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ABSTRACT

Gaze analysis of human-robot interactions can reveal much
about the dynamics of the interaction and be a useful step in
establishing levels of engagement and attention. Currently,
much of this work has to be conducted manually through post-
hoc video coding due to current limitations in non-invasive,
real-time gaze tracking solutions. This paper assesses whether
real-time head pose estimation from an RGB-D camera may
be used in place of manual post-hoc coding of gaze direction.
Using data collected from an experiment ‘in the wild’, it
is found that the proposed RGB-D based pose estimation
method is neither accurate nor consistent enough to provide
a reliable measure of gaze within human-robot interactions.
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1. INTRODUCTION
Gaze analysis is used for many different applications in

human-robot interaction (HRI). For example, gaze can be
used as a measure to form engagement estimations, or as a
proxy for attribution of social agency over time [1]. Such
analysis is often completed through manual post-hoc video
coding due to the current lack of non-invasive real-time
eye tracking systems available for real-world use. This is a
labour intensive task, thus making it desirable to automate
the process.

As part of a larger study, the aim here was to evaluate an
RGB-D camera (the Microsoft Kinect for Xbox 360, with
SDK v1.7) for use as a means of automatically detecting
whether a child is looking at a robot. Head pose estimation
was used instead of eye gaze detection as it is more robust
to lighting conditions [2]. It was hypothesised that in a
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Figure 1: Schematic layout of the experimental
setup. A seated child and an Aldebaran NAO in-
teract over a touchscreen. A Microsoft Kinect is
placed above and behind the robot, over 1 metre
away from the child. A video camera records each
interactant. Figure not to scale.

relatively constrained physical interaction scenario, such head
pose data would be strongly and consistently correlated with
the actual gaze of the child (as measured through manual
video coding), thereby providing a real-time estimation of
gaze (thus facilitating means of influencing the interaction),
and reducing the resource-intensive nature of data collection.

2. METHODOLOGY
Twenty interactions were filmed between children and the

robot; all children had permission to take part and be filmed
for use in the study. The children were all approximately 8
years old and from a primary school in the United Kingdom;
11 girls and 9 boys participated.

The robot was acting as a tutor for the children in ed-
ucational interactions centered around a large touchscreen
(Figure 1). The use of the touchscreen means that the move-
ment of the child is relatively minimal and that their position
reliably falls within the field of view of the cameras. The
position of the robot head with respect to the RGB-D sensor
is fixed and known. The robot provides lessons and feedback
on touchscreen moves that the child made, as in [3]. An
RGB-D camera was positioned slightly above and behind the
robot, on a fixed mount, so that the robot did not obscure
the image captured. The experiment was conducted in two
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Figure 2: Average instances of gaze per interaction,
comparing RGB-D data against manually coded
data. *** indicates significance at the p<0.001 level.
Error bars show 95% confidence interval.

different environments: one with ample natural light and one
with minimal natural light.

The RGB-D camera was performing face tracking; when
a face was detected, the head pose was estimated. The
intersection of the estimated head direction vector and the
robot frontal plane was calculated, and checked to see where
the intersection point fell with respect to the robot head (this
is known, given the fixed spatial relationship of the RGB-D
camera and the robot head). Accuracy of the estimated
gaze to robot was indicated by a confidence value ([0.0,1.0])
corresponding to the distance of the intersection point from
the centre of the robot head in the frontal plane: a gaze
event was logged if this value was greater than a threshold
of 0.7 (corresponding to a distance of 12cm).

3. ANALYSIS AND DISCUSSION
The interactions were manually coded post-hoc by one

coder, and validated by a second coder. 20% of the videos
were second coded with an average Cohen’s Kappa of 0.80,
signifying substantial agreement [4]. For the RGB-D data to
be useful as a replacement to manual video coding, it needs
to be both accurate and consistent. The mean agreement
between the RGB-D data and the hand-coded video data
was a Cohen’s Kappa value of 0.19 (95% CI [0.10,0.29]). This
signifies ‘slight’ agreement [4] and suggests poor accuracy
given the disparity with the human coded data.
Furthermore, a lack of accuracy is indicated when exam-

ining the total number of detected gaze events (Figure 2).
The RGB-D data misses a significant number per interaction
(M=35.6, 95% CI [22.0,49.1]) when compared to the manu-
ally coded data (M=124.6, 95% CI [97.7,151.4]); t(19)=6.872,
p<0.0001. With the lowest Kappa value signifying less than
chance, and the highest signifying ‘substantial’ agreement, it
does not appear to be consistent across the interactions ei-
ther. The highest Kappa value achieved for one of the twenty
interactions was 0.65; Figure 3 shows the continuous RGB-D
gaze confidence estimation against the manually coded value
for this interaction.
Lighting conditions do not appear to be a factor as there

were no significant differences between Kappa values for the
minimally lit environment (M=0.118, 95% CI [0.00,0.24])
and the environment with ample natural light (M=0.25, 95%
CI [0.10,0.39]); t(18)=1.421, p=0.172.
There are a number of ways in which the approach here
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Figure 3: RGB-D gaze estimation confidence level
compared to the binary manually coded values. The
dashed line shows the threshold at which the confi-
dence level is considered to constitute a gaze.

could be developed to provide more accurate or reliable data.
A general observation was that the children would often look
towards the robot whilst their head pose was still oriented
towards the touchscreen, which is reasonable based on human
behaviour literature [5]. This would suggest that measuring
eye gaze directly, rather than estimating gaze from head
pose, may be necessary. In our setup, using an eye tracker
positioned on the screen instead of behind the robot may be
more effective.

However, this does not mean that head pose data should be
completely dismissed, since it has potential use as a means of
generating basic reciprocal gaze behaviours, or other socially
responsive behaviours, for the robot. Although a ‘best case’
from the data here, Figure 3 shows that there are many
instances where a coarse behavioural response would likely
be perceived as adequate by a human interactant.

Nonetheless, the results have shown that the head gaze data
from the RGB-D camera is neither accurate, nor consistent.
This suggests that it would not be suitable as a measure for
HRI studies to replace manual coding.
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