reads data usbCameraSelection and KinectSource, and then reorganizes the 

data format according to the definition of 25 perception primitives. It also encapsulates the 

internal outputs of usbCameraSelection and KinectSource into standard outputs according to 

the primitives defined in Section 3 of Deliverable D3.1 (System Architecture).  

2) Input Port 

 

Internal input ports from cameraSelection and kinectSource 

• /sensoryInterpretation/camID:i, connecting to /cameraSelection/camID:o 
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• /sensoryInterpretation/eyeGazeLocal:i, connecting to 

/cameraSelection/eyeGazeLocal:o 

• /sensoryInterpretation/faceID:i, connecting to /cameraSelection/faceID:o 

• /sensoryInterpretation/faceExpression:i, connecting to 

/cameraSelection/faceExpression:o 

• /sensoryInterpretation/armAngle:i, connecting to /kinectSource/armAngle:o 

• /sensoryInterpretation/bodyCenter:I, connecting to /kinectSource/bodyCenter:o 

• /sensoryInterpretation/bodyJoints:i ,connecting to /kinectSource/upJoint:o 

• / sensoryInterpretation/objects:i ,connecting to /kinectSource/objectsLocation:o 

• / sensoryInterpretation /soundVoice:i ,connecting to /kinectSource 

/soundRelatedInformation:o 

• / sensoryInterpretation/facesEyes:i ,connecting to /kinectSource /facesAndEyes3D:o 

• / sensoryInterpretation/headEyeGaze:i ,connecting to /kinectSource 

/headPostAndGazeGlobal:o 

 

External input ports from users’ component 

• /sensoryInterpretation/getGripLocation:i  
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/getHeadGaze:i 
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/getObjects:i 

/sensoryInterp BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/getObjectTableDistance:i 
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/getSoundDirection:i 
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/identifyFace:o  
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/identifyFaceExpression:o  
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/identifyObject:o  
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/identifyTrajectory:o  
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/trackFace:o 
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/getHead:o  
BufferedPort<VectorOf<double>> 

• /sensoryInterpretation/trackObject:o  
BufferedPort<VectorOf<double>> 
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3) Output Port 

1. /sensoryInterpretation/checkMutualGaze:o  

BufferedPort<VectorOf<int>>  

Note: The length of the vector is 1, and it is formatted as [state]. state = 0 and state = 

1 refer to no mutualGaze and mutualGaze, respectively. 

2. /sensoryInterpretation/getArmAngle:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 4, and it is formatted as [left_elevation, left_azimuth, 

right_elevation, right_azimuth], referring to the azimuth and elevation angles of the 

upper left and right arms of a child. 

3. /sensoryInterpretation/getBody:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 3, and it is formatted as [x, y, z].  

4. /sensoryInterpretation/getBodyPose:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 30, and it is formatted as [joint1.x, joint1.y, 

joint1.z, …, joint10.x, joint10.y, joint10.z]. 10 joint positions are listed in the order of 

shudder centre, head, left shoulder, left elbow, left wrist, left hand, right shoulder, 

right elbow, right wrist and right hand.  

5. /sensoryInterpretation/getEyeGaze:o  

BufferedPort<VectorOf<double>> 

Note: The length of the vector is 3, and it is formatted as [x, y, z]. Together with the 

input from /sensoryInterpretation/getEyeGaze:i containing eye’s position,  the gaze 

direction originated from child’s eye can be given.   

6. /sensoryInterpretation/getEyes:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 6, and it is formatted as [leftEye.x, leftEye.y, leftEye.z, 

rightEye.x, rightEye.y, rightEye.z]. 

7. /sensoryInterpretation/getFaces:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 3*N+1, and it is formatted as [N, face1.x, face2.y, 

face3.z, faceN.x, faceN.y, faceN.z]. N refers to the number of faces being detected. 

8. /sensoryInterpretation/getGripLocation:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 3, and it is formatted as [x, y, z], referring to the 

location of the incidence of gripping an object.   

9. /sensoryInterpretation/getHands:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 6, containing the locations of two hands. The vector 

is formatted as [left.x, left.y, left.z, right.x, right.y, right.z].  

10. /sensoryInterpretation/getHead:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 3, containing child’s head location. The vector is 

formatted as [head.x, head.y, head.z]. 

11. /sensoryInterpretation/getHeadGaze:o  
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BufferedPort<VectorOf<double>> 

Note: When there is no input from /sensoryInterpretion/getHeadGaze:i, this port 

outputs a vector formatted as [x, y, z]. It reflects a child’s gaze direction originated 

from the head position. 

12. /sensoryInterpretation/getHeadGaze:o  
BufferedPort<VectorOf<double>> 

Note: When receiving the input from /sensoryInterpretion/getHeadGaze:i, this port 

outputs the location on a flat surface. The output vector is formatted as [x, y, z].  

13. /sensoryInterpretation/getObjects:o  

/sensoryInterp BufferedPort<VectorOf<double>> 

Note: The length of the vector is 4, and it is formatted as [object1.x, object1.y, 

object1.z, objects1.state, object2.x, object2.y, object2.z, objects2.state]. If 

objects1.state  = 1, an object on the left side of the table is detected and the position of 

this object is given by the coordinate (object1.x, object1.y, object1.z). If objects1.state  

= 0, no object is detected on the left side of the table.  If objects2.state  = 1, an object 

on the right side of the table is detected and the position of this object is given by the 

coordinate (object2.x, object2.y, objec2.z). If objects1.state  = 0, no object is detected 

on the right side of the table. 

14. /sensoryInterpretation/getObjects:o  
BufferedPort<VectorOf<double>> 

Note: When receiving data from /sensoryInterpretation/getObjects:i, this port outputs 

locations of  objects in a certain area. The length of the vector is 3*N+1, and it is 

formatted as [N, x1, y1, z1, …, xN, yN, zN]. N is the number of objects being identified.  

15. /sensoryInterpretation/getObjectTableDistance:o  
BufferedPort<VectorOf<double>> 

Note: With the input of an object’ location from 

/sensoryInterpretation/getObjectTableDistance:i, this port outputs the vertical 

distance between the table and the object. The length of the output vector is 1, and it is 

formatted as [vectical_distance]. If no data is received form the input port, no data will 

be output.   

16. /sensoryInterpretation/getSoundDirection:o  
BufferedPort<VectorOf<double>> 

Note: The length of the output vector is 2, and it is formatted as 

[horizontal_sound_direction, vertical_sound_direction]. This angle directs to the 

loudest sound (higher than a threshold) of the environment from the front Kinect0. If 

no input data is received from /sensoryInterpretation/threshold:i, a default threshold 

will be applied.  

17. /sensoryInterpretation/identifyFace:o  
BufferedPort<VectorOf<double>> 

Note: The length of the output vector is 1, and it is formatted as [faceID]. If no face is 

identified, no data will be output form this port.  

18. /sensoryInterpretation/identifyFaceExpression:o  
BufferedPort<VectorOf<double>> 

Note: The length of the output vector is 1, and it is formatted as [ExpressionID]. If no 

face is identified, no data will be output form this port. 
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19. /sensoryInterpretation/identifyObject:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 1, and it is formatted as [objectID]. 

20. /sensoryInterpretation/identifyTrajectory:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 1, and it is formatted as [state], where 0 and 1 stand 

for the incidence and non-incidence of hand waving.  

21. /sensoryInterpretation/identifyVoice:o  
BufferedPort<VectorOf<int>> 

Note: The length of the vector [ID] is 1, and the person’s ID who arises the voice is 

streamed.  

22. /sensoryInterpretation/recognizeSpeech:o  
BufferedPort<Bottle> 

23. /sensoryInterpretation/trackFace:o 
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 3, and it is formatted as [face.x, face.y, face.z]. It 

outputs exactly the same values as /sensoryInterpretation/trackFace:o 

24. /sensoryInterpretation/getHead:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 3, and it is formatted as [x, y, z] to represent the head 

position in the world.  

25. /sensoryInterpretation/trackObject:o  
BufferedPort<VectorOf<double>> 

Note: The length of the vector is 3, and it is formatted as [x, y, z] to represent the 

location of a specified object (left or right object).  
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5.  Mul t i -Sensory Data Fus ion -  A Pre l iminary  

In this chapter, a preliminary that includes camera selection and coordinate transformation 

for multi-sensory data fusion is presented. As shown in Figure 2.1, there are two main 

modules involved in the framework for sensory data fusion: Camera Selection Module (CSM) 

and Coordination Transformation Module (CTM). The CSM is employed to determine which 

sensor is optimal for capturing the best view of a subject’s face, while the CTM is utilized to 

transform all individual sensory data to a global coordinate system. By doing so, the user can 
directly collect and use the sensory data output by the system.  

 

5.1. Camera Selection 

5.1.1. Method 

All the data captured by three cameras and two Kinects needs to be synchronized for 

further analysis. A multi-sensor selection strategy [12] is used to keep the synchronization of 

each sensor while at the same time keep the system running in real time. To deal with the 

synchronization problem, a multi-threaded programing strategy is employed, where each 

sensor owns a separate thread, and a controlling thread is used to coordinate the start and end 

of all other threads. To acquire real time performance, the multi-sensor selection strategy is 

divided into two stages, namely detection stage and tracking stage. The detailed procedures of 
the two stages are shown in Figure 5.1 and Figure 5.2, respectively. 

In the detection stage, the first step is to calibrate available sensors, and then capture the 

sensory data in parallel. With the captured sensory data, methods for the face detection, face 

features extraction, head pose estimation, and object detection can be invoked. The camera 

that captures the most frontal face is selected for gaze estimation, face recognition and facial 

expression analysis. The face features extraction and head pose estimation methods are 

applied on the selected images. The data captured by Kinect0 is used for child’s head 
detection and the data captured by the Kinect1 is for objects and robot head detection.  

In the tracking stage, based on the selected camera and the two Kinects, methods for facial 

feature points and head pose tracking, child’s head tracking, and objects and robot head 

tracking can be performed in real time. Since the processing speed of detection stage is 

relatively slow, the system can recall the tracking stage to improve the efficiency and thus 
lead to a real time performance.  

By combining the detection and tracking stages together, the whole system can run in real 

time. In order to perform optimal camera selection, a face confidential score of each camera is 

defined. This score is acquired by measuring the variation of facial landmarks of detected face 

with respect to facial landmarks of a predefined frontal face. The detection and tracking stages 

will output a face confidential score for each camera. The camera with the highest face 
confidential score will be selected as the optimal camera.  
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Figure 5.1: The detection stage. 
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Figure 5.2: The tracking stage. 
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5.1.2. Experimental Results 

    The results of the camera selection module are shown in Figure 5.3. These results show that 

the camera can be correctly selected based on the face confidential score. Figures 5.3(a), 5.3(b) 

and 5.3(c) demonstrate the selected results when a subject is facing forward, left and right, 

respectively.  

 
(a) Selected results when a subject is facing forward. 

 

 
(b) Selected results when a subject is facing left. 
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(c) Selected results when a subject is facing right. 

Figure 5.3: Results of optimal camera selection strategy. 
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5.2. Coordinate Transformation  

The goal of CTM is to transform all the local data captured from the individual cameras to a 

global coordinate system. To this end, we first need to determine the position and orientation 

of each camera, given its intrinsic parameters and a set of n correspondences between 3D 

points and their 2D projections. Then, any 3D point coordinate in the camera coordinate 

system can be transformed to the global 3D coordinate system with the rotation and 

translation matrices of the camera. The workflow of the proposed camera pose estimation is 

shown in Figure 5.4. 

 

Kinect Capturing 

Scene

Camera Capturing 

Scene

RGB 

Data

Depth 

Data

RGB 

Data

Alignment of 

the Depth & 

RGB Data

Aligned 

RGB 

Data

Aligned 

Depth 

Data

Image Feature 

Matching

2D-3D 

Correspondance

Camera Pose 

Estimation
Output

 

Figure 5.4: Workflow of the proposed camera pose estimation. 

 

5.2.1. Method 

Our implementation is based on an Efficient Perspective-n-Points (EPnP) algorithm 

proposed by Vincent et al. [13]. Our camera pose estimation method has a robust result when 

different camera poses are encountered. It only requires users to mark corresponding points 

between Kinect images and Camera images manually for about 20 pairs. This method is 

prefered because it is more reliable than all the other feature-matching algorithms tested. With 

the intrinsic parameters of the cameras, the poses of those cameras related to the Kinect can 

be determined robustly. As shown in the following equation 

 m
i
≈K(R,t)M

!
i     

(5-1) 

 

where mi is the projection of the 3D point Mi onto the camera image with K being intrinsic 
parameters of the camera. R is the rotation matrix and t is the translation matrix. mi, K and Mi 
are known in the equation. With more than 3 pairs of mi-Mi correspondences, the R and t can 
be estimated using optimization algorithms. In our implementation, the mi-Mi correspondences 
are more than 20 pairs to improve the robustness of the process. 

Therefore, the first step for camera pose estimation is to find the 2D-3D correspondence 
between the 2D points in the camera image and the 3D points in the space. Because the Kinect 
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can generate both RGB and depth images, the 2D-3D correspondence can be done through an 
intermediate step of 2D-2D correspondence between the camera RGB image and the Kinect 
RGB image. Then the relationship between points in the Kinect RGB image and the Kinect 
depth image will provide the 2D-3D correspondence mentioned above. 

To ensure the accuracy of the estimation, the 2D-2D correspondence is achieved by 
manually marking corresponding 2D points on the RGB image from the normal camera and 
RGB image captured by the Kinect. A calibration object is used to assist this marking process. 
This object is shown in the field of view (FOV) of both camera and Kinect. The same point on 
the object is marked in RGB images from both the camera and Kinect. With this process, the 
accurate 2D-2D correspondence can be obtained.  

In the meanwhile, the process of alignment between the RGB image and the depth image 
both generated from Kinect is carried out. However, the shift of the location of the different 
sensors causes a shift between the RGB image and Depth Image. This presents an obstacle for 
searching from 3D points in space to 2D points in the camera image, which has 2D-2D 
correspondence to Kinect RGB image. This could be solved by taking into account of the 
constant distance between the RGB sensor and the infrared sensor in the Kinect device. With 
the knowledge of FOV of the Kinect, we can modify every pixel in the depth image 
accordingly to make them aligned with the pixels in RGB image. After alignment, for every 
coordinate of 2D point in RGB image, we can retrieve the corresponding 2D coordinate in 
Depth image.  Then coordinate of 3D point in the space can be obtained with the Equation (5-
2).  

 0 0

p p px y z

u u v v f
= =

− −    (5-2) 

 
where (u0, v0) is the depth image centre of the Kinect, and f is the focal length of the infrared 
camera. (xp, yp, zp) is the 3D coordinate of a point in the space corresponding to the 2D point of 
(u, v) in the depth image. The alignment result of RGB image and Depth image is illustrated in 
Figure 5.5. 

 
Figure 5.5: The point cloud collection by a Kinect after the RGB image and the Depth image has been 

aligned. The Kinect is in front of the chair. 

When 2D-3D correspondence is obtained, the next process is to estimate the camera pose. 
In our method, this process is mainly based on an iterative process. In every loop of iterations, 
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a Perspective-n-Points (PnP) algorithm is applied along with the 2D-3D correspondence 
calculated by the previous process. There is a wide range of PnP algorithm implementations in 
the community. We choose an EPnP algorithm according to its high efficiency in calculation. 
The EPnP algorithm is an O(n) non-iterative process in the first place. We put it into a 
sequence of loops because the main process of the PnP algorithm is about parameterization and 
quadratic equations solving, which will also bring in errors when outliers are input. To 
minimize this, in each iteration, we firstly apply the EPnP algorithm with the 2D-3D 
correspondences. Then a projection process from every 3D point in space to 2D points is 
conducted with the estimated camera rotation and translation in the current loop. By comparing 
the projected 2D points and the true 2D points in the camera image, the outliers of the 2D-3D 
pairs can be counted. If the number of outliers is larger than a predefined threshold, such as the 
40% of the total number of the point-pairs in our implementation, then randomly down sample 
the 2D-3D point pairs to a predefined number of count, such as the 60% of the total number of 
the point-pairs in our implementation. After randomly down sampling, next loop starts. If the 
number of outliers is less than the threshold, or the total count of the loop is larger than a 
predefined number, the iteration should end, and the final results of the camera pose can be 
output. 

Furthermore, we have also provided an implementation for transforming local 3D 
coordinates to global 3D coordinates. The transformation process is based on the Rotation and 
Translation of the Camera relative to the global coordinate system.  

With the previously obtained results of the camera poses, the coordinates of the 3D points 
can be easily transformed from camera coordinate system (local 3D coordinate) to Kinect 
coordinate system (global 3D coordinate). To achieve unified 3D coordinates in same 
coordinate system when the points from different cameras, the following equation can be used. 

 P *P'R t= +    (5-3) 

where P’ is a 3D point in camera coordinate system and P is the corresponding 3D point in 
unified coordinate system. R and t are the rotation and translation matrices of the camera, 
which are also known as the pose of the camera. Similarly, the same process can be applied for 
other cameras.  

 For those facial points where one of the cameras and the middle Kinect can both capture, it 
is easy to find their global 3D coordinates. However, it is sometimes hard for both devices to 
capture the same facial points in many situations because of the large head movement. Thus a 
2D to 3D coordinate transformation for these located 2D facial points is necessary. The 
transformation can be performed using the following equation. 

 

1 1

' ' '

0 0

' '

* *C W

C C PC

C PC

P R P R T

X Y Z

u u v v f

Z Z

− −⎧ = −
⎪
⎪

= =⎨
− −⎪

⎪ =⎩

    (5-4) 
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where 
W
P  refers to the head centre position in world coordinate, 

C
P  is the head centre position 

in the local coordinate; (u0, v0) is the image centre of the camera, and f is the focal length of the 

camera. ( )' ' '
, ,

C C C
X Y Z  is the 3D coordinate of a point in the local coordinate of the camera, 

which is corresponding to the 2D point of (u, v) in the image. 
'

PC
Z  is the depth value of head 

centre point in the local coordinate system. The depth value of the facial points is replaced by 
the depth value of head centre in local coordinate for the calculation of its 3D points in local 
coordinate. Its global coordinate can be acquired by using Equation (5-2). 

 

5.2.2. Experimental Results 

The experimental results of camera pose estimation are shown in Figure 5.6. The origin of 

the 3D coordinate system is seated in the Kinect. Compared to the ground truth shown in 

Figure 5.6(a), the poses of the cameras in the middle, left and right are estimated accurately 

and some matched points between each camera and Kinect can be seen in Figures 5.6(b), 5.6(c) 
and 5.6(d). 

 

   

(a) Relative Positions between Kinect and Three Cameras  

 

(b) Calculated Relative Positions between the Kinect and the Right Camera 
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(c) Calculated Relative Positions between the Kinect and the Middle Camera 

 

(d) Calculated Relative Positions between the Kinect and the Left Camera 

Figure 5.6: The experimental results by the proposed method. 

 

With the proposed method, the parameters of the rotation and translation matrices for the 
three cameras with respect to the Kinect0 can be obtained in Table 5.1. 

Table 5.1: The rotation and translation matrices of three cameras with respect to the Kinect0. 

 Rotation matrix Translation matrix 

Camera0 [-0.98808, 0.08217, 0.13015; 

 -0.01150, -0.88261, 0.46996; 

 0.15349, 0.46287, 0.87304] 

[-23.4745; 

-139.0706; 

36.2407] 

Camera1 [-0.94568, 0.24830, 0.20983; 

 0.01914, -0.60182, 0.79841; 

 0.32452, 0.75906, 0.56438] 

[-265.7251; 

-640.1735; 

251.9052] 

Camera2 [-0.83212, -0.43233, -0.34736; 

 -0.11177, -0.48276, 0.86859; 

 -0.54321, 0.76160, 0.35339] 

[457.1840; 

-634.0433; 

509.5746] 

 

To validate the correctness of obtained rotation and translation matrices, a coordinate 

transformation experiment between the Camera0 and Kinect0 is devised. Figure 5.7 shows the 

colour images captured by the Kinect0 and Camera0. First, the colour and depth images 

captured by the Kinect0 are aligned using the Kinect SDK, the aligned result is shown in 

Figure 5.8. Then, the 3D point cloud is recovered according to the Equation (5-2). The 

recovered 3D points are then transformed to the Camera0 local coordinate system to get their 

relative colour information using Equation (5-3). Finally, the 3D points cloud is transformed 
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back into the world coordinate system after the colour information has been updated. The 

coordinate transformation result is shown in Figure 5.9, which visually validates the 
acceptable performance of the proposed method.  

 

  
 Figure 5.7: Colour images captured by the Kinect0 (left) and the Camera0 (right). 

 

 
Figure 5.8: The aligned result of colour and depth images captured by the Kinect0. 

 

 
Figure 5.9: Coordinate transformation result by transforming the data captured by the Camera0 to the 

data captured by the Kinect0
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