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Execut ive Summary  
Deliverable D4.3 presents evaluation of multi-modal sensory data fusion and interpretation. 

It describes the specification, design, implementation, and validation of a suite of multi-modal 

data fusion and interpretation modules derived from the child behaviour specifications set out 

in deliverable D1.3. It builds on the results of task T4.2, as documented in deliverable D4.2, 

and provides input for tasks T3.3, T5.1, T6.1, and T6.2. This deliverable contains results from 

tasks T4.3 and T4.4.  
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1.  In t roduct ion  
As documented in deliverable D4.2, individual data can be acquired from individual sensor 

source of different modality. However, the fusion of these different types of sensory 

information remains a significant challenge for interacting with ASD children. In general, the 

most popular fusion strategies include fusing at data, feature, and decision levels [1] from 

early, intermediate to late levels. In data level fusion, methods for synchronization and 

adaptation are needed before the fusion process. Statistical estimation methods include non-

recursive methods, such as weighted average methods and the least square methods, and 

recursive methods, such as Kalman filter (KF) and extended KFs (EKFs) [2-5]. In the feature 

level, the fusion is achieved by extracting and concatenating features from different sources to 

get a more discriminating feature [6], which is further provided to the classifier level. 

Classifiers, such as hidden Markov models (HMMs) and their hierarchical counterparts, 

Support Vector Machines (SVMs) and dynamic Bayesian networks (DBNs) [7-9] are used to 

model individual streams. Intermediate level fusion methods are more popular than the early 

and late levels because of their capability of weighted combination of the different modalities 

and access of the low level features [10-12]. Decision level fusion strategies generate a 

decision by considering and combining probability scores or likelihood values obtained from 

separate unimodal classifiers. This involves work in combination theory to estimate the best 

weighting factors based on the training data [13-15].  

The deliverable describes the specification, design, implementation, and validation of 

multi-sensory data fusion process and interpretation modules derived from the child 

behaviour specifications set out in deliverable D1.3. The results of task T4.2, as documented 

in the deliverable, deliver the individual sensory data of detected face, estimated gaze, 

obtained body joints, tracked human hands and objects, and recognized facial expression and 

speech. However, these sensory data are independently captured from a single sensor (a 

camera or a Kinect). To further employ them for human behaviour analysis and to provide 

input for tasks T3.3, T5.1, T6.1 and T6.2, such individual data should be fused. The first and 

foremost important step is to transform sensory data in local coordinate systems to a global 

coordinate system. The fused data is then employed for the action and event recognition in the 

behaviour interpretation of Children with ASD.  

This preliminary deliverable is focused on the multiple sensory data fusion, and the sensory 

data interpretation will be updated in later versions (The interpretation part will start in M24). 

In the data fusion part, a multi-camera optimal selection scheme for optimal sensory data 

capturing is presented, and then how to transform all the local data to a global coordinate 

system by estimating camera poses and employing the rotation and translation matrix is 

described. Evaluations and discussions based on the experimental results are presented in each 

part. 
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2.  Mul t ip le  Sensory Data  Fusion  

This project employs five individual sensors: Camera 1, Camera 2, Camera3, Kinect 1 and 

Kinect 2. As shown in Fig. 1, a framework of coordinating multiple sensors is presented to 

synchronize and fuse the multiple sensory data. There are two main modules involved in the 

framework for sensory data fusion: Camera Selection Module (CSM) and Coordination 

Transformation Module (CTM). The CSM is employed to determine which sensor is optimal 

for capturing the best view of a subject’s face, while the CTM is utilized to transform all 

individual sensory data to a global coordinate system. By doing so, the user can directly 

collect and use the sensory data output by the system.  

 

 

 

Fig. 1. A framework of coordinating multiple sensors.  

 

2.1. Camera Selection Module 

2.1.1. Strategy 

Camera 1, Camera 2 and Camera 3 form a functional unit to get the face location, eye 

location, gaze direction, head direction, etc. The CSM captures image frames from three 

sensors and selects one camera by the highest face detection probability, and meanwhile CSM 

module also functions to obtain facial feature points from the selected frame. The selected 

camera ID, the original frame and the calculated feature points will be simultaneously saved 

in the Global Buffer and be updated according to the speed (fps). Module 1 and module 2 
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serve to implement the primary functions, like calculating face/eye location, head/gaze 

directions, face ID, facial expression ID and etc.  

The function of Kinect1 are two-folds:  voice analysis (module 3) and subject’s skeleton 

joints extraction (module 4). Module 3 includes two parts, namely speech recognition and 

speech direction tracking. Kinect2 is employed to get the locations of an object (toys) and a 
robot’s head.  

    All the data captured by three cameras and two Kinects need to be synchronized for further 

analysis. A multi-sensor selection strategy [16] is used to keep the synchronization of each 

sensor while at the same time keep the system run in real time. To deal with the 

synchronization problem, a multi-thread programing is employed, where each sensor owns a 

separate thread, and a single thread is used to control the start and end of the other threads. To 

acquire real time performance, the multi-sensor selection strategy is divided into two stages, 

namely detection stage and tracking stage. In the detection stage, the face, face features, head 

pose, and object detection is performed. Then the camera that captures the most frontal face is 

selected for gaze estimation, face recognition and facial expression analysis. In the tracking 

stage, the tracking algorithm, which is less time consuming than the detection algorithm, uses 

the data of the selected camera and two Kinects. The detailed procedures of the two stages are 

shown in Fig. 2 and Fig. 3, respectively. 
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Fig. 2. The detection stage. 
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Fig. 3. The tracking stage. 

 

    In the detection stage, the first step is to calibrate different sensors. Then the data are 

synchronously captured by the multi-thread programing strategy. In the strategy, each sensor 

belongs to one separate thread and another thread is used to control the start of the five 

sensors. The face detection algorithm is then applied on the image data captured by the three 

cameras. Only the camera that captures nearly frontal face is chosen for further selection. The 

face features extraction and head pose detection algorithms are then applied on the chosen 

images. Then the camera that captures the best frontal face is selected according to the output 

of the detection algorithm. The data captured by the frontal Kinect is for child head detection. 

The data captured by the top Kinect is for the desk objects and robot head detection. Once the 

camera has been selected, further tasks such as gaze estimation and visual focus of attention 

estimation can be performed.  

 

2.1.2. Experimental Results 

    The results of the camera selection module are shown in Fig. 4. It shows that the camera 

can be correctly selected based on the detected face probability score. The camera that 

captures the highest face probability score is selected as the final camera. The first row of the 

Fig. 4 shows the selected results when facing forward. The results of camera selection when 

facing left and right are shown in the second and third rows respectively in the Fig. 4. 
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Fig. 4. Results of optimal camera selection strategy. 
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2.2. Coordinate Transformation Module 

The goal of CTM is to transform all the local data captured from the individual cameras to 

a global coordinate system. To this end, we first need to determine the position and 

orientation of each camera, given its intrinsic parameters and a set of n correspondences 

between 3D points and their 2D projections. Then, any 3D point coordinate in the camera 

coordinate system can be transformed to the global 3D coordinate system with the rotation 

and translation matrices of the camera. The workflow of the proposed camera pose estimation 
is shown in Fig. 5. 
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Fig. 5. Workflow of the proposed camera pose estimation 

 

2.2.1. 2D-3D Correspondence  

Our implementation is based on an Efficient Perspective-n-Points (EPnP) algorithm 
proposed by Vincent et al. [17]. Our camera pose estimation method has a robust result when 
different camera poses are encountered. It only requires users to mark corresponding points 
between the Kinect image and Camera image manually for about 20 pairs. It is preferred due to 
that it’s far more reliable than any other feature-matching algorithms. With the intrinsic 
parameters of the cameras, the poses of those cameras related to the Kinect can be determined 
robustly. As shown in the following equation, 

 m
i
≈K(R,t)M

!
i      

(1) 

where mi is the projection of the 3D point Mi onto the camera image with K being intrinsic 
parameters of the camera. R is the rotation matrix and t is the translation matrix. mi, K and Mi 
are known in the equation. With more than 3 pairs of mi-Mi correspondences, the R and t can 
be estimated using optimization algorithms. In our implementation, the mi-Mi correspondences 
are more than 20 pairs to improve the robustness of the process. 

Therefore, the first step for camera pose estimation is to find the 2D-3D correspondence 
between the 2D points in the camera image and the 3D points in the space. Because the Kinect 
can generate both RGB and depth images, the 2D-3D correspondence can be done through an 
intermediate step of 2D-2D correspondence between the camera RGB image and the Kinect 
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RGB image. Then the relationship between points in the Kinect RGB image and the Kinect 
Depth image will provide the 2D-3D correspondence mentioned above. 

To ensure the accuracy of the estimation, the 2D-2D correspondence is achieved by 
manually marking corresponding 2D points in camera’s RGB image and Kinect’s RGB image. 
A calibration object is used to assist this marking process. This object is shown in the field of 
view (FOV) of both camera and Kinect. The same point in the object is marked in RGB images 
from both camera and Kinect. With this process, the accurate 2D-2D correspondence can be 
obtained.  

In the meanwhile, the process of alignment between the RGB image and the depth image 
both generated from Kinect is carried out. However, the shift of the location of the different 
sensors causes a shift between RGB image and Depth Image. This presents an obstacle for 
searching from 3D points in space to 2D points in the camera image, which has 2D-2D 
correspondence to Kinect RGB image. This could be solved by taking into account of the 
constant distance between the RGB sensor and the infrared sensor in the Kinect device. With 
the knowledge of FOV of the Kinect, we can modify every pixel in the depth image 
accordingly to make them aligned with the pixels in RGB image. After alignment, for every 
coordinate of 2D point in RGB image, we can retrieve the corresponding 2D coordinate in 
Depth image.  Then coordinate of 3D point in the space can be obtained with the Eq. (2).  

 0 0

p p px y z

u u v v f
= =

− −     (2) 

where (u0, v0) is the depth image center of the Kinect, and f is the focal length of the infrared 
camera. (xp, yp, zp) is the 3D coordinate of a point in the space corresponding to the 2D point of 
(u, v) in the depth image. The alignment result of RGB image and Depth image is illustrated in 
Fig. 6. 

 

 

Fig. 6. The point cloud collection by a Kinect after the RGB image and the Depth image has 

been aligned. The Kinect is in front of the chair. 
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2.2.2. Camera Poses Estimation 

When 2D-3D correspondence is obtained, the next process is to estimate the camera pose. 
In our method, this process is mainly based on an iterative process. In every loop of iterations, 
a Perspective-n-Points (PnP) algorithm is applied along with the 2D-3D correspondence 
calculated by the previous process. There is a wide range of PnP algorithm implementations in 
the community. We choose an EPnP algorithm according to its high efficiency in calculation. 
The EPnP algorithm is an O(n) non-iterative process in the first place. We put it into a 
sequence of loops because the main process of the PnP algorithm is about parameterization and 
quadratic equations solving, which will also bring in errors when outliers are input. To 
minimize this, in each loop of the iteration, we firstly apply the EPnP algorithm with the 2D-
3D correspondences. Then a projection process from every 3D point in space to 2D points is 
conducted with the estimated camera rotation and translation in the current loop. By comparing 
the projected 2D points and the true 2D points in the camera image, the outliers of the 2D-3D 
pairs can be counted. If the number of outliers is larger than a predefined threshold, such as the 
40% of the total number of the point-pairs in our implementation, then randomly down sample 
the 2D-3D point pairs to a predefined number of count, such as the 60% of the total number of 
the point-pairs in our implementation. After randomly down sampling, next loop starts. If the 
number of outliers is less than the threshold, or the total count of the loop is larger than a 
predefined number, the iteration should end, and the final results of the camera pose can be 
output. 

 

2.2.3. Local to Global 3D Coordinate Transformation 

Furthermore, we have also provided an implementation for transforming local 3D 
coordinates to global 3D coordinates. The transformation process is based on the Rotation and 
Translation of the Camera relative to the global coordinate system.  

With the previously obtained results of the camera poses, the coordinates of the 3D points 
can be easily transformed from camera coordinate system (local 3D coordinate) to Kinect 
coordinate system (global 3D coordinate). To achieve unified 3D coordinates in same 
coordinate system when the points from different cameras, the following equation can be used. 

 P *P'R t= +    (3) 

where P’ is a 3D point in camera coordinate system and P is the corresponding 3D point in 
unified coordinate system. R and t are the rotation and translation matrices of the camera, 
which are also known as the pose of the camera. Similarly, the same process can be applied for 
other cameras.  

 

2.2.4. Experimental Results 

    The experimental results of camera pose estimation are shown in Fig.7. The origin of the 3D 

coordinate system is seated in the Kinect. Compared to the ground truth, as shown in Fig. 7 (a), 

the poses of the cameras in the middle, left and right are estimated accurately, as it can be 

observed in the point clouds shown in Fig. 7 (b) (c) (d) with the matched points between each 

camera and Kinect.  
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(a) Relative Positions between Kinect and Three Cameras  

 

(b) Calculated Relative Positions between the Kinect and the Right Camera 

 

(c) Calculated Relative Positions between the Kinect and the Middle Camera 

 

(d) Calculated Relative Positions between the Kinect and the Left Camera 

Fig.7. The experimental results by the proposed method.
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3.  Sensory Data In terpretat ion  

The specification, design, implementation, and validation of sensory data interpretation will 
start in M24. 
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